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To be The First or To be The Best:
New Product Quality and Timing in R&D Competition

by
Shirish D. Chikte and Sudhakar D. Deshmukh

Abstract

Better quality products usuatly command bigger market shares and higher profits for the firm.
However, developing better products also requires higher R&D expenditures and longer
development times, during which a competing firm may develop and introduce its product first
and capture a share of the market. In equilibrium, competing firms must balance these two effects
in determining their product quality and timing decisions. We model this R&D competition
between two dissimilar firms as a stochastic stopping game and investigate the nature of its
equilibrium. In equilibrium, each firm sets a reservation level of the product quality it aims to
develop. The technologically stronger firm is shown to set a higher quality target and command a
higher market share and profit. Competition to be the first induces each firm to introduce lower
quality products earlier than it would as a monopolist. However, the net social benefit is shown to
be higher with competition than that with just the weaker firm as a monopolist, although the
stronger firm as a monopolist is shown to yield an even more desirable outcome, which in fact
turns out to be socially optimal. Finally, if the firms are identical, this socially optimal outcome is
also attainable with competition, and in fact it is attained at pace faster than that with the strong
monopolist or centrally controlled R&D.



To be The First or To be The Best:

New Product Quality and Timing in R&D Competition
by
Shirish D. Chikte and Sudhakar D. Deshmukh

1. Introduction

New product quality and the speed with which it is developed and introduced into the
market are major strategic variables for firms competing for market share. If the consumers' utility
function is increasing in the quality of the product, the firms that introduce better products would
enjoy higher demand at given prices (at least after a consumer information/perception lag).
Moreover, the consumers' time preference for earlier consumption also implies greater damand for
products introduced earlier into the market. Thus, a firm that develops and introduces betrer
quality products faster than the competition would enjoy a significant competitive advantage.
Some supporting empirical evidence and qualitative discussion may be found in Wheelwright and
Clark [18].

However, the firm's R&D process of developing new products involves thetechnological
uncertainty about the time and resources required to achieve a certain quality. In addition, the firm
also faces the market uncertainty about the quality and timing of new products that other firms may
develop and introduce into the market. Although introducing a better product would gain a higher
market share, the product development process may also take longer, thereby tncreasing the risk
that a competitor may develop and introduce his product first to capture a share of the market. In
equilibrium, all competing firms must take these tradeoffs and uncertainties into account in
determining their product quality and market timing decisions.

In Deshmukh and Chikte [4] we proposed and analyzed a decision-theoretic model of a
single firm's problem of determining when to stop its R&D and introduce the product of quality
developed so far. We also permitted the technological uncertainty in the firm's R&D process to be
controlled by its dynamic resource allocation decisions over time. However, the market
uncertainty about the appearance of competing products was taken to be given exogenously. The
resulting stochastic evolution of the firm's product quality, as measured relative to its competition,
was then modeled as a continuous-time Markov process that is controlled by the firm's dynamic
resource allocation decisions. We showed that, during the progress of the R&D project, the firm
should (a) stop and introduce its product into the market as soon as its relative product quality
exceeds a certain target level, (b) allocate more resources to speed up the development as its



product quality approaches this target, and (c) abandon the project if its relative product quality
falls below a certain minimum threshold. In this paper, we formulate and analyze a game-theoretic
model in which two competing firms choose their product development and market timing
strategies. Thus the market uncertainty about introduction of competing products will emerge
endogenously through the strategic interaction among the competing firms. Within this richer
framework we will study the effect of competition on the firms’ product quality and market timing
strategies. However, in order to focus on the quality and timing decisions alone, we will abstract
from the firms' dynamic resource allocation decisions by assuming constant rates of R&D
expenditures. Also, for concreteness and analytical tractability, we will consider a much simpler
stochastic model of the firms' product development processes.

In particular, as often found in the R&D literature (see, for example, Reinganum [16], and
Telser [17]), each firm's product developement process will be modeled as sampling from a
known probability distribution at a fixed cost; in addition we will also permit the time intervals
between the successive draws to be random variables. The technological uncertainty in each firm’s
R&D process is thus modeled by random variables representing the time, cost, and magnitude of
product quality improvement. The firms' cost rates and probability distributions then define their
technological capabilities, which we allow to be different but known to both the firms. At any time
during the R&D process, either firm may stop the development and introduce its product into the
market, or it may continue to improve the product with the concomitant risk that the other firm may
develop and decide to introduce its product first.

On the demand side, we will assume that the product is infinitely durable (or enjoys a total
brand loyalty), so that a firm that introduces its product first permanently captures a share of the
market. A better quality product will be assumed to "scoop” a larger market share and yield a
higher profit for the firm. However, if one firm has already introduced its product, the quality of
the other firm's product will be required to be at least as high in order for that firm to gain any
share of the residual market. Furthermore, the higher the follower's relative quality advantage, the
higher will be its share of the residual market. We also permit the follower to quit R&D if it seems
economically unprofitable to try to "leapfrog” the quality of the leader's product that is already on
the market. In the one shot game that we will consider, each firm will be allowed to introduce its
product only once (although we will later indicate an extension to multiple introductions). For
example, there may be a very high fixed cost of new product introduction, or the firm's reputation
for quality may get permanently associated with the quality of the product it introduces first, so that
any subsequent product introductions are immaterial.



The general problem addressed here was considered in a preliminary paper by Judd
[8]. He considered identical firms who race to develop a least cost product, where (as in patent
races) only the first one to introduce the product gets the entire market - the followers get nothing -
and the game ends. In our model, (a) the firms are allowed to be dissimilar, and (b) the follower
may also get a share of the market, provided he develops and introduces a product that is better
than the one on the market. This permits us to (a) study the effect of a firm's product development
capability on its product quality and timing decisions, and (b) allow the follower a natural choice of
quitting the race or continuing R&D in the hope of overtaking the leader's product quality. Within
our framework, we are also able to address social welfare implications of R&D competition, as in
Kamien and Schwartz [9] and Loury [12].

The competitive search component of our R&D model is similar - with two important
differences regarding the information and reward structures — to the one by Reinganum [16],
which was also analyzed later by Mamer [13] as an example of his theory of monotone stopping
games. In that model, neither firm knows when the other stops R&D, and hence the follower
cannot modify his strategy after the other firm has stopped. In our model, the follower knows
when and what quality product the leader has introduced into the market, and accordingly modifies
his quality target, thus permitting the firms to employ closed loop strategies based on the market
information. Using the terminilogy from stochastic duels, as in Mamer [13], theirs is a "silent”
duel, while ours is a "noisy" one. Secondly, in their model, the firms' R&D processes are aimed
at reducing the production cost parameters in the Cournot duopoly game that ensues after both
firms have stopped their R&D. The firms' terminal payoffs in the R&D phase are then (the
Cournot profit) functions of their cost parameters developed, but not of the fimes at which they
were attained. In essence, during the R&D phase, the firms compete on product quality but not on
the timing of its introduction, which, as noted above, is not common knowledge. In our model,
on the other hand, being the first to introduce a given quality product has a distinct advantage of
immediately capturing the "low hanging" share of the market, leaving fewer and more selective
consumers for the follower to go after. QOur particularly simple modeling of the firms' demand and
profit functions enables us to analyze their closed loop strategies for determining product quality
and timing decisions, both of which affect their profits.

On another track of the literature on innovation races, the competing firms choose dynamic
resource allocation strategies to attain a given target, as in Loury {12], Lee and Wilde [11},
Dasgupta and Stiglitz {2}, Reinganum {14, 15), Harris and Vickers [6,7], and Fudenberg, et al [5].
In contrast to the winner-take-all races with prespecified targets featured in that literature, firms in
this paper choose the "finish lines” they wish to artain, although they do not control the resource
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allocations required to attain them. A more comprehensive model would permit the firms to choose
both optimal stopping and dynamic resource allocation strategies in a stochastic game, which
would then be a full game-theoretic generalization of our earlier paper (4].

Our present model may be described in a lighter vein in terms of two fruit pickers of
differing strengths who are jumping on a (stochastic) trampoline by a tall apple tree with fruits
hanging at different heights. Picker 1 requires the energy equivalent of one apple per jump, while
picker 2 - being weaker - requires two apples worth of energy to make one jump. Upon reaching
any height, either picker may stop and collect all apples below that level, each of which he can sell
at a unit price, or he may continue jumping in the hope of reaching higher fruits. Once a picker
claims the low hanging fruit below a certain level, the other picker may continue jumping, trying to
reach the remaining fruit above that level, or he may quit if the remaining fruit seems too high in
relation to his jumping strength. We ask (a) what level of fruit each picker would aim to reach for,
(b) what his net (of energy consumption) fruit collection and profit be, (c) how these compare to
the case in which he is the only picker, and (d) how these depend upon the pickers' relative
strengths. Finally, suppose social welfare involves taking down the most fruit from the tree (net of
the pickers' energy consumption) in the shortest amount of time. We then ask whether the society
should let the two pickers compete or cooperate, or employ only one of them, and in that case
which one.

In section 2, we formalize the model and introduce the notation used throughout the paper.
In section 3, we summarize the solution of the follower's problem, which is a variant of the usual
single person search problem. This solution enters the equilibrium analysis of the two firm
problem analyzed in section 4. We characterize the reservation quality level equilibrium and show
that time competition to introduce the product first prompts both firms to set lower quality targets
than in the absence of competition. In section 5, we examine how the firms' relative technological
strengths affect their equilibrium payoffs and strategies; we show that the stronger firm will set a
higher quality target and expect to get a higher market share and a higher payoff. In section 6, we
consider socially optimal product quality and timing decisions, and compare these to the
competitive solution. We show that with competition, while lower quality products are introduced
into the market sooner, in the end the competition yields a higher net social benefit than with a
technologically weaker monopolist, although a technologically stronger monopolist would yield an
even more desirable outcome which is in fact socially optimal. Furthermore, if the firms are
identical, the socially optimal outcome is also attainable, and more speedily, with competition than
with monopoly or centrally controlled R&D.



2. The Mode]

Suppose two firms, denoted as i and j = 1, 2 (with 1 # j), are competing to develop and
introduce similar products into a finite market. The products are assumed to be infinitely durable
and the total market size will be taken to be 1. Suppose the firms compete on both product quality
and the timing of its introduction into the market, although not on price. We measure product
quality in terms of the number of consumers who are willing to purchase that product at the given
price. In particular, if firm i introduces a product of quality g; € [0,1] first, it will capture a market
share q; forever, and eamn profit which is also equal to q; . We may think of a continuum of
consumers uniformly distributed on the unit interval [0, 1], where the consumer of type q has the
reservation quality level of q, so that, at the given price, she will only purchase a product of quality
q or better. Consumers of higher types q are choosier about the product quality, and are willing to
wait longer for the firms to develop the better products; in effect, they are willing to pay more in
terms of a higher cost of postponed consumption. Thus all consumers in [0, q;] will purchase a
product of quality q;, so that g; is also the demand for the product of quality g; introduced by firm
i. Taking the selling price to be unity and the variable cost of preduction to be zero, firm i's profit
(exclusive of the R&D costs) will then also be equal to g;. However, if firm j has already
introduced a product of quality g into the market, the follower (firm 1) must introduce a product of
quality g; or better in order to capture any of the residual market (1 —q;). If it inroduces a product
of quality q;, it will capture q; portion of that market, and earn a profit equal to Max (q; - gj . 0).

The R&D technology for developing new preducts involves time, cost, and uncertainty,
and the two firms may differ in their technological capabilities. Suppose that firm i expends its
resources at a constant rate c; per unit time in order to conduct its product development activity.
Suppose A, is the probabilistic (hazard) rate of discoveries by firm i, so that the time T; between
successive discoveries by firm i is an exponentially distributed random variable with mean 1/A;
The magnitude of a discovery determines the quality of the product developed by the end of this
time, which is a random variable Q; drawn from a known absolutely continuous probability
distribution function F; on [0,1]. Then A;[1 - Fi(q)} is the probabilistic rate (i.c., the parameter of
the exponential distribution of the time) at which firm i develops products of quality g or better. A
(stochastically) dominant firm will require lower developmental costs, and/or is able to make
(stochastically) faster discoveries of better products. Formally, we will use the following



Definition: Firm 1 is said to be (technologically) stronger than firm 2 if ¢; < c¢;
andlor A;[l1 — Fyi(q)] 2 A3[1 - Fj(gq)] for all q € [0, 1].

As usual, if firm 1 is stronger than firm 2, and if g:[0, 1] >R is a nondecreasing (profit) function,
then the above stochastic dominance implies E[g(Q)] 2 E[g(Q7)]. To avoid trivial solutions, we
will assume that E[Q;] 2 ¢i/A;, for i = 1, 2; otherwise, it is never optimal for firm i to pursue

R&D. We also assume that the firms' R&D processes are mutually independent.

If firm i succeeds first in developing a product of quality q;, it may decide to stop the R&D
process, introduce the product into the market, and earn q;, or it may continue R&D in the hope of
improving its product quality and profits. If, however, in the meanwhile, the other firm j first
introduces a product of quality q;, the follower firm i may choose to quit R&D and get nothing, or
it may continue to improve its product quality to some higher level ;' > g; in hope of receiving
(qi' — qj)- Thus we permit the follower to modify his strategy when the other firm introduces its
product first. The game ends when both firms have introduced their products, or when one
introduces its product and the other quits.

For analytical convenience, we will ignore the firms' discount rate of time preference. Of
course, each firm prefers to introduce its product earlier in order to save on product development
costs and to capture a less discriminating share of the market before its competitor does. Similarly,
consumers who demand better quality products are more patient in waiting for the firms to develop
themn.

Throughout the paper, for typographical convenience, we will employ the often used

notation E[g(Q); A} to denote the partial expectation Jg(q) dF(q) of any (bounded measurable)
A

function g:{0, 1] R over a (Borel) subset A of [0, 1). For example, with this notation, the
conditional expectation E[g(Q) | Q = q] of a firm's profit given a positive probability event A = {Q
> q} is computed as E{Q; Q = qI/[1 — F(q)}. Note that for any constant q, E(q; A) = qP(A).

3. The Follower's Problem

The follower's problem is a vanant of the usual single person search problem (see, for
example, Chow, Robbins and Siegmund [1], DeGroot [3], Ch. 13, or Kohn and Shavell [10]),
with a slight medification in the follower's payoff function, which is now reduced by the share of



the market that the leader has already usurped. The analysis is based on standard martingale
methods in probability theory; we review it here, since the same approach will enable us to
characterize the firms' equilibrium strategies later in the paper; it also has a natural economic
interpretation.

Suppose firm j has already introduced its product of quality q;j and suppose firm i's best
product quality developed so far over the past n draws is g;, at the R&D cost C,,. If firm i stops
R&D, it may choose to introduce g;,, or quit, and thus receive the payoff

M, = Max (g, — 4;s 0)-G,

If firm i continues R&D for exactly one more observation, it will have to wait for an exponentially
distributed length of time with parameter A; for the (n+1)St draw, during which it will incur the
expected sum of ¢;/A;, and the draw will result in sampling Q; from the distribution F;(-). At that
point, again firm i may either introduce the old product of quality g;,, or the newly developed
product quality Q; or quit, whichever happens to be the best alternative, and thus receive the

expected net payoff of
M1 = Max (Q; - g, Qin - 45 0) —Cpeg
Hence, the expected improvement from continuing R&D for exactly one more draw is
E[Mgy,1 - M, | My,..My] = E{Max (Q; - max (q;y, qp), 0)] - ¢i/X; (1)

which is nonincreasing in n, since q;,. the best draw over the past n observations, is
nondecreasing in n, and Max (+) is a nondecreasing function. Hence if E[M,; - M IM,.. M ]
< 0 for some n, then it is also true that E[M,,.; — M IMy, ... M) <0, forallm=n, i.e,,

{M,, . m 2n} is a supermartingale, and we are in the "monotone case” of Chow, Robbins and
Siegmund [1]. Therefore by their Theorem 3.3 on page 55, this inequality will continue to hold
even if m is replaced by a (Markov) stopping time N. (Recall that a stopping time of a sequence of
random variables {Mp, n=1, 2, ...} is a random variable N such that for any n the occurrence or
nonoccurrence of the event {N < n} is determinable at time n only on the basis of information
contained in {My, My,..M; }.) Alternatively, note that the net expected one stage improvement is
uniformly bounded by I1 - ¢;/A;l, so that by Theorem 1 on page 361 of Degroot [3], {M, m 2 n}
is a regular supermartingale, i.e., E(My) <M, for all stopping times N 2 n. Hence, by Theorem 1
on page 367 of DeGroot [3], the optimal stopping time is



N* = Inf {n: E[Mp;1 — M | M[,....M,] €0}

i.e., it is optimal to stop as soon as the expected one stage improvement is less than the expected
cost of sampling. Hence, we may define a reservation level q? as the solution, if one exists, of

AE{Max [Q;- max (qjp, qj), 01} = ¢; (2)

and the optimal stopping time T: as the time of first breakthrough N* = n at which g, q?. (Note
that q;,,, the best quality developed so far, will exceed the reservation level qi0 as soon as the most

recent draw Q; does so, i.e., the firm need not "recall” a previously developed product quality i
that it had chosen not to introduce earlier.) Equation (2) simply balances the firm's expected
marginal rate of return from quality improvement over the next draw against the search cost rate. It

is easy to verify that, for a given value of gj, equation (2) has a solution q? if and only if

AEMax (Q; - q;, 0)] 2 ¢;, and in that case qi0 is also the unique solution of
MEMax (Qj-q;, 0)] = ¢ (3)

If q; 2 q?, firm 1 should quit R&D, because overtaking the leader's quality g; is not worth the R&D
costs involved. If gj< q?, the optimum reservation level is the unique solution q? 2 gj of equation
(2), since the LHS of equation (2) is convex decreasing in g € {qj, 1]. With the reservation level
q?, the follower's net expected payoff until quality qi0 or better is developed (which takes a random
amount of time that is exponentially distributed with parameter A;[1 — Fi(q?)]) is given by

{ME[Qi— qj; Q;= q?] - ci} /NI - F'l(q?)]}, which, by virtue of equation (3), equals q? - qj. As
is well-known, by monotonicity of A;E[Max (Q; — qj,, ], it is easy to show that a stronger

follower will aim for a higher quality target and expect a higher profit. We summarize these basic
results as

Proposition 1. If the leader j's product quality is ¢; < q?, where q:.’ is the unique

solution of equation (3), the follower i should set its optimum reservation qualily

level at q?, yielding the expected profit equal to (q:.’ - qj) If ¢; 2 q? the follower

should quit and get nothing. Thus, the follower's optimal expected payoff will
be Max (q':.J -4q; 0). If firm 1 is stronger than firm 2, then q;' g qg.



The simplicity of the follower's problem and its solution follow from our particularly
simple modeling of the firms' market shares and profit functions in terms of their product quality
and timing. The solutions q? and qg in this noncompetitive phase of the game will play a critical

role in determining the equilibrium payoffs and strategies in the competitive phase.

4. Equilibrium Quality Targets with Competijtion

Suppose firm j adopts a reservation level strategy g;, so that it will introduce the product as
soon as its quality exceeds q;. We first show that firm i's unique best response among al/ possible
stopping rules is also given by a reservation level strategy, which can be characterized as in the
preceding section. We also show that with competition, the firms will set lower reservation quality
levels than without competition.

Lemma . In the competitive phase, if firm j follows an R&D stopping strategy
specified by a reservation quality level q;, firm i's best response is to set a

reservation level q:(qj), which is the unigque solution of
AiE[Max (Q;-qi, 0)] = ¢;+ AjE[q; - Max (¢} - Q), 0); Qj 2¢q;]  (4)

Moreover, q;(qj) < q‘:.. The best response function q::[o, 1] - [0, q‘:] is

continuous on [0, 1] and nondecreasing on [q:.’, 1].

Proof: Let M, = q;, — C, be firm i's payoff if it were to introduce its best quality developed by
the nth draw, given that firm j has not yet introduced its product. If firm i waits to introduce its
product until the next draw, it will receive Mp, | = Max(Q;, qi,) — Cp4 provided firm j has still not
developed its product of quality qj or better by then, which happens with probability

Ai/{Ai + Aj[1 —Fj(gjl}. On the other hand, with probability A;[1 - Fi(qj)] / {A; + A[1 - Fi(gpl},
firm j will be the first one develop and introduce quality Q;2 q; . and in that case, firm i will
receive a payoff equal to My, | = Max(qjy- Q;, q?u Qj. 0) ~ Cpyy by either introducing its best
product q;,, developed so far, or continuing optimally, as in the previous section. Therefore, after
the nth draw, the expected marginal improvement from continuing R&D until the next decision
point (which arrives after an exponentially distributed length of time with parameter

(A + A1 - Fyapl is
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E[Mpy1 -Mp My, Myl = {ME[Max(Q; - gjp, 0)] +
MEMax(qin— Qj, g5 - Qj 0) — Qin: Q; 2 i1 — i M{ A + A1 - Fi(gpl)

Since q;,, is nondecreasing in n, if the RHS <0 for some n, it will continue to be so for all m = n.
. 0 . . * . .
Hence, as in the previous section, we may define the reservation level g, (q;) as the minimurm value

of gy, at which this happens, which, upon simplification, yields
ME[Max(Q; - gin, 01 = ¢; + AjE{qin ~ Max(gin - Qj» ¢ - Qj 0); Q52 q51 ()

which would reduce to equation (4) if the solution of (5) sausfied q:(qj) < q(i). To show this,

consider both sides of equation (5) as functions in qy,. It is straightforward to verify that the LHS
of equation (6} is convex and decreasing in q;,, while the RHS is linear increasing (with slope

lj[l - Fj(qj)]) for q;, € (0, Max (q?, qj)], and concave increasing for higher values of diy (with

slope Aj[1 - Fj(qin)]). Moreover, at gj, = q?, we have
LHS = ME[Max(Q; - g, 0)] < ¢; + MEIMin(Qj, q7); Qj 2 qj] = RHS,

since the LHS = ¢; by equation (3), and the second term of the RHS is nonnegative. Hence,
equation (5) has a unique solution q:(qj) < q?, so that equation (5) reduces to equation (4). Thus,
firm i's best response function q::{O, 1] = [0, q?] is well defined as the solution of equation (4).
As above, the LHS of equation (4) is convex decreasing and the RHS is linearly increasing in
Gin € 10, q?] with slope lj[l—Fj (qj)], which is decreasing in g;, thus implying monotonicity of q:.
Finally, with the absolute continuity of F;(+), it follows that q;(qj) Is continuous in ;.

QED

Thus the threat of appearance of a competing product induces firms to set lower quality
targets as an insurance against losing the less discriminating share of the consumer pool to the
competitor. Time competition to be the first thus prompts firms to aim at introducing inferior
quality products earlier than they would in the absence of competition. The next result shows that
the best response function also represents the firm's expected profit function.
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Lemma 2. If firm j follows a reservation level strategy qj, then firm i's optimal

reservation level q:( g;) also equals its expected optimal payoff.

Proof: Suppose II; is firm i's expected payoff following its best response reservation level
strategy q:‘(qj) when firm j follows its reservation level strategy g;. Starting at time 0, firm i waits
for an exponentially distributed length of time with parameter A;[1 - Fi(q:(qj))] until it develops a
product better than qi*(qj), 1,j =1, 2. The time until either firm succeeds in attaining its target is

also exponentially distributed with parameter
A = {A[1-Fy(q; @] + A[1 - F(gp])

By that time, firm i expects to have spent ¢/A and with probability li[l—Fi(q:(qj))] / A it will be

the first to introduce its product and receive the conditional expected profit equal to
ELQi! Qi2 q; (! = E[Q: Q2 q (g / [1 - Fi(g; ()],

while with probability Al 1 — Fj(q;)] / A firm j will succeed first, in which case firm i would expect
to receive payoff of

E[Max (q} - Q;, 0) 1 Qj 2 qj] = E[Max (g7 - Q;, 0); Qj 2 qj] / [1 - Fy(@pl-
Thus firm i's expected profit at time 0, following strategy q; (q;) in response to gj, is
IT, = (M{1-Fi(q; (@)1 E[Q;1 Qi 2 q (] + A1 - Fy(gp)] EMMax (° - Q;, 0) 1 Q2 qjl ¢} / A
which upon simplification yields
A EIQ; — T1; Q; 2 q; () )] = ; + A, EIIT, - Max (¢ - Q;. 0): Qj 2 gjl.

However, from equation (4) of Lemma 1 , Hi = q;(qj) 1s the unique solution of this equation.
QED

We may now characterize the two firms' equilibrium strategies and expected payoffs.
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Proposition 2. There exists a Nash equilibrium (q;, q;) in the space of

L] ]
reservation level strategies, where (q,, q, ) is a solution of equations:

A E[Max (Q; - q,, 0)] = ¢ + A2 Elq; - Max (¢} - Q2, 0); Q2 > q,] (6)
A E[Max (Q; - 45, 0)] = ¢z + A1 Elqy - Max (g5 - 0, 0); Q1 > q;] (7)
In equilibrium, q: is also firm i's profit, and q: sq?, i=12

Proof: In light of Lemmas I and 2, only the existence of a solution (qI, q;) to equations (6)
and (7) remains to be proved. By Lemma [, the firms' reaction functions q:: [0, 1] = [0, 1],
i1 =1, 2, are well-defined and continuous, so that the composite function q* = q: 0 q;: 0,1] -

(0, 1] is also continuous. Hence, by the Brouwer's fixed point theorem, g™ has a fixed point
g; € [0, 1], and we can then define q; = q; ().

QED

Equations (6) and (7) have a natural interpretation. The LHS is the expected marginal rate
of improvement in firm i's profit from continuing to improve quality beyond q;. while the RHS is

the firm i's direct R&D cost rate plus the expected rate of loss in the firm's profit due to possible
preemption by firm j's discovery of a product better than q;. In equilibrium, the two firms select

their reservation levels so as to equate their expected marginal costs and benefits. With competition
each firm sets a lower quality target, and expects to get smaller profit than it would if it were a
monopolist.

5. Technological S b As C itive Ad

In the absence of competition, as Propesition 1, if firm 1 is stronger than firm 2 (in the sense of
the Definition ), we have q(i’ 2> qg, so that the stronger firm aims to develop a higher quality

product and expects to get a higher profit. In this section, we show that this is true in equilibrium
in the competitive phase as well. To prove this, we need the following important result, the
economic significance of which will be discussed in the next section.

Lemma _3. If firm I is stronger than firm 2, then g, Sq; + q; < q}.
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Proof: In the following we will need to recall from Propositions 1 and Lemma 1 that

q; < qg < q?. and qt < q?. Now substituting for c; from equation (3) we may rewrite equation (4)

with q; = q: and g; = q; as

* * *_
MEMMax(Q; - q;. 0)] - ME[Max(Q; - g7’ 0] = ME[q; - Max(q; - Q.0 Q2 q;1 i, j =1, 2.
Rewriting the LHS, and using q: < q? to decompose the first integral on the LHS we get

LHS = ME[Qi—q;) Q2 q;1- AME [(Q - g Q2 ]
= ME[(Qi - q;): 2 Qi > q; ] + MEIQi —q;): Qi 2 g1 - ME[(Q; — ¢ Q; 2 ¢
= MENQi-q, % q02 Q2 g1+ ME[Q) - ;) Q2 q]

*
1

. * .
= ME[Min(Q;, q0) - q;: Q; 2 q; ], while
RHS =AEMin(Q, q)) +q, —qs Q> q,).
Thus equations (6) and (7) may be rewritten as

MEMin(Qq, o) - a55 Q1 2 q;1 = A;E[Min(Qa, ) + q; - ¢33 Q22 q,] (8

MEMin(Qz, q9) - 455 Q22 q,1 = MEMin@Qp, @) + 43 a3 Q 24,1 9)
Adding equations (8) and (9) and rearranging terms yields

MEMin(Qy, 4% - Min(@Qy, 42 Q; 2 q;1 - A;E[Min(Q3, ¢©) - Min(Qy, 42); Q; 2 q,]
= Ai(ay + a3 - a9 [1 - Fy(ap] - 22(q9 - q; - q3) [1 - F2(q})] (10)

Now add A5(q} + g5 — q9) [1 — Fa(q,)] to both sides of equation (10). define the nonnegative

constant (the equilibrium probabilistic rate at which one of the firms will introduce its product)
- * *
AT = {1 = Fi(q] + A1 - Fy(q,)] (11)

rearrange and combine terms to yield
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(@) +ay-gQA" =X E[Min(Q;, ) - Min(Qy, 43 Qs 2 q)]
+22(q5 - @) [1 - Fa(ay)] - MEMin(Qy, q)) - Min(Q2, 43); Q3 2 g}
= L EMin(Qy, ¢9) - Min(Qy, ¢ Q; 2 q]
+ MElq] - g3 - Min(Qa, @) + Min(Q2. a9 Q2 2, 1,

which we need to show is nonnegative. Since q(l) 2 qg, the first term on the RHS is nonnegative,

* -
and, since qg_ 2 q,, we may decompose the second term into two terms as

ME[QS — g9 - Min(Qy. q5) + Min(Qy. 4% 49> Qg > g,
+ LElq] - g3 - Min(Qy, 4 + Min(Qy. q3): Q; 2 q3)
= ME[q] - 0% 492 Q2 2 qy)
+ ME[q] - Min(Qy. qD): Q2 431

each of which is also nonnegative, because q(I) = qg and q? 2 Min(Q,, q(l’).
Similarly, to show q; +q, < g5, add A;(q° - q; - g i1 - F1(g))] to both sides of equation

(10),rearrange, and combine terms to yield

@ -y -apA" = REIMIn(Qy o) - Min(Qp, 49 Q2 2 4,
+ LElq] - g3 - Min(Q;, ¢ + Min(Qy, 43 Q 2 q; ).

Nonnegativity of the first term on rhe RHS again follows from q? 2 qg , but to show nonnegativity
of the second term we need to consider two possible cases, depending on whether qT 2 qg. or

q; <q5. In the former case, on the set {Q; 2 q:}we also have Q 2q3 , s0

. * » *
ME[q] — g — Min(Qy, q)) + Min(Qy, q5); Qp 2 q;1 = AElq] - Min(Qy, q)); Q) 2 q1,
which is nonnegative. If qg 2 q:, we may split the term in question and use q(l) = qg to yield

. . *
AMElq) — g3 — Min(Qy, q)) + Min(Qy. 49): 432 Qp 2 qy]
+ME(q) - g5 - Min(Qy, ) + Min(Qy. g3); Q) 2 4]
= ME[q] -49: 92 Q) 2 q;] + AElq] - Min(Qy. ) Q; 2 q3l,



15

each of which is nonnegative.
QED

If the two firms are technologically identical (in the sense of A} =A,, F{ = F5, and ¢ = ¢,
then in Proposition I , we have q(; = q%, and by the above Lemma 3 , qI + q; = q‘i = qg_
yielding

Corollary: With identical firms in a symmetric equilibrium, q: = q:.’/Z, i=1,2

In the asymmetric firm case, we can now show that, in equilibrium, the stronger firm will

set a higher quality target and expect to capture a higher market share and profit.
Proposition 3. If firm 1 is stronger than firm 2, then q; = q;.

Proof: Suppose to the contrary that q; 2 qI, and we will get a contradiction. Using Lemma 3
we obtain 2q; > q’; + q; 2 qg. Now consider equation (9) and use firm 1's stochastic dominance

over firm 2, together with monotonicity of Min (Q,, qg) to get the inequality below:

LEMin(Qr. a9 —dy: Q, 2051 =MEMIn(Q,, q9) +ay - 63 Q 2 q;]
2 ME[Min(Q,, q3) + q; ~ay Q2 qI]
= ME[Min(Qp, g +d, -4 4y 2 Q22 q}]
+ MEIMin(Qa. g + 4, — 4% Q2 2 q5).

where we have used the supposition q: < q; to split the integral and obtain the last equality. Now

dividing by A, and combining terms yields

¥ * . * * *
Elgy- 20, Q22 ) > E[Min(Qy, q3) + 4, - 43 4, 2 Q22 qy]
. * »* * *x ®
ie., (a3 - 2q,) [1 - Fy(g,)] >E[Q+4q,-93 4, 2Q2q,],

since Q; < q; < qg over the range of integration on the RHS. However, as shown above, the LHS

* *
of this inequality is nonpositive, whereas by Lemmeg 3 we have q, + q, 2 qg, so that the
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integrand on the RHS is nonnegative over the range of integration {q; 2Q, 2 q‘; }, thereby

yielding a contradiction.
QED

6. Social Optimality

If fast, low cost development of high quality products is socially desirable, it is natural to
ask how competition fares vis-a-vis monopoly or centralized control of R&D. In terms of the
speed of innovation alone, as measured by the expected time required to achieve a certain quality
level, it is obviously better to have two firms competing in parallel to develop that quality rather
than having either one firm working alone. This follows since the total probabilistic rate A(q) =
{A[1 = F1(@)] + 2,1 - F5(qQ)]} at which one of them succeeds in developing a product of quality
q or better is greater than that for either one, A;[1 - F;(g)], i = 1,2. On the other hand, in terms of
the quality of the product that the firms aimn to develop, we have already seen (Lemma [) that
q: < q?. so competition induces firms to lower their individual targets.

As a measure of soctal benefit that involves both the product quality and the developmental
time, we consider the expected final product quality that will be eventually introduced (or,
equivalently, the expected total consumer demand that will be eventually satisfied), net of the
expected total R&D costs during the development period. With this measure, we can show that it
1s better to have the two competing firms than the weaker firm pursuing R&D alone, but the
stronger firm doing R&D alone is even better, and in fact the latter coincides with a socially optimal
strategy in the centrally planned setting. However, if the two firms are identical, competition also
yields this socially optimal outcome, and it does so faster than monopoly or centrally controlled
R&D. To prove these results, we start with the following result which seems intuitively obvious.

Lemma 4. With the two competing firms in equilibrium (q;, q;), the expected

* *
net social benefit equals q; + q,.

Progf: Starting at time 0, and following the equilibrium strategies (qI, q;), the time T until one of
the firms introduces its product is exponentially distributed with parameter A* given by equation
(11), and during this time the two firms together will have spent (c; + ¢2)/A*. At time T, with
probability 7LJ-[1 - Fj(q;)]/A* firm j will be the first one to introduce its product of quality Q; 2 q;.



17

and in that case the other firm 1 will continue optimally as a follower with the net expected benefit
of Max (qu —Q;, 0, as in Propesition 1,1, ) = 1, 2. Hence, the total expected benefit is

(A1~ Fy(q))] EIQ; + Max () —Qy, 0) 1 Q 2 q ]+
Aal1 — Fa(@;)] EIQg + Max (@ - Qa. 0) | Q2 2 gy} — (¢ + c) /A
= {ME[Qq + Max (g5 - Qy, 0% Q; 2 ;1 + Ay E[Qz + Max (g7~ Q3. 0); Qg 2 gy — (¢ + c2) J/A”
= {MEIMax (Q1. a3 Q; 2 q;] + AE{Max (Qq, 40 Qa2 4] - (¢ + cp) J/A®

To prove that this equals (q; + q;), we need to show that
* * * * * *

MEMax Q1. g9 - (q; +qp) Q1 2qy] + A2EMax (Qa. q)) - (@) +4p): Q22 gyl = (e 1+ ¢2)
However, this equation follows immediately if we rewrite equations (6) and (7) as

* *x * * *
MEIQ) —q: Q) 2q;] = ¢y + Aq,{1 — Fx(g] - MEMax(Qy, q}) - Q; Q2 q,). and

* *x * * *
AME[Q2 - qp: Q2 2 gyl = ¢ + Aig,[1 - Fi(q)] - MEMax(Qy, q9) - Q1 Q1 2 g1

add them, and rearrange terms.
QED

[t also seems clear that with a centrally controlied R&D, permitting free transfer of

knowledge between the firms, a socially optimal strategy would be to operate only the stronger

firm:

Lemma 5. With a centally planned R&D, if firm 1 is stronger than firm 2, the
socially optimal strategy would be to let only firm 1 carry out the product
development, yielding the resulting net benefit of q‘;.

Proof: Starting with both firms pursuing R&D, we wish to determine the time T at which the
planner should stop one of the processes, and also determine which one. We show that process 2
should be stopped at T = 0. In the second phase over [T, ¢¢), given that only one process will be
operated, if q is the best quality developed so far, continuing process 1 is expected to yield
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Max (q, q7), which is greater than or equal to Max (g, g3), since q{ 2 q,. Thus if one of the

processes is to be turned off, it should be process 2, and it now remains to be determined when to
do so.

In the first phase during {0, T), running the two independent R&D processes
simultaneously is equivalent to a single R&D process with the probabilistic discovery rate equal to
A = (Aq + A7), the probability distribution of the size of a discovery given by the convex
combination F = (AF; + A,F))/(A; + A4), the total R&D cost rate of ¢ = ¢; + ¢5, and the terminal
reward function R(q) = Max (q, qcl)). Following the approach of section 3 with these parameters, if

q, 1s the best quality developed by either process by stage n of discovery, and C,, is the total R&D

cost, the expected net benefit of terminating process 2 is M,, = Max (q, qcl’) — C,,, while continuing
for exactly one more stage would yield M, = Max (Q, q, q?) -~ Cp4+1- Hence, the net expected

improvement (taken with respect to the distribution F of Q) from waiting for one more stage is
E[M,,{ - M, IMp,... Ml = E{Max [Q - max (q, q}), 0]} - ¢/A (12)

which we claim to nonpositive for all q, so that {M_, n=1, 2,...} is a supermartingale, and hence
the optimal stopping time is T = 0. Since the RHS of equation (12) is nonincreasing in q, it
suffices to show that it is nonpositive for g = 0. Now writing it out explicitly yields

(J(@ - @OMAF (@) + AdFy(@)] - (e + ey +A))
Q
(qy- 1]
= 1@ - 4% AadFy(@ - )0y + A,
fgy- 11
since J(q - q(l)) AdF(qQ) = ¢y, by equation (3) fori =1. However, since q? 2 qg and
0
[q,. 1
j(q - @) AdF5(q) is decreasing in g, we have J(q - qcl)) A2dF»(q) < J(q - qg) AxdFa(q) = ¢,
fag. 1] CH CHRY

where the equality follows again by equation (3) with i = 2.
QED

We may now cosolidate the contents of Lemmas 3, ifs corollary, Lemmas, 4, and
5 as
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Proposition 4. With the competing firms in equilibrium at (q;, q;), the net social
benefit q; + q; is greater than qg with only the weaker firm pursuing R&D, but
less than q;’ with only the stronger firm pursuing R&D, which is also the socially

optimal outcome in a centrally planned R&D. An efficient equilibrium with
competing firms is a solution of the problem: Maximize (q; + q;) subject to

equations (6) and (7). If the competing firms are identical, the equilibrium
cutcome q? is not only socially optimal, but also attained at twice the speed that

either firm would as a monopolist.

7. Remarks

We have proposed and analyzed a simple stopping game model of R&D competition among
dissimilar firms whose profits depend upon both the quality and the timing of products introduced
into the market. We have characterized the equilibrium as a solution of a pair of algebraic
equations with a natural economic interpretation. We have also analyzed how a firm's R&D
capability affects its strategy and profits. Finally, we have considered the implications for social
optimality.

In terms of extensions, the tractability of our model seems to depend critically on the
assumption of two firms, and incorporating discounting appears to complicate the analysis beyond
reason. Our model also assumes that each firm can introduce at most one product, while an
extension would permit the firms to introduce a sequence of innovations, each one of an
increasingly higher quality. Our preliminary results along these lines indicate that, upon each
successful draw, the firms progressively capture an additional share of the residual market, and the
qualitative nature of the firms'equilibrium stopping rules continues to hold, although the firms'
payoffs do change. Finally, it would be important to model the firms' profit - and the society's
welfare - functions as more general functions that are increasing in the product quality and
decreasing in the time of its introduction. Qur objective has been try and capture essential elements
of product quality and tming tradeoffs in a simple competitive model, in the hope of achieving an
optimal balance in this paper.
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