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Abstract

The representation of knowledge in terms of rules is fraught with
theoretical problems, such as the justification of induction, the "right” way to
do it, and the revision of knowledge in face of contradictions.

In this paper we argue that these problems, and especially the
inconsistency of "knowledge,” are parily due to the fact that we pretend to
know what in fact cannot be known. Rather than coping with the problems
that explicit induction raises, we suggest to avoid it. Instead of formulating
rules which we supposedly "know," we may make do with the knowledge of
actual cases from our experience.

Starting {rom this viewpoint, we continue to derive Case-Based
Decision Theory (CBDT), and propose it as a less ambitious, yet less
problematic theory of knowledge representation. CBDT deais with decision
making under uncertainty, and can be viewed as performing implicit
induction, that is, as using past experience to make decisions, without
resorting to the explicit formulation of rules.

We discuss two levels on which implicit induction takes place, and the
corresponding two roles that "rules” may have in case-based decision making.
We also discuss the process of learning and the concept of "expertise” as they

are reflected in our model.



1. Introduction

The literature in philosophy and artificial intelligence (AI) typically
assumes that one type of objects of knowledge are "rules,” namely general
propositions of the form "For all x, P(x)." While some of these rules may be

considered, as a first approximation at least, "analytic propositions,” a vast
part of our "knowledge” consists of "synthetic propositions."! These are
obtained by induction, that is, by generalizing particular instances of them.

The process of induction is very natural. Asked, "What do you know
about... ?, people tend to formulate rules as answers. Yet, as was already
pointed out by Hume (1748), induction has no logical justification, and may
well lead to erroneous conclusions. Furthermore, it is not clear how does one
generalize instances — or "cases” - into rules. Wittgenstein (1922, 6.363), for
instance, argued that "The procedure of induction consists in accepting as true
the simplest law that can be reconciled with our experiences.” But the notion
of "simplicity” may be very vague, subjective and language-dependent. (See,
for instance, Sober (1975) and Gardenfors \1790).) Thus it is far from obvious
what the "right" way to perform induction is (from a normative point of
view), or how people actually do it (taking a descriptive approach).

The subjective nature of induction, coupled with its dubious
justification, lead to the problem of knowledge revision and update. Much
attention has been devoted to this problem in the recent literature in
philosophy and AL (See Levi (1980), McDermott and Doyle (1980), Reiter
(1980) and others.) While we do not attempt to provide here even the briefest
survey of any of the above-mentioned fields, we would like to point out that
induction raises three main questions:

(i) How and to what extent can induction be justified?

(ii) How do people do induction, and how should it be done?

(iii) How do people revise their knowledge when they discover that
their induction process has yielded unwarranted conclusions, and
how should they revise their knowledge?

In view of these problems, we suggest to consider knowledge

representation models which avoid induction to begin with. Rather than

i While this distinction was already rejected by Quine (1953), we still find it useful for
the purposes of the present discussion.



dealing with rules, one may restrict the knowledge represented to cases. This
proposal was first made by Schank (1986) and Riesbeck and Schank (1989). In
Section 2 we motivate and discuss our approach, and compare it with theirs.

One may ask, in what sense do cases represent knowledge, and are they
good enough? This leads us to a basic question, namely, why do we want to
represent knowledge in the first place? In Section 3 we present the view that
knowledge, and perforce knowledge representation, are needed for decision
making. This leads us to a model of a "case" which emphasizes the role of
one's decision. The structure which follows is identical to that we assumed as
primitive in Gilboa and Schmeidler (1992).

In Section 4 we deal with the question, what does one do with this
knowledge? We consider the notion of "similarity" between cases, and some
ways in which it can be used in decision-making, making a case for the
particular way we use it in case-based decision theory (CBDT). This theory
suggests that, when confronted with a decision problem under uncertainty,
people tend to choose acts which performed well in similar cases in the past.
It may thus be viewed as modeling "implicit induction:" according to CBDT,
decision makers behave as if they believed in generalizations of specific
instances. However, the theory does not explicitly mention "rules."

Section 5 is devoted to the relationship between CBDT and the notion
of "rules.” We argue in sub-section 5.1 that a decision-maker who follows
CBDT may be described as if {(s)he "knows" certain rules at certain points of
time. However, when these rules seem to be contradicted by observations, or
to contradict each other, a case-based decision maker continues to make
decisions according to CBDT in a coherent manner, which may or may not be
also represented as following a new set of rules. In sub-section 5.2 we discuss
two ways in which rules may be incorporated into the CBDT model. Rather
than treating rules as objects of knowledge, we think of them as offering an
efficient language to transfer information. The distinction between the two
roles of rules is based on the subject matter of the information transferred:
cases vs. similarity judgments.

In Section 6 we discuss some limitations and possible extensions of
CBDT. Specifically, we present an intuitive example in which our original,
somewhat naive version of CBDT fails. Analyzing this example, we note
that, as opposed to the model presented in Section 4, the similarity function
itself may change as a result of past experience. This leads us to distinguish
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between two levels of (implicit) induction: first-order induction, which is
captured by CBDT, and second-order induction, that is, learning how to
perform first-order induction, which calls for a generalization of CBDT in its
present form.

Section 7 summarizes the implications of sections 4-6 with respect to
the process of learning and the definition of "expertise." Finally, section 8
concludes with some comments.

2. What Can Be Known?

When we consider the issue of knowledge representation, we should
first ask ourselves, what is there to represent? What is it that we know?
And, more specifically, can we know general rules?

To this last question one can hardly find a more well-known answer
than Hume's. In Hume (1748, Section IV) we find,

“... The contrary of every matter of fact is still possible; because it can
never imply a contradiction, and is conceived by the mind with the
same facility and distinctness, as if ever so conformable to reality. That
the sun will not rise to-morrow is no less intelligible a proposition, and
implies no more contradiction than the affirmation, that it will rise.
We should in vain, therefore, attempt to demonstrate its falsehood.”

That is, no synthetic proposition whose truth has not yet been observed
is to be deemed necessary. In particular, to the extent that rules are useful —
that is, to the extent that they generalize our experience and have
implications regarding the future - they cannot be known.

We suspect that many of the theoretical problems relating to
knowledge representation are due to the unwarranted induction process.
Hume argues (and seems to convince most of us?) that we cannot know the
generalized rules induction offers. If we nevertheless insist to treat these
rules as "known," there is little reason to wonder at the theoretical difficulties
that ensue.

2 Quine (1969) writes, "... I do not see that we are further along today than where Hume
left us. The Humean predicament is the human predicament.”
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It is therefore natural to consider an alternative approach, which,
instead of dealing with the problems induction poses, will attempt to avoid
induction in the first place. According to this approach, knowledge
representation should confine itself to those things which can indeed be
known. And these include only facts which were observed, not "laws;" cases
can be known, while rules can at best be conjectured. One of the theoretical
advantages of this approach is that, while rules tend to give rise to
inconsistencies, cases cannot contradict each other.

Our approach is closely related to (and partly inspired by) the theory of
Case-Based Reasoning (CBR) proposed by Schank (1986) and Riesbeck and
Schank (1989). (See also Kolodner and Riesbeck (1986) and Kolodner (1988).)
In this literature, CBR is proposed as a better Al technology, and a more
realistic descriptive theory of human reasoning than rule-based models (or
systems). However, our approach differs from theirs in motivation,
emphasis and the analysis that follows. We suggest the case-based approach
as a solution to, or rather a way to avoid the theoretical problems entailed by
explicit induction. Our focus is decision-theoretic, and therefore our
definition of a "case" highlights the aspect of decision making. Finally, our
emphasis is on a formal model of case-based decisions, and the extent to
which such a model captures basic intuition.

As we will see in the sequel, our model does involve some implicit
process of "induction;" indeed, whenever one learns from experience one
may be claimed to engage in "implicit induction.” Yet our model does not
resort to explicit formulation of general "rules" which are supposedly known.
"Rules" may still play certain roles in possible extensions of the model, but
they are not essential to it, and, more importantly, they are not the object of
knowledge. We remain faithful to Hume's claim that it is only a case that can
be known.

One has to admit, however, that even cases may not be "objectively
known.” The meaning of "empirical knowledge" and "knowledge of a fact”
are also a matter of heated debate. (For a recent anthology on this subject, see
Moser (1986).) Furthermore, as has been argued by Hanson (1958),
observations tend to be theory-laden; hence the very formulation of the
"cases” that we allegedly observe may depend on the "rules” that we believe
to apply. It therefore appears that one cannot actually distinguish cases from



rules, and even if one could, such a distinction would be to no avail, since
cases cannot be known with certainty any more than rules can.

While we are sympathetic to both claims, we tend to view them as
somewhat peripheral issues. We still believe that the theoretical literature on
epistemology and knowledge representation may benefit from drawing a
distinction between "theory” and "observations,” and between the knowledge
of a case and that of a rule. Philosophy, like other social sciences, often has to
make do with models which are "first approximations," "metaphors,” or
"images,” — In short, models that should not be taken too literally, nor be
expected to be completely accurate. We will therefore allow ourselves the
idealizations according to which cases can be "known," and can be observed
independently of rules or “"theories."

The discussion so far excludes induction, and leaves us with the
knowledge of rather amorphous "cases." What are they made of? How do
we use them? In what sense do they represent knowledge, apart from merely
existing? - In the next sections we make some preliminary steps towards
answering these questions.

3. What Is Knowledge Representation Needed For?

When the object of knowledge is a rule, or a "theory," logic provides a
natural (even if not necessarily unique) language to describe their structure.
Thus logic allows us to reason about rules i~ a general and abstract way, while
capturing their essence. At this point of our discussion, the notion of a "case”
is too vague to allow any analysis of interest. It seems that we need to endow
"cases" with some structure to make them more tangible and amenable to
analysis.

What is a case made of, then? Or, what type of creature will it be
represented by in a formal model? The answer, we believe, lies in
understanding what we expect of the model. That is, we should first ask
ourselves, why would we represent knowledge at all?

We take the view that knowledge representation is required to
facilitate the use we make of the knowledge. And we use knowledge when
we act, that is, when we have to make decisions. This implies that the
structure of a "case” should reflect the decision-making aspect of it.
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We make the somewhat-idealized assumption that all cases involve
acts, or decisions. (See comment 8.2 below for a discussion of this assumption
and possible relaxations of it.) Focusing on the dedsion made in a given case,
it is natural to divide a "case" to three :omponents: (i) the conditions at
which the dedsion was made; (ii) the decdision; and (iii) the results. If we were
to set our clocks to the time of decision, these components would correspond
to the past, the present and the future, respectively, as perceived by the
decision maker. In other words, the "past” contains all that was known at the
time of decision, the "present” - the decision itself, while the "future" -
whatever followed from the "past” and the "present.” In Gilboa and

Schmeidler (1992) we dub the three components "problem,” "act,” and
"result."

Formally, in CBDT we postulate three abstract sets as primitive:

P — the set of (decision) problems
A - the set of possible acts
R - the set of conceivable results.

Correspondingly, the set of cases is simply the set of ordered triples, or
the product of the above:

C=PxAXR

where, at any given point of time, the decision maker has a memory, which is
a finite subset of cases M C C.

We thus assume that one's knowledge is given by one's memory, and
it is simply a collection of cases. Each case describes a certain decision
situation which one may recall. While one cannot presume to know more
than bare cases, one's subjective judgment +ill still play a role in the way one
uses one's knowledge.

4. The Introduction of Similarity

How are the cases used in decision making, then? Again, we resort to
Hume (1748) who writes,



"In reality, all arguments from experience are founded on the
similarity which we discover among natural objects, and by which we
are induced to expect effects similar to those which we have found to
follow from such objects. .. From causes which appear similar we
expect similar effects. This is the sum of all our experimental

conclusions.”

Thus Hume suggests the notion of similarity - in his formulation,
between "causes” as well as between "effects” — as key to the procedure by
which we use cases. Since this procedure is to be applied to a given decision
problem pe P, it makes sense to define the similarity on problems as well (as
opposed, say, to whole cases). Thus we postulate a similarity function which
may be normalized to take values not exceeding unity:

s:P? =[0,1].

It is important to note that the similarity function is not assumed to be
"known" by the decision maker in the same sense cases are. While cases are
claimed to be "objectively known," the similarity is a matter of subjective
judgment. Where does it come from, then? Or, to be precise, what
determines our similarity judgments (from a descriptive viewpoint), and
what should determine it (taking a normative view) ?

Unfortunately, we cannot offer any general answers to these questions.
However, it is clear that the questions will be better defined, and the answers
easier to obtain, if we know how the similarity is used in the decision making
process. Differently put, the similarity function, being a theoretical construct,
will gain its meaning only through the procedure in which it is used.

One relatively obvious candidate for a dedision procedure is a "nearest
neighbor” approach. It suggests that, confronted with a decision problem, we
should look for the most similar problem which has been encountered in the
past. Unfortunately, this approach does not seem to be very satisfactory: if
one is happy with the result of the "nearest” case, one may indeed choose the
same act which was chosen in that case. But which act is to be chosen if the
"nearest” case ended up yielding a disastrous outcome? Furthermore,
assume that the nearest case resulted in a reasonable outcome, but in many
other cases, which are somewhat less similar to the problem at hand, a

~



different act was chosen, and it yielded particularly good outcomes in all of
them. Is it still reasonable, from either descriptive or normative point of
view, to choose the act which was chosen in the most similar case?

[t therefore appears that a more sensible procedure would not rely
solely on the similarity function, nor would it depend only on the most
similar case. First, one needs to have a notion of a utility, i.e., a measure of
desirability of outcomes, and to take into account both the similarity of the
problem and the utility of the result when using a past case in decision
making. Second, one should probably use as many cases as deemed relevant
to the decision at hand, rather than the "nearest neighbor" alone.

We thus postulate a utility function

W R R

which assigns numerical values to outcomes, and which is to be interpreted
as a measure of desirability. CBDT prescribes that acts be evaluated by a
similarity-weighted sum of the utility they yielded in past cases. That is,
given memory M CC and a problem pe P, every act a€ A is evaluated by the
functional

U@ =U,u@=3, ., S5.0ur

where a maximizer of this functional is to be chosen. (In case the summation
is over an empty set, the act is assigned a "default value" of zero. This value
may be interpreted as the "aspiration level" of the decision maker. For
details, see Gilboa and Schmeidler (1992).)

This decision rule is perhaps the simplest one which takes into account
both similarity and utility, and does so for all the cases in which a given act
was chosen. Yet one may consider many other decision criteria which will
make use of all the above information in a sensible way. The particular rule
we suggest here should be taken as a rough, preliminary model; like most
models in the social sciences, it should not be taken too literally. For instance,
it should not come as a great surprise to us if in certain circumstances the
additive separability of the formula above will prove to be too restrictive. (In
particular, see the discussion in Section 6 below.)

[ 8]



At any rate, in Gilboa and Schmeidler (1992) we provide an axiomatic
derivation of this rule. That is, we assume as given datum a binary relation
over (actual and hypothetical) acts, to be interpreted as a preference relation,
and provide necessary and sufficient conditions on it for there to exist a
similarity function such that for every pair of acts, the one which has the
higher U -value is the one preferred by the given relation. Thus the notion of
"similarity” in our model may be derived from preferences, in a way that
parallels de Finetti's derivation of "subjective probability.” (See de Finetti
(1937).)

While de Finetti assumed a concept of "utility" as primitive, Savage
(1954) provides an axiomatic derivation of both "subjective probability” and
"utility” simultaneously. Similarly, one may extend our model so that
"(subjective) similarity” and "utility” would be derived from preferences
together.

The axiomatic derivation serves several purposes. First, and perhaps
most importantly, it relates theoretical constructs (such as "similarity") to
observable terms (such as "preference"), thus endowing the model with
"cognitive significance." Second, it may help us judge the reasonability of a
particular theory. In the case of the functional above, the axioms are quite
simple and intuitive (as the additively-separable functional form itself). Yet
they are not unique in being so; indeed, we also offer an equally-attractive
axiomatization of another rule, in which the similarity function is
"normalized" so as to sum up to unity for each act separately. Finally, and
correspondingly, the axioms may be of help in testing the theory and in
measuring the "similarity” function.



The importance of axiomatic derivations notwithstanding, we should
emphasize that an axiomatization does not explain whence the similarity
stems. It cannot replace a psychological theory in accounting for similarity
judgments, nor is it of great help to someone who would like to have a
"reasonable” similarity function. Thus, while we can argue for employing a
certain decision procedure rather than another, and can attempt to rank
procedures in terms of descriptive and normative appeal, we can still say very
little about the origin of the similarity function.

5. Where Do Rules Fit In?
5.1 Do CBDM's Know Rules?

Equipped with knowledge of past cases, similarity judgments and
utility valuations, case-based decision makers (CBDM's) may go about their
business, taking decisions as the need arises, without being bothered by
induction and general rules, and without ever having to deal with
inconsistendies. Yet, if they are asked why they made a certain decision, they
are likely to give answers in the form of rules. For instance, if you turn a
door’s handle in order to open it, and you are asked why you chose to turn
the handle, it is unlikely that your answer would be a list of particular cases in
which this trick happened to work. You are most likely to say, "Because the
door opens when one turns the handle,” i.e., to formulate your knowledge as
a general rule.

In a sense, then, case-based decision makers often behave as if they
knew certain rules. Furthermore, whenever the two descriptions are
equivalent, the language of "rules" is much more efficient and parsimonious
than that of "cases.” However, the advantage of a case-based description is in
its flexibility. In the same example given above, suppose that a person (or,
say, a robot we are now programming) finds out that the door refuses to open
despite the turning of the handle. A rule-based decision maker, while
struggling with the door, also undergoes internal, mental commotion. Not
only is the door still shut, one's rule base has been contradicted. Some rules
will have to be retracted, or suspended, before our decision maker will be able
to use the second rule "If turning the handle doesn't work, call the janitor.”
By contrast, a CBDM has only the door to struggle with. The failure of the
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turn-the-handle act will make it less attractive, and will make another act the
new U-maximizer. Perhaps the very failure of the first act will make the
whole situation look more similar to other cases, in which orly a janitor
could open the door. At any rate, a CBDM does not have to apply any special
procedures to re-organize his/her knowledge base. Like the rule-based one,
the case-based decision maker also has to wait for the janitor; but (s)he does so
with peace of mind.

In other words, the rules-vs.-cases choice faces us with a familiar
tradeoff between parsimony and accuracy. Rules are simply described, and
they are therefore rather efficient as a means to represent knowledge; but they
tend to fail, namely to be contradicted by evidence and by their fellow rules.
Cases tend to be numerous and repetitive, but they are never a source of
inconsistency. In view of the theoretical problems associated with rules, it
appears that case-based models are a viable alternative.

In a slightly different metaphor, "cases" may be considered a low-level
description of human knowledge, while "rules” are the higher-level one. As
long as the two are equivalent, one would typically prefer the high-level
description. When the latter fails, one has to settle for the low-level one.

In the sciences we find examples of both cases. For instance, all natural
sciences (and perhaps the social ones as well) are commonly believed to be in-
principle reducible to physics. Yet this reduction is used only as a last resort.
In the case of chemistry and biology, for instance, most of the discourse is
done in a high-level language, without explicit reference to the underlying
physical principles. In the example of meteorology, on the other hand, high-
level theories such as "Clouds imply raii:' or "Whenever Zeus is angry, a
thunderstorm occurs" do not seem to be very useful, and are reluctantly
discarded in favor of dreary and detail-laden flow equations.

Similarly, it is possible, in principle, that rule-based models will be as
successful as, say, biological ones, and that the level of cases will be completely
redundant for knowledge representation. On the other hand, it may also be
the case that rule-based models will turn out to be hopelessly naive. While it
is probably too early to decide one way or the other, it appears that rule-based
models are theoretically problematic enough to warrant a competing theory
of knowledge representation.

11



5.2 Two Roles of Rules

While CBDT rejects the notion of "rules” as objects of knowledge, it
may still find them a useful tool. Even if one is convinced that they are too
crude to be "correct," rules are still a convenient "first-approximation” of
cases. Furthermore, they provide a language for efficient information
transmission. As such, rules can have two roles:

(i) A rule may summarize many cases. If we think of a rule as an
"ossified case,” (Riesbeck and Schank (1989)) it is natural to imagine one
individual (system) telling another about many cases by conveying a single
rule which applies in all of them;

(ii) A rule may point to similarity among cases. That is, even if two
people (systems) have the same cases in their memory, one may be unaware
of certain common denominators among them. Especially when the amount
of information is vast, an abstract rule may help in finding analogies. For
instance, claims such as "Peace-keeping forces can succeed only if the
belligerent forces want them to" or "The stock market always plunges after
presidential elections” serve mainly to draw the reader's attention to known
cases, rather than to tell him/her about unknown ones. Furthermore, many
"laws" in the social sciences, though formulated as rules, should be thought
of as "proverbs:" they do not purport to be literally true. Rather, their main
goal is to affect similarity judgments. In this capacity, the fact that rules tend
to contradict each other poses no theoretical difficulty. Indeed, it is well-
known that proverbs are often contradictory.® Once they are incorporated
into the similarity function, the latter will determine which prevails in each
given decision situation.

To sum, CBDT may incorporate rules, and experts’ knowledge
formulated as rules, either as a summary of cases or as a similarity-defining
feature of cases. Yet, within the framework of CBDT, rules are not taken
literally, they are not assumed "known," and their contradictions are blithely
ignored.

3 The notion of a "rule” as a "proverb” also appears in Riesbeck & Schank (1989). They
distinguish among "stories,” "paradigmatic cases,” and “ossified cases,” where the latter "look
a lot like rules, because they have been abstracted from cases.” Thus, CBR systems would also
have "rules” of sorts, or "proverbs,” which may, indeed, lead to contradictions.



6. Memory-Dependent Similarity and Two Levels of Induction

In the model of Section 4 the similarity function is assumed to be
memory-independent. However, the similarity function may also depend on
the problems that were encountered in the past, as well as on the results
obtained in them.

We start with the following example. Consider a hypothetical decision
maker named Agent. For grammatical simplicity let us endow Agent with
gender, say, female. Suppose that Agent has two coffee shops in her
neighborhood, 1 and 2. Once in a shop (which determines a "problem"”), she
has to decide what to order (which act to choose). In the past, she has visited
both of them once in the morning (M) and once in the evening (E), ordering
"cafe latte” in each of these four problems. The four problems she recalls are:
(M1,M2,E1,E2). (Notice that which shop to go to is not a decision variable in
this story.) Now assume that the quality of the coffee she had was either 1
(high) or -1 (low). Let us compare two possible memories: in the first, the
result sequence is (1,1,-1,-1), while in the second it is (1,-1,1,-1). In the
first case Agent would be tempted to assume that what determines the quality
of cafe latte is the time of the day. Correspondingly, she is likely to put more
weight on this attribute in future similarity judgments. On the other hand,
in the second case, the implicit induction leads to the conclusion that coffee
shop 1 simply serves a better latte than 2, and more generally, that the coffee
shop is a more important attribute than the time of the day. In both cases, the
way similarity will be evaluated in the future depends on memory as a
whole, including the results that were obtained.

Generally, one may distinguish between two levels of inductive
reasoning in the context of CBDT. First, there is "first order" induction, by
which similar past cases are implicitly generalized to bear upon future cases,
and, in particular, to affect Agent's decision in a new problem. The version of
CBDT presented here does attempt to model this process, if only in a
rudimentary way. However, there is also "second order” induction, by which
Agent learns not only what to "expect" in a given case, but also how to
conduct first-order induction, namely, how to judge similarity of problems.
The current version of CBDT does not model this process. Moreover, it
implicitly assumes that it does not take place at all.



Specifically, one would expect that when some process of "second-order
induction” affects similarity judgments, there would be some plausible
counterexamples to U-maximization. Indeed, consider the following
example: coffee shops 1, 2, 3, and 4 serve both cafe latte and cappuccino.
Shops 1 and 2 are in Agent's neighborhood, and she had the opportunity to
try both orders in each of them, both in the morning and in the evening.
Shops 3 and 4 are in a different town, and probably bear little resemblance to
either 1 or 2. So far Agent has only tried the latte in 3 in the afternoon (A),
and the cappuccino in 4 at night (N). Both resulted in high-quality coffee.
The next afternoon she is in shop 4, trying to decide what to order. Based on
her experience, both acts are likely to have a positive U-value. Yet, Agent
may still distinguish between them depending on her similarity function. If
she puts more weight on the time of the day, the latte, which was successfully
tried in the afternoon, is a more promising choice; if, however, she tends to
"believe" that similarity is mostly determined by the shop, she should
perhaps order cappuccino, as she did yesterday night in the same shop. Let us
now consider the following vectors (where empty entries denote zeroes):

act Problems
profiles M1 M2_ El E2 M1 M2 El E2 A3 N4

y -1 | 1 ] 1

w | —1 1 1 1
d -1 1 —1

In this example memory contains ten cases. It is convenient to think of
the ten problems as formally distinct; for instance, each may be uniquely
identified by a time parameter. However, in the table we suppress this
parameter and specify only the features of the problem which are deemed
relevant, namely the coffee shop and the time of the day.

We further assume that in each of the problems only two acts - "cafe
latte” and "cappuccino” - were available. The vectors x, y, z, w, and d are
"act profiles;" that is, they designate a conceivable history of an act. If the act
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was not chosen in a particular case, it is assigned a default "utility" value of
zero. If it was, it is assigned the actual utility that resulted from it in this case.

We would now like to consider the preferences between cafe latte and
cappuccino under two separate scenarios. In the first, the preference question
would reduce to comparing x and y, while in the second - to comparing :
and w. Suppose first that x is the act profile of "cafe latte” and y - of
"cappuccino.” Focusing on the first two rows in the table, the results obtained
in the first eight problems clearly indicate that it is the time of the day that
matters: all morning coffees were high quality, all evening ones were low
quality. Based on this "general observaticn,” Agent has learnt to appreciate
the crucial role of the time of the day, and she is unlikely to put too much
weight on the "night problem" N4 when making a decision in the afternoon.
Thus, she expresses a preference for x over y when faced with the problem
p=A4.

By a similar token, when comparing z and w, Agent concludes that the
shop is very important, but the time of the day does not really matter. Hence
she puts more weight on the experience in the same shop - problem N4 -
and decides to order cappuccino, i.e., she prefers w over z (for the same
decision problem p = A4).

It is easily verified that this preference pattern is inconsistent with U-
maximization for a fixed similarity function s. Indeed, for any such function
s,since z—x=w-y=d, we have

U)-Ux)=Uw)-U(y)=U(d)
from which we derive
Ux)-U(y)=U(z) - U(w).

That is, x is preferred to y if and only if z is preferred to w, in contradiction
to the preference pattern we motivated above. Thus second-order induction
may result in violations of the version of CBDT presented in Section 4.
Similar examples may be constructed, in which the violation of U-
maximization stems from learning that certain values of an attribute are
similar, rather than that the attribute itself is of importance. That is, instead
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of learning that the coffee shop is an important factor, Agent may simply
learn that coifee shop 1 is similar to coffee shop 2.

One obvious drawback of the functional U which is highlighted here is
the fact that it is additively separable across cases. Specifically, second-order
induction renders the "weight" of a set of cases a non-additive set function.
Since several cases in conjunction may implicitly suggest a "rule,” the effect
of all of them together may exceed the sum of their separate effects.
Differently put, the "marginal contribution" of a case to overall preferences
depends not only on the case itself, but also on the other cases it is lumped
together with. For instance, a utility value of 1 in problem M1 has a different
effect when coupled with the value 1 in problem E1 (as in vector z) than it
has when coupled with the same value in M2 (as in x).

A possible generalization of additive functionals which may account
for this "non-additivity” involves the use of non-additive measures, where
aggregation of utility is done by the Choquet integral. (Choquet (1953-4). See
also Schmeidler (1989), who introduced this technique to decision making
under uncertainty.) However, it should be noted that when second-order
induction takes place, it is not only the case-additivity assumption which is
being challenged. With similar examples one may convince oneself that the
very assumption that preference between acts is determined solely by their
"act profiles” may fail in the presence of inductive learning of the similarity
function. For instance, consider a matrix as above, where the acts chosen in
the first eight problems were neither "cafe latte" nor "cappuccino,” but rather
two different ones, which yielded the results given by the table. Agent would
still draw the same general conclusions about the relative importance of the
two attributes of a "problem,” and her preference between the latte and the
cappuccino would thus depend on all of her memory, including the act
profiles of other acts. In particular, second-order inductive reasoning is one
plausible example in which case-based preferences do not necessarily satisfy
"independence of irrelevant alternatives.” That is, the preference between
two acts may change when other acts are introduced into the choice set, even
if the latter are considered "worse choices" than both of the former.

To sum,.CBDT as presented in Section 4 is a rather sketchy "first
approximation;” for many problems of interest the formula U should be
interpreted so as to allow the similarity function to depend on all of the
decision maker's memory.
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7. Learning and Expertise

In this section we survey the implications of our model to the process
of learning and the definition of the notion of "expertise.”

A case-based decision maker learns in two ways: first, by introducing
more cases into memory; second, by refining the similarity function based on
past experiences. By learning more cases, our decision maker ("Agent”)
obtains a wider "data base" for future decisions. This process should generally
improve her decision making. Of course, the cases learnt may be biased or
otherwise misleading; yet, one may expect that, as a rule, and barring
computational costs, the knowledge of mcre cases leads to a "better” first-
order induction as embodied in case-based decision making.

This improvement of the first-order induction may be viewed as
"quantitative.” That is, to the extent that CBDT performs implicit first-order
induction, it does so even with a meager memory. Thus the introduction of
more cases does not change first-order induction in a fundamental or even
qualitative way; it does so only quantitatively. (The term "quantitative” may
be misleading, since memories are only partially ordered by inclusion; but the
addition of cases has a flavor of "more of the same.”) On the other hand,
second-order induction may be viewed as a qualitative improvement of first-
order induction. That is, refining the similarity judgment introduces a new
dimension to the process of learning. Rather than simply knowing more, it
suggests that a better use may be made of the knowledge of the same set of
cases.

Knowledge of cases, which we may dub "type I knowledge," is
relatively "objective." Though cases may be construed in different ways,
there seems to be relatively little room for dispute about them, since they
purport to be "facts.” By contrast, knowledge of the similarity function, which
we refer to as "type II knowledge," is inherently subjective. Correspondingly,
it is easier to compare people's type I knowledge than it is to compare type II
knowledge. While even knowledge of type I cannot be easily quantified, it
does suggest a clear definition of "knowing more,” namely, having a memory
which is larger (as defined by set inclusion). On the other hand, it is much
more difficult to provide a formal definition of "knowing more" in the sense
of "having a better similarity function.” It seems that what is meant by that is



a similarity function which resembles that of an expert, or one which in
hindsight can be shown to have performed better in decision making.

The two roles that rules may play in a case-based knowledge
representation system correspond to the two types of knowledge, and to the
two levels of induction. Specifically, the first role, namely to summarize
many cases, may be thought of as succinctly providing knowledge of type L
Correspondingly, only first-order induction is required to formulate such
rules: given a similarity function, one simply lumps similar cases together
and generates a "rule."* By contrast, the second role - drawing attention to
similarity among cases ~ may be viewed as expressing type II knowledge.
Indeed, one needs to engage in second-order induction to formulate these
rules: it is required that the similarity be learnt in order to be able to observe
the regularity the rule should express.

These distinctions also allow us to define the concept of "expertise.”
What is expertise? What makes one an expert in a given field? How can
expertise be learnt? Our answer is that expertise also has two aspects. First,
being an "expert” in any given field typically involves a rich memory, the
acquaintance with many cases, or, in short - knowledge of type I. However,
an expert can also do more with the same information. That is, (s)he has a
more "accurate” and/or more "sophisticated" similarity function, and in our
terminology - possesses "more" (or "better") knowledge of type II.

These distinctions may also have implications for the implementation
of computerized systems. A case-based expert system would typically involve
both types of knowledge. The discussion above suggests that it makes sense to
distinguish between them. For instance, one would like to separate the
"hard,” "objective” type I knowledge that may be learnt from an expert from
the "soft” and "subjective" type II knowledge provided by the same expert.
The first is less likely to change than the second. Furthermore, one may wish
to use one expert's knowledge of cases with another expert's similarity
judgments.

As a final remark, we would like to draw the reader's attention to the
fact that even in the presence of second-order induction, case-based
knowledge representation incorporates modifications in a "smooth" way.
That is, one may sometimes wish to update the similarity values; this may

4 Notice, however, that this is first-order explicit induction, i.e., a process that
generates a general rule, as opposed to the implicit induction performed by CBDT.



lead to different decisions based on the same set of cases. But this process does
not pose any theoretical difficulties such as those entailed by explicit

induction.
8. Concluding Remarks

8.1  We started out by enumerating three major theoretical problems that
induction raises. Out of the three, two are solved, or rather obviated, by
CBDT: (i) since explicit induction is not done, there is no need to justify it;
and (iii) in the absence of unwarranted generalizations, there are no
inconsistencies to deal with.

However, problem (ii) disappeared only to re-appear in a different
guise: when we avoid induction we need not ask how it is done; but the
specification of the similarity function basically poses the same question in
the language of CBDT. Indeed, if a similarity function over cases is given, the
problem of "How to induct?” or, "What aspects of a given case should be
generalized?" becomes much easier to solve.

As mentioned above, we do not purport to provide any general
insights into the question of "Similarity — Whence?”. From a descriptive
point of view, this problem is studied in the psychological literature. (See
Tversky (1977), Gick and Holyoak (1980), and Gick and Holyoak (1983), among
others.) Taking a normative approach, answers are sometimes given in
spedific domains in which "cases" are an essential teaching technique (such as
law, medicine, and business).

At any rate, we believe that the language of CBDT may also be helpful
in dealing with the similarity problem. In particular, second-order induction
— as defined in the context of CBDT - may provide some hints regarding the
evolution of similarity judgments.

8.2  One may ask, is it indeed the case that all decision-relevant knowledge
involves decisions? For instance, suppose that you want to buy a new car,
and you know a general rule, by which last year models are offered at
discounted prices when new models arrive. This seems extremely relevant
knowledge, yet it does not involve any dedsion.

As we argue in Gilboa and Schmeidler (1992), however, one need not
take too narrow a definition of a "case." First, the cases in one's memory
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need not necessarily be one's own personal experience. Thus, it suffices to
have a friend who happened to have bought a new car after the next year
models have arrived, to conclude that "wait" may be a smart decision.
Secondly, some of the cases one uses may be hypothetical. In fact we argue
that any knowledge, in as much as it pertains to the decision to be made, may
be translated to a hypothetical case. While this representation raises again the
issue of efficiency and parsimony, it still avoids the pitfalls of induction.

"o

8.3  We divide a case into three, the "past,” "present,” and "future" of the
decision. Since the "past” should reflect what is known to the decision maker
at the time of decision, it is actually a "subjective” past; that is, the description
of a decision problem does not contain facts which are not known to the
decision maker, even if they are known to, say, an outside observer.

However, when the decision maker learns of such facts, one faces a
choice: to incorporate them into the description of the case, and to refine the
similarity judgment accordingly, or to refrain from doing so, in the hope that
truly similar cases will be encountered in the future with a similar level of
(lack of) information.

While the second approach appears to be more consistent, it may
sometimes be "rational” for one to change the description of past problems if
one has become aware of certain features one had ignored before. Specifically,
if it is likely that in the future these features will be observed in new
problems, it makes sense to change one's memory by noting the same
features in the previously-encountered ones.

84 In the discussion of knowledge representation, our main focus is on
that "knowledge" used by people (or machines) in everyday situations.
However, one may ask to what extent the case-based model applies to the
representation of scientific knowledge, or even mathematical knowledge.
Starting with the latter, we agree with Riesbeck and Schank (1989) that
a mathematician's knowledge and reasoning technique is most accurately
represented by case-based reasoning. Ideas and solutions are considered
"creative" precisely when they cannot be generated algorithmically, that is
when the knowledge base they rely on does not contain a wide enough array
of obviously-similar cases to induct rules from. Indeed, an idea is "creative”
if it does not resemble any known case, or if it relies on original analogies. In
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other words, creative thinking requires originality either in the (hypothetical)
cases considered (corresponding to type I knowledge) or in the similarity
function (i.e., type II knowledge).

On the other hand, the product of a mathematician's work is almost by
definition in the form of rules. Mathematicians are, by and large, interested
in producing theorems, or, at most, counterexamples to conjectured ones.
Thus the "mathematical knowledge,” the accumulation of which is,
supposedly, the "aim” of mathematicians, is closer to rules than it is to cases.

When it comes to the sciences, an expert's knowledge is probably best
described, as in mathematics, by cases. The product of the scientific work, it
would seem, is generally expected to be in the form of rules. However, the
degree to which this partly-implicit goal is achieved varies. Generally it
appears that in a simple enough environment, which allows for many
almost-identical cases to be observed, rules are indeed formulated. But when
the environment tends to be unique, scientific knowledge may also take the
form of a collection of cases.

CBDT being a scientific theory, one can hardly fail to ask how it applies
to itself. Indeed, it does attempt to be a general, rule-style theory, describing
decision making and knowledge representation at large. Thus, to the extent
that it fails, its failure should be taken as proof of its virtue. (On the other
hand, if it happens to be a valid description of reality, it is not refuted; rules
which happen to be "true" can be translated back to the collection of cases
from which they were derived in the first place.)

8.5 While our main interest is in the theoretical aspects of knowledge
representation, we would like to note that case-based models need not be
impractical. Indeed, rules appear to be much more efficient than the cases
from which they were originally derived. Yet one need not actually program
each and every case into memory. For instance, repeated cases may be
represented by higher similarity values, thus saving both memory and
computation time.

8.6 Throughout the discussion above we confronted cases with "rules.”
One may argue that, while rules cannot be known, they can be believed to a
certain degree. That is, we may adopt a Bayesian approach, according to
which rules are assigned probability values.



Formulating rules to be believed (rather than known) still raises
problem (ii), namely, how do induct. Yet it alleviates problems (i) and (iii):
since rules are not taken to be certainties, the Bayesian approach is not subject
to Hume's criticism. Furthermore, this approach copes with belief-revision
quite elegantly as long as no zero-probability event occurs. However, it
suffers from other weaknesses, which were the original motivation for the
development of CBDT. As these issues are discussed at length in Gilboa and
Schmeidler (1992}, we ignore them here.
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