A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Gilboa, Itzhak

Working Paper

Hempel, Good and Bayes

Discussion Paper, No. 1045

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Gilboa, Itzhak (1993) : Hempel, Good and Bayes, Discussion Paper, No. 1045,
Northwestern University, Kellogg School of Management, Center for Mathematical Studies in
Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/221402

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal

Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/221402
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 1045

HEMPEL, GOOD AND BAYES’
by

Itizhak Gilboa™

May 1993

"I wish 1o thank many people for conversations and correspondence which moltivated and influenced this note. In
particutar, I would like to mention Ilan Eshel, Peter Gardenfors, Eva Gilboa, Shlomo Gilboa, Sergiu Hart, Isaac Lewi, Eric
Maskin, Roger Myerson, Ady Pauzner, Judea Pearl, Dov Samet, David Schmeidier, Teddy Seidenfeld and Bob Wilson.

“KGSM-MED& Northwestern University, Leverone Hall, Evanston, II. 60208,



Abstract

This paper analizes some decision/belief paradoxes from a Bayesian
viewpoint, focusing on Hempel's "paradox of confirmation" and Good's
variation of it. It is showvn that a straightforward Bayesian analysis resolves the
paradoxes discussed. These examples are used to support the view that what the
Bayesian paradigm does best is to provide a coherent and intuitive
representation of belief.

An Apology

At this point of time it is not entirely clear to me how much of the
following analysis has previously appeared in print. Needless to say, 1 will be
grateful for relevant references.



1. Introduction

The "Bayesian paradigm" is a somewhat loosely-defined term. By all
accounts, it is based on the idea that any uncertainty should be represented by a
probability function (a "prior"), which is to be updated in face of new
information according to Bayes' rule (to obtain a "posterior”.) In the context of
decision theory or any application thereof, it is often taken to also imply that
decisions are, or should be made so as to maximize expected utility. At times,
the "Bayesian paradigm" is also interpreted as prescribing a "rational” way to
define the state space, on which probability is defined.

In this paper, the "Bayesian paradigm" (BP) will refer only to the aspects
of this approach which relate to belief representation and update, ignoring the
decision-theoretic side. However, as far as beliefs are concerned, we will take a
broad interpretation of BP, and, in particular, assume that when it is used, the
set of states-of-the-world is defined to be all logically-consistent functions from
propositions to truth values, where the set of propositions is assumed to be rich
enough to describe all conceivably-relevant aspects of the situation modeled.

While BP enjoys the status of a dominant paradigm in economic,
decision and game theory, it is by no means free of criticism. Descriptively
interpreted, there is ample evidence (both behavioral and cognitive) that the
commands of the Bayesian paradigm are consistently violated. From a
normative viewpoint, BP is also sometimes criticized as impractical or even
useless.

The author of these lines shares many of the concerns regarding the
universal applicability of the Bayesian paradigm. However, there is one thing
which BP seems to do very well, probably better than any other approach:
providing a tool for coherent and intuitive qualitative representation of beliefs.
(Unfortunately, BP may also do this better than anything else it is used for.)
That is, if one is to think clearly about a problem which relates to beliefs and
their update, and if one is guaranteed not to be called to actually quantify the
beliefs in question -- the Bayesian paradigm is a highly recommended tool. It
may not be as useful when used as a descriptive theory of belief formation and
update; it may well prove useless if actual priors are to be specified; but it can
boast stellar performance when it comes to resolving confusion.



The failures of the Bayesian paradigm will not be discussed here. The
purpose of the following sections is to convince the reader of the strength of BP
as a tool for qualitative reasoning. To this end, we will discuss a few well-
known paradoxes in the philosophy of science, and show that they fail to
embarrass the Bayesian.

The analysis of these paradoxes does not take any originality of thought.
On the contrary, the Bayesian "resolutions” of these paradoxes is arrived at by
an almost-algorithmic process. All that is needed is to follow the steps in the
(unwritten) cook-book of the Bayesian cuisine, and the alleged problems
dissolve.! But this lack of originality is precisely the point of this paper: the
Bayesian paradigm is successful enough not to require innovative adaptations
or ad-hoc modifications in order to deal with some well-known and widely-
discussed puzzles.

The rest of this paper is organized as follows. Section 2 attempts to clarify
the notions of "paradox” and "resolution” as used in this context. Section 3
deals with Hempel's "paradox of confirmation" ("The Ravens Paradox".) In
section 4 we discuss a variant of it, introduced by Good. Section 5 briefly
discusses the behavioral version of Newcomb's paradox, and the "Monty Hall
Paradox". Finally, section 6 concludes.

2. Paradox and Resolution

Since the rest of this paper deals with various "paradoxes”, it may be
helpful to define the relevant terms at the outset.

A paradox can be thought of as a logical inconsistency of a set of axioms,
in which one believes or to which one is psychologically attached. One of the
greatest paradoxes in the history of mathematics is considered to be the fact,
known to the Greek mathematicians, that /2 is an irrational! number. The
axiom that all real numbers are rational was inconsistent with other axioms
implying the above (including the fact that there is such a thing as +/2.) This
could have been a source of great puzzlement and even distress to anyone who
believed in all of them simultaneously. Naturally, we have no reason to be
embarrassed by this contradiction today, since we do not have any attachment

1 As discussed below, however, "the Bayesian paradigm” as we know it
today may have been refined thanks to some of these paradoxes.
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to one of the problematic axioms, i.e., we learned to accept the fact that some
real numbers are not rational.2

Obviously, this definition of a "paradox" is inherently subjective and
quantitative. What is paradoxical to some will not be paradoxical to others.
Further, some puzzles may be "more paradoxical” than others, depending on
the degree of "belief" in or "psychological attachment” to the axioms involved.
Since both these features -- subjectivity and fuzziness -- seem to be in
agreement with the everyday usage of the word, we view them as merits, rather
than flaws, of this definition.

While any proposition may serve as an "axiom" in a mathematical
context, in science one may wish to distinguish between "axioms" which reflect
some intuition and, say, propositions which describe data. For the purposes of
the present discussion, we would like to exclude the latter from the set of
axioms considered. Thus, if a theory one likes happens to be refuted by
observations, this will not qualify as a "paradox” in this paper. (Note that we
may part here from the popular usage of the word.)

However, it is not entirely clear how one can exclude observations and
retain intuition. It is the author's belief that intuition is an integral part of the
observations one attempts to explain by a scientific theory. In particular, for
much of the social sciences it seems unarguable that data obtained by
introspection are legitimate as well as indispensable.

Thus, if we consider, for instance, the "Allais Paradox" (Allais (1953)) in
decision theory, it does not qualify as a "paradox" based on the experimental
work in which it was tested, but it may still be a "paradox" as a "mind-
experiment”, that is, to the extent that one feels that the "right" choices in the
described experiment violate the postulates of expected utility theory.

Yet our discussion will be more fruitful if we draw a line between
"paradoxes” and "refutations”. We will attempt to make this distinction, again,
in a fuzzy and subjective way: in a "paradox" the contradiction is obtained from

2 I learnt both this example and the general point regarding the socio-
psychological nature of paradoxes from Ilan Eshel. (In an undergraduate course
in mathematical genetics, Tel-Aviv University, 1981-2.) I will be grateful for
relevant references.



axioms which are "generally intuitive”; in a "refutation”, by contrast, axioms of
this nature are contradicted by "specific examples."

Having a rough idea of what we mean by a "paradox”, we may now ask
what is a "resolution”. There are several ways in which a paradox may be
resolved; indeed, one may classify paradoxes (ex post) by the resolutions they
call for.

First, it may be the case that, sad as it is, the paradox is "real" in the sense
that it points out a true incompatibility of axioms with clear formal (or easily
formalizable) content. In this case, indeed, one has no choice but to give up, or
at least weaken some of the axioms. The example given above, in which the
axiom that every real number is rational was eventually renounced, seems to
be of this nature.

On the other hand, one may find, upon careful inspection, that the
contradiction does not exist after all, and is simply a result of a plain
mathematical mistake. This case of a "spurious" paradox is hardly of great
interest, but it is an important benchmark.

Finally, there are many paradoxes which are neither "real” nor
"spurious”, since the axioms which they rely on are not precisely formalized.
This seems to be the case with many of the more interesting paradoxes, and
sometimes also the more instructive ones. A "spurious” paradox may serve, at
best, as a nice puzzle; a "real" one forces us to discard some axioms so as to
make our beliefs consistent. But a paradox which points at an ambiguity in the
language in which the axioms are formulated very often opens new horizons.
Russell's paradox, and more generally, the family of paradoxes relying on self-
reference, are, of course, "instructive” in this sense.

Furthermore, many of the interesting (and "instructive") paradoxes
hinge on some beliefs (or axioms) which one is not aware of until attempting to
"resolve” them. For instance, Goodman's paradox (Goodman (1965)) may be
interpreted as showing that the notion of "simplicity” is intrinsically language-

3 Allais' paradox may still qualify as a "paradox” to the extent that one
feels it captures more general intuition. That is, if one believes, say, that the
"certainty effect” (Kahneman and Tversky (1979))is a generally acceptable
principle, while entertaining a similar belief regarding the tenets of expected
utility theory (von Neumann and Morgenstern (1944)), one is indeed faced with
a contradiction of fundamental intuitive principles.



dependent. This is quite surprising when encountered for the first time. Yet
most people would not be aware that they implicitly assume the contrary until
faced with Goodman's example (or a variation thereof.) Similarly, most people
tend to believe that all seemingly-meaningful propositions are indeed
meaningful and can be assigned truth values in a consistent manner; but they
would not be aware of it until encountering some version of the "liar's
paradox".

From the above it follows that a "resolution” to a paradox may consist of
some combination of the following: (i) checking the mathematical proof of the
contradiction carefully; (ii) spelling out the intuitive but implicit assumptions,
and formalizing them to a certain degree of clarity; and finally (iii) discarding
some of the basic axioms.

The subjective nature of paradoxes and the fact that their resolutions
may involve formalization of hidden assumptions imply that there are many
ways to skin a paradox. In the following we will therefore describe each paradox
in a verbal, informal way, and then focus on one of its aspects which seems the
most intriguing, or the most challenging to a theory of belief representation. It
goes without saying that the focus is subjectively chosen. Indeed, in most cases
the account of the paradox given here, as well as the "focus", will differ from
the original ones. Whenever the differences are intentional, they will be
commented upon.

3. Hempel's Paradox

The following account, though taken out of context, is fairly faithful to
Hempel's original example (Hempel (1945,1966)):

Story

Suppose we wish to test the rule/law/hypothesis that all ravens are
black. A procedure that seems acceptable to all is to randomly select ravens, and
check each one of them for blackness. One counter-example would, of course,
suffice to refute the rule. On the other hand, the general rule will never be
proven by examples. However, the more ravens we test, the stronger is our
belief in the truthfulness of the general rule, should they all turn out to be
black.



Notice that "all ravens are black” is logically equivalent to "all that is not
black is not a raven,” or simply "all non-blacks are non-ravens." Thus one may
test the latter rule rather than the original one. And by the same methodology,
one may randomly select non-black objects, test them for "ravenhood", and
then either refute the rule or increase its plausibility.

From here to embarrassment the way is short. Pick a non-black item
from your desk, or consider a red herring. As a non-black object, it qualifies for
the sample; as a non-raven, it should lend support to the rule tested. Yet it
seems patently absurd to use such evidence to confirm the blackness of ravens.

Focus

The rule discussed is of the form (Vxe A)(Q(x)) for some proposition
Q(x). In this case, A is some set of objects, and Q(x) is an implication of the type
R(x) — B(x), where the predicate R(x) is interpreted as "x is a raven" and B(x)
-- as "x is black." Equivalently, Q(x) may be written as —B(x) - —R(x).

A positive example is an element ae€e A such that Q(a4) holds. The
implicit assumption we would like to focus on is that positive examples
confirm the rule, i.e., that having observed a positive example, our belief in the
general rule increases.

Since the exercise discussed has to do with hypothesis testing, sampling
and belief, we find it natural to discuss it in statistical terms. Furthermore, we
would like to focus on Bayesian statistics, and will attempt to show that the
Bayesian paradigm offers a natural resolution to the paradox. Thus we assume
that there is a prior probability measure, which has a value

P((Vx € A)Q()) = py
and is updated to

P((Vx € A)(Q()| Q@) = p,

for some ae A.

The precise meaning of "the rule is confirmed by the positive example”
will turn out to be crucial. Let the weak confirmation axiom state that p, 2 p,
and the strong confirmation axiom -- that p, > p,.



Resolution

It is easy to see that the weak confirmation axioms can not be violated by
the Bayesian paradigm. Indeed, assume for simplicity that A is finite, and
|A|= n. (The finiteness assumption is immaterial. For countable sets the analysis
is identical; for uncountable ones -- identical up to measurability constraints.)
Assuming that the only relevant aspects of the world are the ravenhood and
blackness of the objects in A, define the state space to be

Q={o|o:a-{01}}.

For weQ and ae A, w(a)=(v,,v,) should be read as follows: at w, the
object a is a raven iff v =1; it is black iff v, =1. Thus the rule (Vxe A)Q(x))

corresponds to the event

Q:{wte Vx e A, OJ(X)?*(LO)}-

Hence, ©Q contains 4" states of the world, out of which 3" arein Q.
For every ae A, define an event

Q, ={w € Q| o(a)#(1,0)}.
Thus

e=1_0. and 0,20 forall ae A.

It is therefore a trivial observation that the Bayesian paradigm cannot
violate the weak confirmation axiom:

PONO) _ PQ) , pioy
PQ)  P@)"

P(o] 0.)=

Yet there is no reason to expect it to satisfy the strong confirmation
axiom, which would require a strict inequality above.



At this point we have clarified what could be meant by a "confirmation”
of a rule. We note that the story above does not suggest that the weak
confirmation axiom is violated: testing a red herring may not increase the
plausibility of all ravens being black, yet it would not decrease it either. Thus, if
one only believes in the weak confirmation axiom, the Bayesian analysis poses
no problems.

On the other hand, those who believe in the strong version of the axiom
are still troubled, and they may wish to renounce the Bayesian paradigm before
they discard this axiom. In the next few paragraphs we attempt to convince the
reader that the strong confirmation axiom does not make much sense in
general, nor, indeed, in the red herring example.

Consider the following story: an ornithologist who wants to test the rule
mentioned above goes out to the field and observes a raven, who happens to be
black. So far, it seems that we finally have a reasonable ornithologist for a
change. However, after this successful observation, our scientist stays put and
observes the same raven again. And again. By the end of the day, (sthe writes a
paper, reporting 1000 observations of ravens, all of which happened to be black,
thus strongly supporting the claim that all ravens are black.

It seems obvious that the number 1000 is misleading here. After all, what
additional information was gained from the second observation on? Note that
the issue here is not merely one of quantitative difference: it is not only the case
that 999 new ravens would be more convincing that 999 additional
observations of a known raven. The difference is qualitative: observing the
same raven again does not add anything to our belief in the rule. (Of course, we
assume here that ravens do not change their color at some point of time. One
paradox at a time.) More generally, when we condition on event which is
already known, our beliefs naturally do not change. (This, of course, is captured
by the Bayes' update formula.)

The red herring example is quite similar: if we know that an object a is a
herring, we already have P(Q,) =1. That is, we assign zero probability to the
event that this object will turn out to refute the general rule, simply because we
know that this object is not a raven.

It is sometimes argued that testing the counterpositive of a rule cannot
lend support to the rule itself. We argue that what makes a red herring a
preposterous example is not that it is not black (i.e., that the counterpositive is
tested,) but rather that it is known not to be a raven. To see this point, assume



that the non-black object tested may be a raven with some probability. In this
case, finding out it is not a raven after all does indeed increase our belief in the
rule. For instance, assume we cannot really tell which birds are ravens and
which are not. We choose 1,000,000 non-black birds at random, and take them
to an ornithologist for an examination. The next day, the expert tells us that
none of the birds we brought was a raven. In this case, it seems very plausible to
strengthen our belief that all ravens are black.

It follows, then, that there is nothing wrong with representing the rule Q
by its counterpositive, and this does not seem to be the problem. Indeed, the
Bayesian paradigm does not distinguish between different propositional
representations of the same event.

To sum, in a Bayesian analysis the belief in the rule cannot decrease as a
result of observing a positive example; furthermore, for the observation of any
positive example which is not already known the ex-post belief in the rule will
be strictly higher than the ex-ante one. It is only when we condition on known
facts that the Bayesian paradigm violates the strong axiom of confirmation.
Indeed, violating this axiom in those cases seems to be a great virtue of BP.

Comments

. The Bayesian paradigm is also criticized for failing to satisfy one of
Hempel's axioms of confirmation, namely, that if B implies C and A is a
confirmation of B, then it should also be a confirmation of C.

The intuitive appeal of this axiom is, as always, a matter of potential
dispute. Some people (like the author), would start reasoning about it in
Bayesian terms from the outset, concluding that it does not make much sense.
Those who wish to retain it will, indeed, have to renounce the Bayesian
paradigm.

In an attempt to convince the reader that the BP should be retained at the
expense of the above axiom, let us consider a simple example. Suppose that
people are divided into three categories: "dumb”, "normal” and "smart". Most
of the people are normal, and there are dumb and smart people in similar
frequencies. Let us say the proportions are 1%-98%-1%.

Let A be the event (or proposition) that a certain individual (say,
randomly selected) is unusual, i.e., not normal. Let B stand for "the individual
is smart" and C - for "the individual is not dumb." Obviously, B implies C. A



does seem to "confirm" B -- if the individual is unusual, it is much more likely
that (s)he is smart than it was a priori. Yet A does not lend support to C: an
unusual individual is not more likely to be "not dumb.”

Of course, the above example is couched in almost-Bayesian terms, and
may thus seem far from a "fair" test of the axiom's plausibility. Yet, in order to
accept the axiom, one would like it to be applicable also in those situations
where relative frequencies in a certain population are indeed given.

Furthermore, this example highlights a fundamental difficulty with the
axiom: if B implies C, but is not equivalent to it, it is not clear that a
confirmation of the former should amount to a confirmation of the latter as
well. As in the example above, B may be only one way in which C may hold,
and not necessarily the most plausible way. If B becomes more plausible, but C-
and-not- B does not, it is not entirely obvious that C should indeed be more
likely. Needless to say, if B and C are equivalent, their plausibility, according to
a Bayesian model, will always be identical.

One of the advantages of the Bayesian paradigm which is exemplified
here is that it forces one to "close” the model. Any question of the type "what
if?" has a counterpart, "and what if not?", which pops up in Bayes' formula.
This can be extremely annoying if one is to estimate actual probabilities. Indeed,
it may render BP useless in some applications. But for qualitative reasoning it
seems to be intuitively appealing, as well as inevitable for consistency.

. There are, of course, many other resolutions to Hempel's paradox. For
instance, it has been argued that the probabilities involved are only conditional
ones, and that there is no room for the "probability of the rule" as such. This
seems unduly restrictive: why can we not assign a probability to a well-defined
proposition? How do we quantify our belief in various theories?

Alternatively, one may restrict one's attention to a model in which only
ravens are considered to begin with. In this case, one deals with conditional
probabilities, but the conditioning is not done within the model. Similarly, it is
not clear how one can combine a theory of ravens with one of nightingales.

. A common reaction to the paradox is that there are many more non-
black things than there are ravens, hence it does not make sense to test non-
black objects rather than ravens. This seems to miss the main point; if it were
only a matter of quantitative difference, testing a red herring would have been
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inefficient, but not as ludicrous as it is in this example. The absurdity of the red
herring stems from the fact that there is no uncertainty about the result of this
test. Namely, it is the qualitative difference between certainty and uncertainty,
or between weak and strong inequalities, that drives the paradox.

. The analysis presented above does not necessitate a Bayesian approach.
Indeed, one may make a similar argument without explicit reference to
probabilities: since we know at the outset that a red herring is not a
counterexample to the rule, testing it and realizing that, indeed, it does not
contradict the rule should lend no additional support to the latter. However,
the main point of this example is that the Bayesian Paradigm implies this
analysis. That is, while one may or may not notice the above subtlety using
other approaches, the Bayesian paradigm forces one to spell out subjective
probabilities, and one cannot evade the distinction between what is known
(with probability 1) and what is believed (with probability smaller than unity.)

. Hempel (1945) stresses the importance of background knowledge, i.e., of
all the things we know while we get additional evidence. He argues that "... if
we are careful to avoid this tacit reference to additional knowledge... the
paradoxes vanish." (p. 20) Thus he prefers to hold to some version of the
"strong confirmation axiom” by hypothesizing a state of knowledge in which
additional information is disallowed. Indeed, his belief that a confirmation of a
hypothesis should be a confirmation of any implication thereof, is in line with
ignoring all "additional knowledge."

The Bayesian Paradigm does exactly the opposite: by assuming a prior
belief over all states of the world, any relevant knowledge is already
incorporated into it. Thus, in the Bayesian analysis it does matter whether the
result of the experiment is already known, and a hypothesis need not be
supported by any evidence that supports a stronger hypothesis.

‘The advantage of the Bayesian paradigm as a model of qualitative
reasoning about uncertainty is two-fold: from a descriptive point of view, it
reflects people's reasoning even when background information does exist, and
can deal with the actual state of knowledge, not only a hypothetical one; from a
normative viewpoint, it forces one to think about all the relevant aspects of the
problem.

11



4. Good's Paradox

Good (1967; 1968; 1986) has suggested a variation of Hempel's paradox.
The following is a simplified version of Good's paradox which highlights the
issues discussed above.

Story

Consider a "population” containing two items. It is known that one of
the two holds: either both items are red herrings, or both are ravens, in which
case one is black and one is red. Let us suppose, for simplicity, that both
possibilities are equally likely. Hence the prior probability of the rule "all ravens
are black” is 50%, since it holds true in the herring population but does not
hold in the raven population.

We are now told that item 1 is a black raven. It follows that the
population consists of ravens, in which case the posterior probability that "all
ravens are black" has decreased to 0.

Focus

In the context of the discussion of Hempel's paradox, it appears that the
Bayesian paradigm fails to satisfy the weak confirmation axiom after all: in face
of a positive example, the posterior probability of the rule is lower than its prior
probability.

Resolution
Borrowing the notation from section 3, for A ={1,2}, we recall that
P(Q|0)2PQ),

that is, the fact that item 1 does not contradict the rule cannot lower the latter's
probability. How is this reconciled with the fact that this probability has
decreased to zero?

The resolution lies in a careful reading of the phrase "item 1 does not
contradict the rule." What this amounts to is "item 1 is not a non-black raven.”

12



This does not imply that item 1 is a raven at all. Thus, the information that
item 1 is a black raven may be decomposed into two distinct pieces of
information: (i) item 1 is not a counterexample to the rule; and (ii) item 1 is a
raven. Indeed, (i) does not lower the probability that all ravens are black. It is
the second proposition which tells us we are dealing with the raven
population, for which we know the rule does not apply.

It may be helpful to spell out the states of the world in this example. (It
may also be completely redundant; the reader is welcome to skip the rest of this
sub-section.) Having two items, we have 16 states of the world, each of which
specifies for each of the two items one of the four possibilities: the item is a
black herring (BH), black raven (BR), red herring (RH) or red raven (RR). The
prior probability we stipulated can be represented by the following table:

item 2
BH
item 1 BR
RH
RR 0.25

(where blank entries denote zero probability.) For the raven population, it is
assumed here that items 1 and 2 are equally likely to be the red (hence also the
black) raven.

The event "all ravens are black" (denoted by Q above) consists of the
shaded 3 x3 northwest matrix. Its prior probability is 50%. The event "item 1
does not contradict the rule” is represented by the top three rows. Indeed, given
this event alone, the posterior probability of Q is 2/ , i.e., larger than the prior.

However, given that item 1 is also a raven, it becomes zero. Furthermore, this
latter piece of information suffices: the event "item 1 is a raven", which is
represented by rows 2 and 4, leaves zero probability on the shaded area.

To conclude, what decreases the probability of the rule "all ravens are
black" is not the positive example per se; it is additional information, which
does not follow from the positive example.

13



Comments

. Good's original point is that, contrary to common belief, "a hypothesis of
the form all A's are B's is supported by seeing an A that is a B." (See Good
(1986).) Of course, his example proves this point. Furthermore, it is indeed very
intuitive that "seeing an A that is a B" would confirm the general law. Thus,
Good's paradox is "real” to the extent that one happened to believe in this
axiom.

The point we would like to stress here is that "seeing an A thatisa B" is
more than merely seeing a positive example. Thus Good's point does not relate
to confirmation-by-positive-examples as such; rather, it deals with a natural
fallacy which has to do with the linguistic representation of the rule more than
with its essence.

Furthermore, Good's paradox emphasizes the advantage of the Bayesian
paradigm’s language: since it deals with events, rather than propositions, it is
less susceptible to "linguistic" fallacies. That is, using BP, one is forced to

identify "all A's are B's " with "all non-B's are non-A's" and with "there is no
A-and-not- B". Thus formulated, it is clearer that "item 1 is A and B" contains

more information than "item 1 is not a counterexample.”

. The resolution of Good's paradox suggested here hinges on the fact that
it does not take a raven to be an example of the rule "all ravens are black.” That
is, the fact that item 1 is a positive example of the rule does not imply it is a
raven, and this allows us to argue that it is not the positive example itself
which decreases the posterior probability of the rule.

Somewhat ironically, this is precisely the issue in Hempel's paradox,
namely, that a red herring is a positive example of the rule. The same logical
equivalence which seems to confuse us in Hempel's example comes to our
rescue in Good's story.

It follows that alternative resolutions to Hempel's paradox, which
renounce the equivalence principle, may have difficulties in dealing
simultaneously with Good's example.

. In the example above, the rule "all ravens are black" was vacuously true
of the herring population. However, this is not essential. As a matter of fact, in

14



Good's original example there are a few black ravens in this population. The
main point is, of course, the same.

5. Other Puzzles

In this section we analyze two paradoxes which deal with the way one
defines the state-of-the-world space.

5.1 Newcomb's Paradox

The original version of Newcomb's paradox involves an omniscient
being, capable of predicting one's decisions (see Nozick (1969).) The notion of
omniscience is a little too metaphysical for our purposes here. It is not clear
what does it mean for some other entity to "know" one's decisions, nor how
does one get to know that the "other mind" is indeed omniscient. It seems safer
to think of other entities as behaving as if they "knew" certain things, and to
entertain beliefs regarding such behavior. Correspondingly, we present here the
behavioral version of Newcomb's paradox, and we only attempt to resolve this

version within the Bayesian paradigm.4
Story

You are standing in front of two boxes, one of which is transparent, the
other -- opaque. The first contains $1,000. You know (or believe with probability
1) that the opaque one may contain $1,000,000 or nothing. The choice you are
faced with is to take only the opaque box, or to take both. Obviously, it seems
that the "right” choice is to take both boxes.

One more piece of information may be relevant: you are not the first
person to be in this situation. Actually, you are the last in a line of 10,000
people. Waiting patiently for your turn, you happened to notice that all your
greedy predecessors, who took both boxes, ended up with an empty opaque box,
i.e.,, with $1,000. On the other hand, all the modest ones, who took only the

4 I was introduced to this "behavioral" version of the paradox by David
Schmeidler.



opaque box (and let us assume there were quite a few), found the money in it,
and walked away happily with $1,000,000. Will you still take both boxes?

Focus

Those of us who still choose the two boxes probably do not find any
reason to be embarrassed. Let them skip to sub-section 5.2 with their $1,000. I
assume that T am left with those readers who, like me, would choose to behave
modestly. We are probably very rich now, but we are still not happy, since our
behavior troubles us: how come we are that irrational? It appears that taking
both boxes is a dominant act: whatever is the state of the world, you will have
$1,000 more by taking both boxes as compared to taking only the opaque one.

Choosing a strictly dominated act is a decision-theoretic problem; in and
of itself it does not pose any problem to a theory of belief representation.
However, as we shall see below, the analysis of choice in a Newcomb situation
is closely related to belief formation and update.

Resolution

The resolution to the behavioral version of the paradox is well-known,
and is reported here for the sake of completeness alone. (See Jeffrey (1965) and
"David's problem"” in Gibbard and Harper (1978).) The main point is that one
should not jump to conclusions. That is, one can never know for sure what
aspects of the world depend on one's actions. Thus, in order to avoid surprises,
one should take into account all possible "causal” relationships in the
formulation of the states-of-the-world.

Thus, analyzing the story above with two states of the world ("the
opaque box contains $1,000,000" and “"the opaque box is empty"), the very
formulation of the decision model implicitly presupposes that the box's content
is independent of one's choice. No matter how many other people one has
observed, this implicit assumption, because it is implicit, cannot be updated,
retracted or modified. When it is time to make a choice, taking both boxes
seems to be a dominant act in this 2-state model.

The "unprejudiced" approach, by contrast, will not presuppose that the
choice has no effect on the box. Thus, even though the story above made one
believe that the one million dollars are either there or not, when formulating
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the states-of-the-world model, one should allow for the possibility of double-
bottomed boxes, last-minute trickery and so forth. In short, one needs to have
four states of the world, which are functions from acts to outcomes.

Once there are four states in this problem, the dominance argument no
longer holds: there is one state at which the act "greedy" yields a payoff of
$1,000, and the "modest" one -- of $1,000,000. Furthermore, should every state
have some positive prior probability, and should the first 9,999 other people's
choices serve as valid data (namely, be considered as facing i.i.d. draws from the
same distribution over the states,) the posterior probability of this state may be
very high, rendering the intuitive choice perfectly "rational".

Comments

. In a sense, the lesson we learn from this example is that one should
make all assumptions explicit. Making an implicit assumption by omitting
some of the conceivable states of the world may be an irreversible error: from
that point on, nothing in the formal model may indicate that the assumption
may be wrong, and there is no way to revive the excluded states by a Bayes’
update. By contrast, if all conceivable states are present in one's model, the
model is at least rich enough to describe false assumptions which may be
implicit in the prior probability.

In the example we discuss, one may require that every state of the world
have positive probability. However, this is in general incompatible with the
requirement that all conceivable states be present in the model. Hence the
classical Bayesian paradigm cannot be applied in a completely "unprejudiced"
way. To be precise, the states of the world can be defined in a "canonical”,
"unprejudiced” way. But if there are uncountably many of them (as should be
in general,) the prior one starts out with puts some limitations on what one
may learn by Bayes' update. (See Blackwell and Dubins (1962).)

Yet, the moral of the story may still be applied in more restricted set-ups.
For instance, in the analysis of Newcomb's problem above, we discussed four
states of the world. These are by no means all the conceivable functions from
acts to outcomes, nor do they exhaust all the function from the set of acts to the
set of four outcomes described in the original story>. But they do suffice to

5 This set includes the payoffs of $0, $1,000 , $1,000,000 and $1,001,000.
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resolve the paradox and justify what appears to be the intuitive choice. Thus,
while it is admittedly inevitable that one would make some assumptions about
the world, the weaker they are, the less is one prone to paradoxical reasoning.

5.2 Monty Hall's Paradox

The TV show "Let's Make a Deal”, run by Monty Hall, bears some
relevance to our discussion here. In actuality it is more complicated than the
version we describe here, and should be analyzed as a game rather than a one-
person decision problem. However, this additional complication is irrelevant
to our purpose.

Story

You are a contestant in the show. You have to choose among three shut
doors, say A, B and C. It is known that one of them conceals a prize -- a car --
and the other two do not (they conceal goats.) For simplicity, we assume that all
doors are equally likely to conceal the car, and without loss of generality assume
you choose door A.

However, before the door is opened, the host (Monty Hall) has to open a
door, showing you whatever is behind it, and then to allow you to choose a
new door. Let us assume that the host has to open a door which is not the one
you have chosen, and not the one concealing the car. Say Monty Hall opened
door B, and you see a goat there. You can now decide to "stick" to your original
choice and bet on A, or to "switch" to the other unopened door, namely C.
What is your choice?

Focus

It is quite simple to see that the strategy "switch" wins the prize with
probability 23, and "stick" — with probability % What puzzles many people is
the following argument: the prior probability was % for each door. Now that
door B was flung open, one should update it and get a posterior of % for each

of the remaining doors. Why is "switching" any better than "sticking", then?
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Resolution

The resolution to this paradox is similar to the previous one. One simply
has to start out with the "right" states-of-the-world model. The "naive"
approach suggests modeling the situation with three states of the world,
depending on where the car is. With this model, it is perfectly true that "the car
is not behind door B" leaves the other two states equally likely.

However, this is the "wrong"” model for this situation since it makes an
implicit unwarranted assumption, i.e., that the way in which information is
acquired is irrelevant®. An appropriate model would take into account the
mechanism by which information is revealed. In this case, "Monty Hall opened
door B" implies that "the car is not behind B", but it says more than that.
Analyzing the problem in a 9-state model, where each state of the world
specifies where the car is, as well as which door Monty Hall opens, shows,
indeed, that the overall success probability of "switch” is %

Specifically, a 9-state model may be represented by the following matrix,
specifying the probability measure:

Monty Hall opens

A B C total
car A 0 P Y-a| 1K
is B 0 0 JA A
behind | ¢ 0 14 0 A
total 0 Yta | -« 1

In the above we assume without loss of generality that the contestant's
original choice was A. (The complete model would have 27 states to account for
the other possibilities as well.) It is also assumed that, if Monty Hall has a
choice, i.e., in case the car is actually behind door A, he opens doors B and C
with conditional probabilities of 3o and 1-3c, respectively, for some
ae[O,%]. For the symmetric case, ie.,, & =}/6, the conditional probability of

the car being behind door C, given that Monty Hall opened door B, is % Thus

6 This formulation of the moral of the story is due to Roger Myerson.
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it is indeed "optimal" to switch?. In the asymmetric case the conditional
probabilities (given that Monty Hall opened door B and given that he opened
C) will differ from 23, but "switch" will still have an overall % probability of
winning.

At any rate, the main point is that, once Monty Hall has flung door B
open, one should not condition on the first and third rows in the above matrix
(i.e., "the car is not behind door B.") Rather, one should condition on all that
one knows, that is, on the middle column ("Monty Hall opened door B"),
which, in particular, leaves zero conditional probability for the middle row.
Conditioning on the event "the car is not behind door B" simply does not
make use of all the information available, and, specifically, does not take into
account the very fact that this event is known.

Comments

. A relevant question is, when does one know that the model specified is
rich enough? Is it not the case that whatever one knows, one may still ask how
has one come to know it?

The answer to this seems to be simple: after incorporating the
information channels into the model, one is left with the immediate
experience of knowledge (or with "sense data".) However, if one's knowledge
satisfies the standard assumptions (known in modal logic as "S5"), and, in
particular, "the axiom of positive introspection,” one knows that one knows
whatever one knows. Thus, for a fact such as "the car is not behind B", one
may notice that one also knows "I know that the car is not behind B".
However, for the latter, adding the prefix "I know that..." generates an
equivalent proposition. In other words, the axiom of positive introspection
avoids an infinite regress.®

7 "Optimality” here assumes that the contestant wishes to maximize the
probability of winning the prize. Of course, there may be other objectives as
well. In particular, regret considerations are ignored.

8 This was a conclusion of a conversation with Dov Samet.
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6. Conclusion

6.1  To sum, this paper argues that the Bayesian paradigm offers a coherent
and intuitive way to reason qualitatively about beliefs and their update. The
main point is that using BP, one may follow an almost-algorithmic modeling
technique, which avoids puzzles and paradoxes.

The guiding principles of the Bayesian paradigm are: (i) define the state
space in an "unprejudiced” way, without making any implicit assumptions by
exclusion of some conceivable states; (ii) form a prior over this state space; and
(iii) update the prior according to Bayes' rule, conditioning on all the
information available.

While some of these principles are sharpened and better understood
thanks to the paradoxes discussed, it is important to note that they are general
in nature. These are not ad-hoc rules concocted in order to cope with this
paradox or the other. Furthermore, with the possible exception of (i), they
predated the paradoxes. Thus the success of the Bayesian paradigm in resolving
the puzzles should be taken as evidence of its merit.

6.2 It should probably be emphasized again that BP is suggested here as a tool
for qualitative reasoning about uncertainty. It is not argued, nor is it the
author's belief, that it is also useful for quantitative applications. For instance,
while Hempel's paradox is qualitatively explained by the Bayesian approach, it
seems hopeless to actually estimate one's prior probability that "all ravens are
black,” as an event in the (huge) state space, in which the blackness and
ravenhood of every object is determined. Fortunately, one does not need to
have an actual numerical estimate of the probability function in order to
understand its mathematical behavior.

6.3  The "canonical Bayesian paradigm”, as described here, prescribes that the
states of the world be formulated in an "unprejudiced" way, making no
implicit assumptions, and, in particular, allowing for all potential "causal”
relationships between one's acts and the resulting outcomes.

However, as argued in Gilboa and Schmeidler (1992), the notion of a
"prior” on such a space is somewhat metaphysical. The behavioral derivation
of a prior as in de Finetti (1937) and Savage (1954) is incompatible with the
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"canonical" state space. Specifically, Savage's set of "conceivable acts" on this
space is by two orders of magnitude larger than the set of actually available
ones. Thus the preference order over the conceivable acts is not observable
even in principle.

Furthermore, deriving the notion of a "prior" from cognitive data
("qualitative probability” relations) seems a little shaky as well. It is hardly
convincing to argue that one has directly available probabilities, or consistent
and quantifiable plausibility judgments on the canonical state space.

This point is closely related to the previous one: suggesting BP as a tool
for qualitative analysis, a metaphor or an argumentation technique does not
entail a literal interpretation of the prior as quantification of belief. In this paper
we only support the canonical BP as a framework for qualitative reasoning, and
not as a "scientific theory" in the usual sense.

6.4 The discussion above may have some implications to artificial
intelligence. First, it supports the usage of the Bayesian paradigm as a tool for
qualitative reasoning. Second, on a meta-level, the methodology for paradox
resolution may be translated to belief-revision models for artificial systems
encountering contradictions.
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