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Abstract. Earlier derivations of scoring rules, by Smith [1973] and Young
[1975], assumed that a voter can express only a rank ordering of the
alternatives on his or her ballot. This paper shows that scoring rules can be
derived without this ordering assumption. It is shown that a voting rule must
be a scoring rule if it satisfies three basic axioms: reinforcement,
overwhelming majorities, and neutrality. Other range and nonreversal axioms
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AXTOMATIC DERIVATION OF SCORIKNG RULES WITHOUT TEE ORDERING ASSUMPTION

by Roger B. Myerson

1. Introduction

A scoring rule is a social choice procedure in which each individual
submits a ballot that assigns some number of points to each of the wvarious
alternatives, and a social cheoice is selected from among the set of
alternatives that get the maximum total points from all the individuals who
vote. Scoring rules differ according to what is the set of vote vectors that

individuals are allowed to write on their ballots. Under plurality voting, a

voter can assign 1 point to only one altermative, and must assign 0 points to

all other alternatives. Under approval wvoting, a voter can assign 1 or 0
points to each alternative independently, with no restriction on how many

alternatives can be given a point on a voter's ballot. Under Borda woting, if

K denotes the set of available alternatives, then a voter must assign each of
the numbers {0,1,...,#K-1) to one of the available alternatives.

The prominence of scoring rules, in both the theory and practice of
voting, suggests that there may be some fundamental properties that distinguish
scoring rules as a particularly good class of social choice procedures. This
insight was partially confirmed by the work of Smith [1973] and Young [1973],
who present axiomatic derivations of scoring rules. In their derivations,
however, both Smith and Young assumed that individuals can vote only by
expressing a rank ordering of the alternatives. That is, in Smith’s and
Young's formulations, the set of possible votes is required to be equal to the
set of possible rank orderings of the alternatives.

To see that this ordering assumption is seriously restrictive, notice that



it would exclude approval voting. Two voters who have the same preference
ordering over a set of three alternatives could sincerely cast different wvotes
under approval veting. One voter might vote for only thelr top-ranked
alternative, while the other voter might vote for both their top-ranked and
second-ranked alternatives. Indeed, these two voters might strictly prefer to
cast such different votes in a randomized equilibrium of an approval-voting
game, if they have different von Neumann-Morgenstern utility functions over the
alternatives. (For example, consider a situation where the first voter has
utilities (1, .1, 0) for the three alternatives, the other voter has utilities
(1, .9, 0), and any pair of alternatives is equally likely to be in close race
that could be affected by one vote.) Thus, there is loss of generality in
assuming that a voter can only express a rank ordering of the alternatives on
his or her ballot.

This paper shows that Smith's and Young’'s results can be extended by
dropping the assumption that votes are rank orderings. We impose here no
assumptions about the structure of the set of permissible votes, except that
it is some nonempty finite set. Smith [1973] assumed also that the outcome of
the voting must determine a complete rank ordering of the alternatives. Young
[1975] dropped this assumption and specified that a voting rule only needs to
choose a nonempty subset of the alternatives; we follow Young in this regard.

So the voting rules that we consider here are all those that can be
described in the following general terms. Let K be a nonempty finite set which
denotes the set of available alternatives among which society must choose.

Let V be another nonempty finite set which denotes the set of possible votes
that any individual voter can specify on his or her ballot. We assume that

individuals submit their ballots anonymously, so the result of any election can



be described by a distribution that specifies how many of each kind of ballot
have been submitted., Thus, the set of possible election results is the set of
possible functions from V into the nonnegative integers. This set of functions
v . . ]

is here denoted by Z+. That is, the result of an election is a wvector

“‘T
a = (a(v))vev in Z+, where, for each v in V, o(v) denotes the number of voters
who have chosen to cast the vote v.

We will consider neutral voting procedures which treat the alternatives
symmetrically, so we must admit the possibility of ties among alternatives.
Thus, the outcome of the voting rule must be a nonempty subset of alternatives,
which may include two or more alternatives, in the case of a tie. S50 a voting

. . v
rule is formally defined to be a correspondence F:Z+ -— K such that

v

& # F(a) C K, Va € Z+.

- . . . v ;
For any distribution a in Z+, F(a) denotes the choice set, or the set of
winning alternatives, when a is the distribution of votes. That is, i is in
the set F(a) 1ff i would be an admissible social choice after an election in
which each vote v in V was cast by a(v) voters. If there is no tie and
alternative i would be the unique winner of the election when distribution

a is cast by the voters, then Fla) = {1}.

. v
Such a voting rule F:Z+ -+ K can be represented as a gcoring rule iff

there exist functions Si:V -+ R for every alternative i in K, such that, for

T
each distribution o in Z:,
Fla) = argmaxjeK ZVEV Sj(v)a(v)

tiek| Z oy S;{via(v) - ma S, (vya(v)).

X, 2
Jjek Twvev 7
In the next section, we list three axiomatic properties, taken from Smith

[1973] and Young [1975], which are sufficient to imply that a voting rule

A .
F:Z+ -+ K can be represented as a scoring rule.



2. The basic axioms

The most important axiom in the derivations of Smith {1973] and Young

[1975] has been called reinforcement by Moulin [1988]. To formulate this

axiom, suppese that our veting rule is applied separately in two districts,

and a is the distribution of votes in one district, while 8 is the distribution
of votes in the other district. If the two districts were merged into a larger
union, then o + § would be the resulting distribution of wvotes in the unien.
(We add vote distributions as vectors; that is, for any two vote distributions
a and 8, and for any real number n, ¢ + 8 and ne are the vote distributions
such that (a + B8)(v) = a(v) + 8(v), and (ne)(v) = n X a(v).) Suppose now that
some alternative 1 would win in both districts separately. We may expect that
this alternative 1 should alsc win in the union of the two distriects; that is,
F(a) n F(B) should be a subset of ¥F(a + B). Furthermore, we may expect that
nothing that loses to this alternative i in either district should be admitted
as a tled winner in the union; that is, F(a + 8) should be a subset of F(a) N

F(g), when this intersection is nonempty.

Axiom 1 (Reinforcement). For any vote distributions « and 8 in ZZ, if

F(a) N F(B) @ then F(a + 8) = Fla) N F(B).

Our second axiom has been called an Archimedean or continuity condition

by Smith [1973] and Young [1975], but we refer teo it here as an

overwhelming-majority axiom, to emphasize its motivation. Given any two

. . . . v . .
distributions a and B in Z+, let n be a very large positive integer, and
consider the distribution na + . This distribution represents the result when
the set of voters can be partitioned into n + 1 blocs, n of which are

submitting the vote distribution a, and one of which is submitting the



distribution . By reinforcement, if the g blec were removed from the
electorate, the outcome would be F(na) = F{(a). So na is the union of many
blocs of voters which are uniformly endorsing the alternatives In F(a). When n
becomes very large, the B8 blec becomes an infinitesimal portion of the
electorate, and such an infinitesimal bloc should not be able to overturn the
decision of the overwhelming majority ne. We may suppose that the only
possible effect of such an infinitesimal minority should be to make some
selection among the tied winners, 1f the overwhelming majority has generated a

tie among two or more alternatives.

. . L . . . . Vv
Axiom 2 (Overwhelming majority). For any distributions o and 8 in Z+,
there exists a positive integer N such that, for every integer n that is
greater than N,

F(na + ) € Fla).

The third assumption is that the wvoting rule treats the various
alternatives symmetrically. For any way of relabeling the alternatives, there
should be a way of relabeling the possible votes such that the voting rule
looks the same. A relabeling of the alternatives is a permutation of K, that
is, a one-to-one mapping n:K - K of the set of alternatives onto itself. A
relabelling of the votes is a permutation of the set V, that is, a one-to-one
mapping w*:V - V of the set of possible votes onto itself. Given any
permutation of the votes n*:v - V, for any distribution a in ZX we may let
w*(a) denote the distribution such thart

(" (@) (n () = alv), Wve v,
That is, letting [v] denote the distribution that consists of only one v vote

and no other votes, we can write



a = 2 al(v)[v] and W*(a)

vev Frey oW lm (ol

Axiom 3 (Neutrality). For any permutation of the alternatives m:X - K,

-t
there exists a permutation of the votes n :V - V such that, for every
. . - . v
distribution a in Z+,

F(r (a)) = (n(i)| i € Fla)},

When we assume this neutrality axiom, we can alsoc assume without loss

fa

=

of generality that the derivation of # from m preserves the composition of

functions, That is, if ™ and T, are any two permutations of the alternatives

x ~
and if ™y and T, are the corresponding permutations of the votes that satisfy
the neutrality condition, then we can satisfy the neutrality condition for the
permutation mypom by letting

2

(., o ﬂ2)h =7 o

1

because, for any distribution «,

((r] o ) (D] i € F(a)) = (my (my (1)) ] 1 € Fla))

.,

N i * ¥ * * *
tr (O] 3 € Flny (a))) = Flny " (m, () = F({ny o 7, ) ().
It is straightforward to verify that, if F can be represented as a scoring
rule then F must satisfy the reinforcement and overwhelming-majorities axioms.
The main result of this paper is that these axioms with neutrality are also

sufficient to guarantee that F can be represented as a scoring rule.

Theorem. If a voting rule F:ZX -+ K satisfies Axioms 1, 2, and 3, then

it can be represented as a scoring rule.

The proof of this theorem is deferred to Section 5.



3. Other axioms

The reinforcement axiom can be derived from other considerations that
involve the strategic implications of the voting rule for wvoters'
decision-making. Consider a bloc of voters who are planning their votes
together, and are comparing two plans for how to vote. Let o denote the
distribution of votes that the bloc would ecast under the first plan, and let j
denote the distribution of votes that the bloc would cast under the second
plan. (A plan might involve some abstentions, so ZVEV a(v) does not have to
equal ZVEV B(v).) The outcome of the election under either plan will also

depend on the distribution of votes that are cast by the other individuals

outside of the bloc. We may say that the change from o to § can support

alternative j against alternative i iff there exists some distribution vy such

that
ieF(y +a)y and j & F(y + 8).

That is, the proposed change from a to f can support i against i if, with some
fixed distribution of votes from the others in the electorate, i would be in
the choice set when the bloc’'s vote is «, but j would be in the choice set when
the bloc's vote is 3.

A stronger version of this definition should exclude the neutral case
where both alternatives 1 and j are in both choice sets F(y + o) and F(y + ).

So we may say that the change from o to 8 can strongly support j against i iff

there exists some distribution ¥y such that
ieFly+eay, jeFly+p8), and (i1,j) € F(y + a) n F(y + £).
Decision-making by a hloc of voters is complicated by the fact that, when
they are uncertain about others’ votes, a proposed change in the bloc’s vote

could have many possible effects. To keep such complications within some



bound, however, we might at least ask that, if a change from a to A can
strongly support alternative j against alternative i in one context, then there
should not exist some other context in which the same change could support

i against j. That is, we may pose the following axiom,

. . . , v
Axiom la {Nonreversal). For any distributions o, 8, T and 7, in Z+,

and for any alternatives 1 and j in K, if
i€ Py, +a), JEFy +8), je F(72 +a), and i€ F(y, + 5),

then (1,J) € F(y; + a) n ¥y, + B), and (1,5} € F(y, + &) 0 Fly, + 6).

This nonreversal axiom must be satisfied by all scoring rules, because a
change from a to 8 can strongly support j against i in a scoring rule only if
the net difference between the total scores of j and 1 is greater in 8 than
in @. Indeed, it can be shown that the reinforcement axiom by itself implies
the nonreversal axiom. With one minor technical condition, we can also show
that the nonreversal axiom implies the reinforcement axiom.

Let 5 denote the zero vector in ﬂv, which is the vote distribution when
nobody votes. Notice that the neutrality axiom and the overwhelming-majority

axiom both imply that F(ﬁ)

K.

Proposition 1. 1If F:ZX -+ K satisfies Axiom la, and F(a) = K, then F

satisfies Axiom 1.

Proof. Suppose F(a) N F(3) » ¢, and let i be any alternative such that
i€ F(e) N F(B). Let j be any alternative such that j € F(a + 8). Now
consider the facts that i € F(8}, j € Fla + 8), j € F(a), and i € F{a). Then
applying Axiom la (with 1 = A8 and Ty = 8, and with § and a here taking the

roles of a and B in Axiom la respectively), we get



(i,i} € F(B) n Fla + ), and {i,j} C F(O) n F(a).
So jeFla)y nF(B), and 1 € F(a + ). But we originally selected j in

Fla + ) and 1 in F(a) N F(8). So Fla + A) = Fla) N F(8). Q.E.D.

In our derivation of scoring rules, the neutrality axiom operates only
through two conditions on the range of F, which are worth formalizing
explicitly. We label these conditions as Axioms 3a and 3b, to indicate their

close relationship with the neutrality axiom.

Axiom 3a (Weak range condition). For every alternative i in K, there is a

. . . Y .
distribution i in Z+ such that F(pi) = {i}.

Axiom 3b (Strong range condition). For every set L that is a nonempty

- . ] . : v
subset of K, there exists some distribution 7, in Z+ such that F(WL) = L and

VL(V) >0, VYv eV,

A voting rule that always selects F(a) = K, for every distribution a
in ZX, would violate both of these conditions. Once this trivial rule is
excluded, however, we find that Axiom 3a and Axiom 3b follow from Axioms 1, 2

H

and 3.

.. Vv .
Proposition 2. Let F:Z+ -+ K be a voting rule that does not always select

the set of all alternatives K. (That is, F(a) = K for some a in ZX.) If r

satisfies Axioms 1, 2, and 3, then it satisfies Axioms 3a and 3b.

Proof. We first prove Axiom 3a. Let L denote a set of minimal size such
that F(a) = L for at least one distribution «. L is nonempty, because our
definition of a voting rules specifies that it always selects a nonempty

winning set. By the nontriviality assumption, L =# K. If #L = 1, then we are



done. So suppose that #L = 2. Let i and j be two distinct alternatives such
that i € L and j € L, and let h be an alternative such that h € L. Let L
denote the permutation of the alternatives that switches h and i, leaving all

other alternatives fixed. By the neutrality axiom,

.*(a)) =L u th}y N\ {i}. Then by the reinforcement axiom,

F(ﬂhl

L\ (i) = F(a) N F(ﬂhi*(a)) — Fla + nhi*(a)).

because this intersection contains j and so is nonempty. But L \ (1} is a set
with fewer members than L, which contradicts the minimality of L. This
contradiction proves Axiom 3a.

We now prove Axiom 3b. As above, for any two distinct alternatives 1 and
j, let ﬂij denote the permutation of K that switches i and j but keeps all
other alternatives fixed. For any alternative i, let P(i} denote the set of
all permutations of the alternatives n:K - K that keep 1 fixed, in the sense
that n{(i) = 1i.

Let g denote a fixed alternative in K. By Axiom 3a, we can select a

distribution #g such that F(yg) = {g}. By neutrality, F(ﬁw(ug)) {g} for any

a in P(g). Let G be the distribution such that Q(v) = 1 fer all v. By

neutrality, we must have F(Q1) = K, because NK(Q) = for all permutations., Let
g =80+ = * .
g rep(g) * Mg

Reinforcement then implies that F(Bg) = {g), because f 1is the sum of

(#K-1}! distributions in g is the unique winner, plus one distribution in which
all alternatives win. The symmetry of the construction guarantees that
T8 ) =6 , ¥re Pg).
& g 5
Furthermore, for every v in V, Hg(v) = {v) > 0.
For any other alternative i, let Gi = nigw(ﬁg). By meutrality, we have

F(Bi) = {1}, because Wig exchanges 1 and g. For any set of alternatives L, let

10



Yy T Fien Py

We now prove the claim that F(yL) = 1., for all L.
If this claim fails to hold, then let L be a set of minimal size for which

it fails. It is straightforward to check that, if i and j are both in L, or if

i and j are both in K\L, then wijx(yL) = So the neutrality axiom implies

'YL-
that F(WL) must equal either L or K\L or K. Thus, if the claim fails then
we can choose some alternative h such that

h e F(YL) but h ¢ L.
Let us also pick two distinct alternatives i and j that are both in L. (The

claim cannot fail when #L equals 1, because F(W{i}) = F(Ei) = {i}.) By

minimality of L, we know that

Flvpgy) = L\ (i,

and so
h ¢ F(YL\Ii}) and j € F(YL\{i})'

Now exchange h and j by the permutation = By the symmetry of the § and

hj
¥ distributions, we have
™3 YLi)) T TLuthING, )
™hj ) = YLothinG ) T TLuthinGd, 3t B
Thus,
h = Trhj(J) S F(VLu{h}\{i,j})’ j= ”hj (h) & F(TLU{h]\{i,j})’
§ o mg ) € Fln ) = O sy

Because j is in both F(YL\{i}) and F(YLU {j}) and h is not in F(L\{i}), the

(hi\

reinforcement axiom implies that
h et . - = . .
EON G T Toomngy? T Ty C T Ol Gy

On the other hand h is in both F(WL) and F(YLU ), and so

thin{i,j)

Be PO+ v, )~ FOL O PO i, gy

11



However,
L "mvir T % T oGy T TouthoddL gy

and so

LT YLothingi, g Ty Moty

This contradiction implies that the claim cannot fail for any set L. That is,

F(YL) =L, for all L, and so Axiom 3b is satisfied. Q.E.D.

4. Implications of Axioms 1, 2. and 3a

Nonneutral voting rules which satisfy the reinforcement axiom, the
overwhelming majority axiom, and the weak range condition are not necessarily

scoring rules, but they have a related representation. Instead of having one

scoring function Si for each alternative i, we have a bilateral balance
function Sij for each pair of alternatives (i,j). Then an alternative j wins

iff its total balance z, sij(v)a(v) is nonnegative against every other

cV
alternative 1. Any scering rule can also be represented in this bilateral

balance form, by letting Sij(v) = Sj(v) - Si(v), but the bilateral balance form

is strictly more general. (See Example 2 in Section 6.)

Propesition 3. Suppose that F:ZY -+ K is a voting rule which satisfies
Axioms 1, 2, and 3a. Then there exist functions there exist functions
sij:V + R, for every pair of distinct alternatives 1 and j in K, such that, for
each distribution a in Zz
Fla) = (j] D sij(v)a(v) > 0, vi € K\{j)).
Furthermore, for each 1 and j,

sji(v) = -sij(v), Yv € V,

and there exists some w in V such that sij(w) = 0,

12



Proof. Consider a palr of distinct alternatives i and j. Let
D.. = (8 -a|l aez, ez, F( = (j), and Fla) = (i}).
ij +’ +, ¥
Vv
Dij is a subset of R . Let Cij denote the convex hull of the set Dij'
v -
In the vector space B , the vector 0 cannot be in the convex set Cij' If
it were, then there would exist distributions (al""’aM’ﬁl""’BM)’ each of
which is in ZX, such that
Fla ) = {1} and F{(8 ) = (j}, Vm,

and such that there is a nonnegative solution (Al,..,lM) to the equations
Zﬁ:l Am(am(v) - ﬁm(v)) =0, vwvev

However, this system of equations is linear and homogeneous, and it has all

integer coefficients (because am(v) and ﬁm(v) are integers), so having

nonnegative solutions in the real numbers implies that it also has nonnegative

solutions in the rational numbers and in the integers. So there exist
nonnegative integers (kl,...,AM) such that
= ZM A .
Zﬁ:l Xmam m=1 mBm

But the reinforcement axiom implies that
M . . 1
F(Zg:l Amam) = {i} = {j} = F(E;:l Amﬁm).
This contradiction implies that G Cij'

Thus, by the Supporting Hyperplane Theorem, we can choose a vector

s = ( in ﬂv such that

i Sij(v))vev

s.. =0
1]

and, for all e and 8 in ZX such that F(3) = {j) and F{a) = {i},

H]

Z v Sij(V)(ﬂ(V) - a(v)) = 0.

To satisfy these conditions when the roles of i and j are reversedWe can simply
let 5., = -s5_.,.
i ij

It now remains only for us to show that these vectors sij characterize F

13



as asserted in Proposition 3. We do so by proving a series of four claims.

Claim 1. If F(B) = {]) then EVEV sij(v)ﬁ(v) = 0, ¥Yi e K\NI[]).

To prove this claim, use the weak range condition teo pick ps such that
F(ui) = {i}. By the overwhelming-majority axiom (and nonemptiness of F), there
exlist some positive integer n such that F(ng + pi) = {j}. So

ZVEV sij(v)(nﬁ(v) + a(v)y - a(v)) = 0,

which implies the inequalities described in Claim 1.

I\

0, Vi e K\{j}.

Claim 2. 1If j € ¥{(8) then ZVEV sij(v)ﬁ(v)

I

Suppose that j € F(#). Pick pj so that F(pj) {j). Using the

reinforcement axiom, we can inductively show that, for any positive integer n,
F(ng + ;uj) = {3).
So we must have

; .
EVEV sij(v)(nﬂ(v) + pj(v)) = 0, Vvie K\{j!.
This inequality cannot hold for all arbitrarily large n unless
EveV sij(v)ﬁ(v) = 0, v¥ie K\(j),
as the claim requires.
Claim 3. For any alternative j, there exists some ﬁj such that
F(pj) = {j) and
ZVEV sij(v)#j(v) >0, vie RK\{j).
To prove this c¢laim, use the weak range condition to pick “j such that
F(pj) = {j). Because Sij = 6, we can pick an alternative w such that
Sij(w) = 0, and let [w] denote the vote distribution that consists of a single
w vote and no other votes. By the overwhelming-majority axiom, we can find a
positive number n such that

(iy = F(npj) = F(n,uj + [w]) = F(n,uj + 2[w]).

So by Claim 1,

14



0 21,
Zvev sij(v)npj(v) + msij(w) >0, forme {0,1,2}

But sij(w) = 0, and so we must have

EVEV Sij(v)npj(v) + sij(w) > 0.

So let Lj = npj + [w], and Claim 3 is proven.
Claim 4. For any j in K and any g8 in ZX, if
Zvev sij(v)ﬁ(v) = 0, Vvie K\{j},
thenr j € F(8).
Suppose that B satisfies the inequalities in the hypothesis of the claim.

Pick bj satisfying the conditions of Claim 3. For any positive integer m,

= s.j(v)(mﬂ(v) + Aj(v)) >0, vie R\{]j}.

veV 1
Using the fact that 5., = _Sij’ we have
Zvev sji(v)(mﬁ(v) + pj(v)) < 0, Vi e K\(j),

and so, by Claim 2,

i ¢ F(mg + ﬁj), Vi e K\{j}.
By the nonemptiness of F, we must have F(mS + ﬁj) = {j}. But the
overwhelming-majority axiom implies that F(m8 + ﬁj) C F(8) for all
sufficiently large m. Thus j € F(83), and so the claim is proven.

Claims 2 and 4 together assert that j ¢ F(8) if and only if

ZVEV sij(v)ﬁ(v) = 0, Vi e K\(]j},
and so the proof of Proposition 3 is complete. Q.E.D.
5. Derivation of scoring rules

In this section, we show that Axioms 1, 2, and 3b are sufficient to imply
Vv . . ; -
that F:Z+ - K is a scoring rule. The main theorem will then follow

immediately from Propositions 2 and 4.

15



Proposition 4. If F:Zj -+ K satisfies Axioms 1, 2, and 3b, then it can

be represented as a scoring rule.

Proof. Let F satisfy Axioms 1, 2, and 3b. Axiom 3b obviously implies
Axiom 3a, so we can let Sij be as in Proposition 3, for each pair of distinct
alternatives i and j. Using the stronger range condition, we now prove two
more claims.

Claim 5. If j € F(B) and i & F(8) then

z s_j(v)ﬂ(v) > 0.

veV 1
To prove the claim, let 7{i i) be as in Axiom 3b. That is,
F(Y{i,j}) = {i,j), and Y{i,j}(v> >0, V¥velVv,
By Proposition 3 (using the fact that Sji = -sij), we must have
ZVEV Sij(v) W{i,j)(v) =0,
By reinforcement, we have
F ...+ = {jr.
(T{I’J] 8) {j}
Pick any w such that Sij(w) = 0., Let ¢(w) = -1 if sij(w) > 0, let
e(w) =1 1if sij(w) < 0, and let e(v) = 0 for every v = w. Recause
. . . . . \Y
-
Y{i,j](w) = 1, Y[i,j} + £ is a distribution in Z+. By the

overwhelming-majority axiom, there exists some positive integer n such that

F(n(v{i’j} + B8y + (W{i,j} +e)) = {3,
So by Proposition 3,

=0 By 5 (MBM) - Isij<w>|.

The strict inequality in the claim immediately follows, proving Claim 5.
Claim 6. For any three distinct alternatives h, 1, and j, the system of

inequalities inequalities

16



z (v)b(v) > 0

vev “hi
ZVEV sij(v)S(v) > 0

EVEV sjh(v)S(v) >0

v
cannot have any solution & in R .

If this system of inequalities had any feasible solutions § in the real
numbers, then it would also have solutions in the rational numbers (by
continuity of linear functions), and so (by homogeneity) it would also have a
solution 6§ such that §(v) is an integer for all v. But then consider the
distribution vy . ., from Axiom 3b. Let

th,i,3}
m = maxVev |6(v)|,
and observe that
+ 6 e ZV.
+

™ih,i,5)

So by the overwhelming-majority axiom, there exists some positive integer n

such that
- _ ..
FO¥ip i) Y ™ na, gy T8 S FOy g gy T R
By Proposition 3, we must have
Zoev Shi MmO
because h € F(v{h,i,j])’ ie F(V[h,i,j])’ and Sih = “Spi- Thus, the first

inequality in the claim implies that

2

(v)((n + m)~y }(V) + 6(v)) > 0,

vev “hi {h,i,]

and so Proposition 3 implies that

h ¢ F(ny + ).

. ., T I P
(h.i,51  "T(h,1,3)
A similar argument using the second inequality (and permuting the roles of

h, i, and j) implies that

i e F(ay +46),

1 T ™ i)

Similarly, the third inequality similarly implies that

17



je F(ny{ + 6).

hoiir ™k,
But these conclusions contradict the assumption that a voting rule cannot have
an empty choice set. Thus, the system of inequalities cannot have any
solution §. So we have proven Claim 6,

To complete the proof of Proposition 4, now let h be any fixed alternative

in K. From the strong range condition (Axiom 3b), consider the distribution

YK\{h}’ for which every alternative other than h wins. For each j in K\{h},

let

By = Zoey Sn e my V)

Claim 5 then implies that

Ty >0, ¥j € K\(hh.

By Proposition 3, we must also have

> - 0, ¥ieK\h,j}, Vvj € K\{h).

vev 515k (hy (V)
Now fix any two distinct alternatives i and j such that i = h = j.
Claim 6 implies that the following linear programming problem has no feasible
solutiens:
minimize O
Y

subject to 6 € R,

z (v)&(v) 1

v

E]

vev ®hi

= s.j(v)ﬁ(v)

iv

vev i L,

Zvev -shj(v)é(v) = 1.

The dual of this linear programming problem can be written as follows:
maximize x.. + v.., + zZ_,
4] 1] 1]
subject to x., =20, vy., =0 z.. =0,
1] 1] 1]

xijshi(v) + yijsij(v) - z..8 .(v) =0, VvelV,

By the Duality Theorem of linear programming, this dual problem cannot have a

18



finite optimal solution, because the original problem is infeasible. But the
dual problem does have a feasible solution (simply let Xij’ Yiio and zij all be
zero). So the dual problem must have an unbounded optimum. Thus, we can pick
nonnegative numbers Xij' yij' and Zij such that the dual constraints are
satisfied and

Xij + yij + zij > 0.

These dual constraints imply that

0= 2oy [Xijshi(v) MRS A zijshj(v)]TK\[h}(v)

=x..I', +0 - z_ .T..
ij i ij ]

So z,, = (T,/T.}x... The number x.. cannot be zero, or else the dual
1] 1] 1] 1]

constraints would then force all sij(v) to be zero, which would contradict
Claim 5 (for any distribution where j wins and i does not). TIE yij were equal
to zero, then shi(v) would equal (Fi/Fj)shj(v) for all v, which is not
possible, because it would contradict the fact that (again using Axiom 3b and
Claim 5)

(v)y{h’j}(v) < 0 and = v) = 0.

Zeev ®hi vev Shi V)V (kg ¢

So x.. > 0 and y,, > 0. Let
ij ij
rij = Fixij/yij'

Then the dual constraints can be rewritten

sij(v) = ri_(shj(v)/Fj - shi(v)/Fi), Yv e V.

]
Now let
= i /
Si(v) shi(v)/Pi, ¥i € K\{h}, Vvv e Vv,
Sh(v) =0, vveV.
Because each rij is a strictly positive number, Proposition 3 implies that

j € F(a) if and only if

ZvEV (Sj(v) - Si(v))a(v) = 0, Vi e K\(j).
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Thus, F:ZZ ++ K can be represented as a scoring rule. Q.E.D.

Proof of the Theorem. If F(a) egquals K for every vote distribution a,

then F can be trivially represented as a scoring rule, by letting the scoring
functions be identically zero. So we may suppose that F(a) is not alwavs K, in
which case Axioms 1, 2, and 3 imply that Axiom 3b is alsc satisfied. Then

Proposition 4 asserts that F can be represented as a scoring rule. Q.E.D.

6. Examples

Example 1. For an example of a voting rule which satisfies Axioms 1 and 3
but not Axiom 2 (overwhelming majorities), consider a voting system in which
each voter’s ballot must contain an ordered list of two alternatives. To win,
an alternative must be listed in the first position on the maximal number of
ballets; but if two or more alternatives are tied for being listed first on the
most ballots, then the winners are those among these tied alternatives that are
listed in the second position on the most ballots.

Under this voting rule, suppose that the distribution a generates a tie
between alternatives 1 and } for being listed most cften in the first position,
but F(a) = {i} because i1 is listed in the second position more than j. Let 8
be a distribution containing one vote that lists j in the first position and no
other votes. Then for any positive integer n, F(na + 8) = {j)}, thus violating
Axiom 2. This voting rule iIs not a scoring rule in the simple sense used in
this paper, but it could be considered as generalized sequential scoring rule.
Such generalized sequential scoring rules were also axiomatically derived by

Smith [1973] and Young [19751.
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Example 2, For an example of a voting rule which satisfies Axioms 1, 2,
and 3a, but which is net a scoring rule, consider the following. Let
K =1{1,2,3,4}, and let V = {red, yellow, blue). For any vote distribution e,

-~

let the normalized distribution be o defined by

~

al(v) = a(v)/(Zw v al(w)), ¥Yv e Vv,

S
We may denote any normalized distribution by an ordered triple of numbers,
using the ordering
; = (;(red), ;(yellow), ;(blue)).

Now, we specify that alternative 1 is in the choice set F(a) iff the normalized
distribution ; is in the convex hull of

{(1,0,0), (5/8,2/8,1/8), (1/8,5/8,2/8), (0,1,0)1};
alternative 2 is in the choice set F(a) iff the normalized distribution a is in
the convex hull of

{(0,1,0), (1/8,5/8,2/83, (2/8,1/8,5/8), (C,0,1)};
alternative 3 is in the choice set F(a) iff the normalized distribution a is in

the convex hull of

{¢0,0,1), (2/8,1/8,5/8), (5/8,2/8,1/8), (1,0,0)7;

and alternative 4 is in the choice set F(a) iff the normalized distribution «

is in the convex hull of

t(>/8,2/8,1/8), (1/8,5/8,2/8), (2/8,1/8,5/8)).
[INSERT FIGURE 1 ABOUT HERE]

For any scoring rule, if one alternative were eliminated, then we could
still apply the same Sj functions to define a new scoring rule among the
remaining alternatives. The domain where each remaining alternative wins under

this new rule would be a convex set of distributions that includes all
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distributions for which this alternative won under the original rule, and that
excludes all distributions for which this alternative was beaten by some other
remaining alternative under the original rule.

However, when we try to eliminate alternative 4 in this example, we cannot
divide alternative 4's domain among alternatives 1, 2, and 3 without making at
least one alternative’s domain nonconvex. Extending the (1,2) and (1,3)
boundaries, for example, we find that alternative 1 cannot win when the
normalized distribution is outside of the convex hull of

{1(1,0,0), (0,1,0y, (1/7.,4/7.,2/7)},
This convex hull excludes the normalized distribution (1/3,1/3,1/3). Thus, in
the new voting rule without alternative 4, alternative 1 could not win when the
three kinds of ballot are equally represented, and a symmetric argument shows
that alternatives 2 and 3 also could not win then. Thus, this voting rule
cannot be represented as a scoring rule.

Bilateral balance functions which satisfy Proposition 3 for this voting
rule are

slz(red) = -2, yellow) = 0, slz(blue) =1

S1p¢
523(red) =1, 523(yellow) = -2, s23(b1ue) =0

|
N

slB(red) = 0, 513(yellow) = -1, 513(b1ue) =

SlA(IEd) = -1, sla(yellow)

-9, sla(blue) = 23,
52a<r8d) = 23, sza(yellow) = -1, 524(blue) = -9
534(r6d) = -9, s3a(yellow) = 23, saa(blue) = -1.

Outside of the triangle where 4 wins, the winner is determined by the bilateral

balances among alternatives 1, 2, and 3. Alternative ? has a nonnegative

balance against alternative 1 iff there are at least twice as many blue votes

as red votes in the distribution. Alternative 3 has a nonnegative balance
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against alternative 2 iff there are at least twice as many red votes as
vellow. Alternative 1 has a nonnegative balance against alternative 3 iff
there are at least twice as many yellow votes as blue votes. So when the
normalized distribution is near (1/3,1/3,1/3), the bilateral balance functions
gspecify that alternative 2 loses against 1, alternative 1 loses against 3, and
alternative 3 loses agalnst 2. This intransitivity is net a problem, however,
because alternative 4 wins in this central region.

This voting rule, with four alternatives but only three possible votes,
obvicusly violates neutrality. It also violates Axiom 3b, because there 1s no
distribution for which the three alternatives {1,2,3) are all in the choice
set,

For many applications, the neutrality axiom is quite reasonable. However,
neutrality is obviously nct a necessary condition for scoring rules, as we show
in the next example.

Example 3. Consider a scering rule in which there are three alternatives
and three possible votes, so we may let K = {1,2,3} and V = (1,2,3}, and the
scoring functions Si(v) are

Sl(l) =1, 82(1) = 0, 83(1) = 0,

sl(z) =0, 52(2) J2, 53(2) = 0,

51(3) = 0, 52(3) o, 83(3) = J3.

That is, a voter can vote for any alternative in K, but votes for alternatives
2 and 3 are counted more than votes for alternative 1. This scoring rule is
obviously not neutral. A tie between alternatives 1 and 2 could occur only if
the number of voters for 1 was preater than the number of voters for 2 by a

multiplicative factor equal to the square root of 2, which i1s impossible when

the number of each kind of vote is an integer. So this voting rule violates
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both neutrality and the strong range condition, but it is a scoring rule.

Examples 2 and 3 suggest that we should look for ways of strengthening
Axiom 1 or la so that scoring rules can be derived without neutrality or the
strong range condition. For example, Axiom la {(nonreversal) could be

strengthened to a kind of transitivity axiom as follows.

Axiom 1b (Transitivity). For any distributions e, £, Ty Yoo and 73 in
ZZ, and for any alternatives h, i, and j in K, if h € F(yl + a), i€ F(71 + 33,
ie F(72 +a), je F(72 + B8y, j e F(73 + a), and h € F(73 + A), then
th,il € Fly, + ) nFly, + 8), 1,3} ¢ Fly, + @) nF(y, + f), and

th,j) ¢ F(v3 + oa) N F(v3 + 8.

Any scoring rule must satisfy this transitivity condition, and it is

violated by the nonscoring rule in Example 2. Tor example, let
71(red) =1, 71(yellow) =0, vl(blue) = 100,
72(red) = 0, yz(yellow) = 100, yz(blue) =1,
73(red) = 100, 73(yellow) =1, 73(blue) =0,
af{red) = 0, a{yellow) = 0, a(blue) = 0.
B(red) = 3, fB(yellow) = 3, JB(blue) = 3.

Then we get the following violation of this transitivity axiom:

F(Tl + a) = {3}, F(vl + 8) = {2},
F(72 + a) = {2}, F(72 + 8) = {1},
F(73 +a) = {17}, F(v3 + 8) = (3}

At this time, however, I do not know whether this transitivity axiom is
sufficient generally to derive a scoring-rule representation without

neutrality.
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Figure 1. Normalized distributions where each alternative
wins, in Example 2

26



