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ABSTRACT

A procedure for decision-making under risk is developed and axiomatized. It
provides another explanation for the Allais paradox as well as justification
for some other preference patterns that can not be represented by the
expected utility model, but it includes expected utility representation of
preferences as a particular case. The idea of the procedure is that evalu-
ation of the lotteries takes two steps. First, a decision maker classifies a
lottery as a "bad", "good" or "medium" one. Then comparing the lotteries the
decision maker uses lexicographic ordering between the classes and expected
utility value (with possibly different utility scales for different classes)
within each of the three categories. The paper contains comparison of the
suggested procedure with several other non-expected utility models. Many
preference patterns that motivated the other models can be explained within

the suggested procedure.

Key words: threshold, expected utility, Allais paradoex.
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The approach which is overwhelmingly used for decision-making under
risk is expected utility maximization. There is a great bulk of literature
that challenges almost all aspects of this theory. The first prominent
strike is due to Allais (1953). A definitely incomplete list of more recent
sources includes Handa (1977), Kahneman and Tversky (1979), Machina (1982),
Quiggin (1982), Slovic and Lichtenstein (1983), Yaari (1987), Karni and
Safra (1987), (1989), Camerer (1989), Segal (1989). Nevertheless the
majority of applications still use that methodology.

In section 2 we develop a procedure that can explain preferences,
incompatible with expected utility maximization, and which is yet very close
to the expected utility model and includes it as a special case. This is
because the expected utility model seems to work and to make sense as long
as prizes and precbabilities are not extreme.

The idea of the procedure is the following. A decision maker has lower
and upper thresholds in both outcomes and probabilities. If the probability
of payoff realization below the lower threshold in prizes is not negligible
{(i.e. above the lower threshold in probabilities) then the decision maker
considers such a lottery a "bad" one. Similarly, if there are few chances
for bad luck but sufficiently high probability to win something "really
good" then the lottery is a "good" one. Finally, if the probability of any
dramatic change iIn the current situation is small enough the decision maker
thinks of such a lottery as of an "average" one. Then the decision maker
uses possibly distinct utility scales to order the lotteries according to
expected utility within each category.

This simple procedure may indeed be derived from the three intuitive

axioms, which do not seem to be more restrictive than the other axioms
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commonly used and are attractive from the descriptive point of view. One of
the axioms stipulates that a decision maker treats in a special way
"unusually bad" and "unusually good" ocutcomes. The second axiom says that
the decision maker takes expected utility into account. Finally, the third
axiom demands compliance of the choice rule with first order stochastic
dominance, which is a very mild rationality requirement.

Hints to the basic idea of our procedure could be found in classical
writings. For example, Arrow (1971) cites Buffon and Cournot as having
suggested the "general principle that events whose probability is suffici-
ently small are to be regarded as morally impossible." Arrow also refers to
the Menger's argument that the amount which an individual is willing to pay
for an uncertain outcome depends upon "the diminishing marginal utility of
money, the ratio of the initial size of the fortune to the minimal
subsistence level in comparison with chances of gain and the systematic
undervaluation of both very large and very small probabilities.™ Besides,
similar considerations underlied theories of cardinal utility by Handa
(1977), Kahneman and Tversky (1979), Quiggin (1982), Yaari (1987).

The rest of the paper is organized as follows: section 1 contains
notation and formal definitions; the axioms are introduced in section 2; the
main results are derived in section 3; in section 4 we discuss properties of
the proposed procedure and its relation to some other non-expected utility

models; proofs of some technical results are put in the appendix.

1. NOTATICN AND DEFINITIONS

Let X be a closed interval [a,b] C R. ZX is a weak order on X, coincid-
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ing with the natural order of the real numbers.l
Denote by Q the set of all probability distributions (lotteries) on X
which is endowed with the ¢-algebra induced by the Borel o-algebra on [a,b].

> 1is a weak order on Q.

Q
Given an arbitrary set § with a weak order zs we define, for f,g € S
satisfying £ zsg, {g.f) = (asS|f >Sa >Sg)_ (g,f) is then called an open >S-

interval. A closed (half-closed) >_-interval 1s defined similarly.

)

For x € X let Ix denote a lottery which assigns probability one to X.

I

For any s,r € Q let us define 5 (x) = [ \s(y)dy, sT(x) =1 - §"(x).

{ysxx

For s,r € Q, s dominates r (s 21r) if for all x € X, R (x) =2 8 (x). s
strictly dominates r (s >1r) if at least for one x there is strict
inequality.

*
For an open >_ -interval (g,f), g will denote some element of

Q
*
inf l(g,f); f will denote an element of sup l(g,f).
> >

A closed >Q—interval fg,f] will be called a vNM-interval if it is a

maximal > -interval I, with which the von Neuman-Morgenstern axioms are

Q
satisfied, i.e.
i) vq,r,s €I, gq zQs, Yae € (0,1) agq + (l-a)r zQ as + (l-a)r;
ii) vq,r,s € 1, q >Qr >Qs Ja,f € (0,1) such that aq + (l-a)s >Qr >Q Bq
+ (1-8)s.

We call a non-empty open >Q-interval (g,f) an open vNM-interval if
* k. ) * % .
(g ,£ ] is a vNM-interval and [g,f] = [g ,f ]. We will clarify this defini-
tion after lemma 2.3.
For f,g € Q let us define frng and fug by their decumulative distribu-

tions as follows: S+nR+(x) = min (S+(x),R+(x)) and S+UR+(X) = max (S+(x),

RT(x)).



2. AXIOMS

Throughout the paper we will assume {(unless otherwise is stated) that
EQ satisfies the following axioms:

Axiom Al, If f,g € Q, £ ng are not in a vNM-interval then either:

i} vh € Q such that g 2Qh, [h,g] is in a vNM-interval; or
ii) vh € @ such that h ZQf, [f,h] is in a vNM-interval.

Axiom A2. If f,g € Q are in a vNM-interval then fug and fng are also in
the same vNM-interval.

Axiom A3, For f,g € ¢ if £ Zlg then f ZQg and if £ >1g then f >Qg.

Axioms Al - A3 suffice for our main result, so let us discuss their
meaning in more details.

Axiom Al implies that a decision maker splits the whole set of lotteri-
es into not more than three subsets and within each of them he or she be-
haves like an expected utility maximizer. Why could one have preferences
like that? Because in many instances it seems natural to apply some coarse,
preliminary structure on the set of alternatives, i.e. if the lotteries are
"sufficiently different” it is natural to distinguish several classes within
them. Then, how many classes? Probably, not too many, since this division is
preliminary and categorical. If so, why not just two of them: good and bad?
In fact, in many cases this is a plausible assumption. However, in a more
general case it is not enough, since possibility of beth "very good" and
"very bad" outcomes can drastically change one's perception abeut lotteries.

For example, suppose that a person is offered a lottery, the outcomes

of which are to lose one’s house, to get a TV set or to win $10,000,000,

Someone who is scared by the very idea of the first outcome might say:



"Forget it! If a house is at stake, I don't want to participate in such lot-
tery, regardless of what the other prizes are" - unless, of course the chan-
ces of the first cutcome are negligible. On the other hand, a person who is
very dissatisfied with his current well-being and always dreamed about luxu-
rious life would, probably, exclaim: "Sure! If I can only get $10,000,000, I
will certainly go for it!"

This suggests that introduction of three categories is sometimes more
realistic. Now suppose that the first individual is forced to choose among
the lotteries about all of which he would rather forget if he had such an
option. Despite the fact that all of them are very undesirable, he would
choose the least of the bads. And why not to use expected utility to
determine the one? The same is equally applicable to the person who has only
very favorable lotteries in the agenda.

Summing up, the first axiom assumes that a decision maker may distin-
guish between three groups of lotteries (which we would like to interpret as
bad, average and good) and considers the lotteries within each group "close
enough” to choose between them on the basis of their expected utility.

Axiom A2 is the most restrictive one. It says that if two lotteries are
"close"” (i.e. are in the same category, namely, a vNM-interval), then the
lotteries obtained by their combination in two specific ways are also
"close" to the original ones. How do we mutilate the original lotteries to
get these combinations? We represent each lottery by its decumulative dis-
tribution function and take minimum or maximum of the decumulative distri-
butions with which we start. This basically means the following. Suppose we
start with two "bad" ("average" or "good"”) lotteries and try to change their

status by substituting cumulative probability of some outcomes in one lot-



tery by their cumulative probabilities in the other. The axiom implies that
regardless of how we do this, the new lottery belongs to the same category.
In other words, being "bad" or "good" (and, hence, "average") is a fundamen-
tal property of a distribution, which indeed makes lotteries similar in a
sense that the two lotteries within the same category are robust with res-
pect to substitution of probabilities from one of them by the probabilities
from another. Alternative way to loock at this axiom is to say that there is
a specific part in a distribution which can make it bad, and (possibly
another) part which can make it good. And these parts are the same in all
distributions. Then A2 means that we cannot "fix" a bad lottery by trans-
planting to it parts from another bad lottery. In the same way one cannot
spoil a good lottery transplanting to it parts from another gecod lottery. If
both distributions are bad (good) then in both of them the parts responsible
for that are bad (good). Assuming A2 we deny a possibility to combine some-
thing good out of two bads and vise a versa.

An implication of this axiom is that each category is defined by a
threshold in utility and a threshold in probability, i.e. a decision maker
compares a lottery with the threshold values in utility and probability and
classifies it based on the results of such comparison. Is this a reasonable
conclusion? We argue that it is. Firstly, it is a very simple way to classi-
fy alternatives. Secondly, people often think in terms of target values and
aspiration levels, which bear the same idea of a thresheold. Thirdly, it
seems plausible to think of a "bad"” ("good") lottery as of one which has
"significant" chance to bring "unsatisfactory" ("very desirable™) outcome.

The third axiom represents a mild and commonly used normative property.

As a matter of fact, some theories, for example, prospect theory by Kahneman
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and Tversky (1979), are criticized for the lack of compliance with first

order stochastic dominance.

The immediate consequences of axioms Al-A3 are summarized in the four

lemmata below.
Lemma 2.1. For every x,y € X, Lx >QLy iff x >y
Proof. Follows from axiom A3. //

Lemma 2.2. There are f,g € Q such that Q iIs of one of the four possible
forms:
0 0]
Q = [Lxy,gl U (g, f) U [£,Lx'] or Q= [Lxy,g) U [gf] U (£,1x ] or

Q= [Lxg,8) U (8,6 U [£,1°] or Q= (Lxygl U (g,f] U (F,1x].

Proof is in the appendix.

Lemma 2.3. If [r,s] is a vNM-interval then q € [r,s] iff s zlq zlr.

Proof is in the appendix.
* *
Lemma 2.3 can help in understanding why we need g and f for open vNM-

intervals. Let us consider Q = [on,g] U (g,f) u [f,LxO], where each >Q—

is a weak order, (g,f), by lemma

1

interval is a vNM-interval. Then, since >Q
2.3, consists of all such lotteries q that neither g Zlq nor q Zlf. But =

is incomplete and we have to use lotteries other than g and f in the modifi-

cations of Archimedean and Independence axioms, which characterize vNM-
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>

*
interval. Thus, g*e inf 1(q: not g zlq) and f € sup l{q: not g alf]. For
= >
example, let X = [-10;10], g(0) = .6, g(l0) = .4, £{-10) = .3, f£(5) = .7. A

lottery s belongs to [on,g] if g 215, i.e. $(0) = .6. Similarly, s €
[f,LxO] if § (5) < .3, Any lottery r € Q which is neither dominated by g nor
dominates f belongs to (g,f). If we consider the closure of {(g,f) in the
1 . * % * *
topology induced by = and denote it by [g ,f ], then g (-10) = .6, g (0) =
* * - -
A, f (5) = .3, £ (10) = .7, 1.e. r e (g, f) iff R (0) < .6 and R (5) > .3,

* %
Hence, {g ,f ] = [g.f].

* *
Lemma 2.4. Let f,g € Q then any of the "boundary"™ lotteries g,g ,f,f
may have in their support no more than two points and no more than one point

X € X\lxo,xo}.
Proof is in the appendix.

To "fix" the ends of vNM-intervals let us introduce a technical axiom

Al
Axiom A4. Each vNM-interval is either closed or open,

Given axioms Al-A4 cne can come up with a specific interpretation to
the "boundary" lotteries g and f. We may think of lower and upper thresholds

both in outcomes (x1 and xh) and probabilities (p1 and ph) with g(xl) - Py-

0 . . . s
gi{x ) = l-pl, f(xo) = l-ph, f(xh) = Py and imagine that if, for a given

lottery, the probability to get something worse than x, is greater than Py

1

then this lottery is a "bad" one (falls into [on,g]). If a lottery is mnot a
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bad one and has probability higher than Py, to bring an outcome better than
Xy then it is a good one (falls into [f,LxO]). Otherwise a lottery is
neither bad nor good (i.e. from (g,f)}. In the non-trivial case when supp(g)

= {y,xo] and supp(f) = { z} for some y,z € X, one can set x1= v, xh= z,

XO,

Pi- G-(y), Py~ F+(z). Coming back to the example after lemma 2.3, x,= 0,

1

xh=5, P .6, ph=.7.

If supp(g) = [xo} then x,= x

and p;= 0; if supp(f) = (x,) then x = x

1 0

and 2% 1. In some proofs of section 3 we will use the representation of g,f
by the lower and upper thresholds.
Remark. It also follows from the form of g and f and the facts that £
A . . . 1
2Qg and Xy 2Ry that Pt P> 1. This in turn implies that for q € Q, if g =27¢f

then not g alq.

3, RESULTS

First we wish to show that for each vNM-interval there is a von
Neumann-Morgenstern utility function u: Y - R, where Y C X is the only
relevant subset of outcomes, such that u(+) represents >X on Y and >Q,

restricted to this vNM-interval, admits expected utility representation with

u(+). We need several auxiliary lemmata.

Lemma 3.5. Assume Q = [on,g] u(g,f) v [f,LxO], where each >Q-interva1

is a vNM-interval. Then
i) xo € supp(g) 1ff vx € X 3q € [on,g] such that x € supp(q);
ii) X € supp(f) iff vx € X Ir € [f,LxO] such that x € supp(r);

iii) vx € X 3s € {g,f) such that x € supp(s).
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Proof in the appendix.

It can be similarly shown that if y € sup,, supp(g) and z € inf> supp(f)
X X
then for all g € [on,g] supp(q) C [xo,y] and for all r € [f,LxO] supp(r) C

{z,xo].

Lemma 3.6. Assume Q = [on,g] v (g, fy v [f,LxO], where each >Q-interval

is a vNM-interval. Then Lx & [on,g} iff for every vy € supp(g), vy z X and Lx

€ [f,LxO] iff for every y € supp(f), x ny.

Proof. By lemma 2.3, Lx € [on,g] iff g zle, which means that Vy € supp(g),

y ZXX. Similarly, Lx € {f,LxO] iff Ix zlf, i.e. Yy € supp(f), x zxy. /7

It follows from lemma 3.6 that Ix € (g,f) iff x € (xl,xh), where Xy €

. . . 1
1nf>xsupp(g) and % € sup}xsupp(f). (xl,xh) # @ since if Xy ZXXh then g =" £,
i.e. g 2Qf which contradicts the definition of an open vNM-interval.

Theorem A. If (g,f) is an open vNM-interval then there exists a

measurable utility function u: X - R, representing >, such that for all s,r

X

€ (g.£) s >r iff [Lu(x)ds (x) > Jgu()dR™ ().

Q
Proof. As it was mentioned, Ix € (g,f) iff x € (xl,xh). Let u(xl) = 0 and
u(xh) = 1. For any x € (xl,xh) assign u(x) = a, where ¢ € (0,1) is uniquely
determined by aLxh+ (l-a)LxquLx.

For any u: X » R, measurable with respect to the ov-algebra underlying
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the definition of @, define U: ¢ - R by letting U(s) = fxu(x)ds(x), for

every s € Q. It follows that U(+) is linear. Define 8 and v by the following

£ 4 (1-v)g . si £- 5 1xC
17qQ" (l-v)g . Since f = pLx +

* - - -
(1-ph)Lxh and g = ple0+ (1-p1)Lx1 and by definition of U(+)}, u(xo) = v/[{y-

*
relationships: Lxh-Qﬁf* + (1-8)g and Lx

0

Apyl < 0 and u(x’) =1+ (1-8)/[(B-v)p, ] > 1.

For any x € (xh,xo), pth + (l—ph)Lxh € (g,f). Hence there is a unique
* * .

axe (0,1) such that pth + (l-ph)Lxh-anf + (l—ux)g . Assign u(x) =1 +

(ax-ﬁ)/[(ﬁ-v)ph]. u(x) > 1, since ax> g, by dominance. Similarly, for any y
. . %

€ (xo,xl), there is a unique aye (0,1) such that plLy + (l-pl)Lxl-Qayf +

*
(1-ay)g . Assign u(x) = (ay-y)/[(ﬂ-1)pl] < 0. It is easy to see that u(-) is

continuous and represents >,. That, in particular, implies that u(+) is

e
bounded.

Let us now prove that U(-) represents >, on (g,f). We start with:

Q

Claim 1. For all r € (g,f), r - af* + (l—a)g* implies U(r) = U(af* +

Q
*
(l-a)g ).

Proof. First, consider lotteries with finite support and use induction on
the number of elements in the support. If r has only one point in its sup-
port the result follows from the definitions of u{+) and U(-).

Now let r contain two points x,y € X in its support, i.e. r = r(x)Lx +

*
(1-r(x))Ly and r - arf + (l-ar)g*. If both x,y € [xl,xh] we are done by the

Q
standard expected utility argument. Let only x € [xl,xh]. Without loss of
generality, let y >e¥ {The case when xl>Qy is proven similarly.) Then r(x)
> l-ph (otherwise not f*>1r, i.e. r ¢ (g,f).) Notice that for some ax,ay,ﬁye
* *
(0,1, Lx -anLxh+ (l—ax)Lxl; phLy + (l—ph)Lxh~Qayf + (l-ay)g and phLy +
* *
(l-ph)Lxl-Qﬁyf + (1-ﬁy)g . By definitions of u(+), U(+) and the properties

of vNM-intervals, all substitutions above preserve utility level as well as
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equivalence. Hence, we can get rid of Ly in the representation of r, if
r(x)axph/[l-ph] + r(x)(l-ax)ph/[l—ph] > 1-r(x), which can be reduced to
r(x)phz (l-ph)(l-r(x)), which is always true. So, one gets a representation
* *
of r only through f and g which has the same utility as r. Then the
*
coefficient by £ has to be a, by the dominance argument, and we are done
with this case,
The only case left is when x1>xx and y >Xxh. Then pla r{x) = (l-ph),
and hence f > r(x)Lxl + (1-r(x))Ly =

Q Q" %q
there exist § € (0,1l) such that r ~Q5[r(x)Lxl + (1-v(x))Lyl + (1-6)[r(x)1lx +

r{x)Lx + (l—r(x))Lxh>Qg. Therefore,

(1-r(x))Lxh]. In this representation we have two lotteries which fall under
the previous case. So each of them can be represented by equivalent mixture
of f* and g*, which can then be cobmined retaining equivalence due to the
properties of vNM-intervals.

Suppose the claim is true for all lotteries with n = 2 points in the
support. Consider r ~Q6f*+ (1-5)g*, for some § € (0,1), which support
contains n+l points. There are three cases to consider.

a) If there are at least three points in the support of r which are
from the interval [xl,xh], one can substitute them by the equivalent mixture
of Lxl and be. This would reduce r to r’, such that r' has not mere than n
elements in its support. So we are done,

b) The support of r contains at most one x € X such that x >Xxh and at
most one y € X such that xl>xy, while a) is not the case. Then there exists
z € [Xl,xh] N supp(r). Define q,s € Q as follows: q(y) = r(y), s(y) = 0,
q{x) = 0, s(x) = r(x), q(2) = s(z2) = r(x) + r(z), q(t) = s(t) = r(t), for
all £t € X\{x,y,2z). Then £ > s > 1r > q >Qg. Hence there is ¢ € (0,1) such

Q "Q Q

that r ~_es + (l-z£)q. Both s and q have only n points in their supports,

Q
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* *
therefore each of them can be substituted by a mixture of £ and g . After
*
collecting all the terms one gets a coefficient of § for £ , due to
dominance argument. Since all substitutions preserved utility level, we get
* *
that U(r) = U(SE + (1-6)g ).
c) There are at least two elements x,y € X in the support of r such

that either x,y >Xxh or x X,y and a) is not the case. Without loss of

%
generality let x >Xy >Xxh. Define q,s € Q as follows: s(y) = 0, q(x) = 0,

q(y) = s(x)} = r(x) + r(z), q{(t) = s(t) = r(t), for all t € X\{x,y). Then £

>Qs >Qr >Qq >Q

can continue as in case b).

g. Hence there is ¢ € (0,1) such that ¥ ~_es + (l-e)q and we

Q
To extend the proof to the lotteries with infinite support we have to
first prove the following.
* %
af + (l-a)g

Claim 2. Let r,s € (g,f), have finite supports and r -

Q
* * -
s ~Q,Bf + (1-8)g , then for any ¢ > 0 there is a § > 0 such that if SUPXEXIR

(x)-S (x)| < § then |a-B] < e.
Proof. We already know that U(s+) represents >Q for lotteries with finite
support. Denote maxxexlu(x)| by M. If SuprXIR (x)-5 ()| < & then |U(r)-
- - *
U(s)| = ]fxu(x)dR (x)-jxu(x)ds (x)| < 2M§. On the other hand, U(r) = aU(f )
* * *

+ (1-a)U(g ), and U(s) = BU(E ) + (1-A)U(g ), i.e. |U(x}-U(s)| = |a-B]*

* * * *
(U(Cf )-U(g )). Set ¢ = 2M§/(U(f )-U(g )) to complete the proof of claim 2.

Now let us consider a lottery h € (g,f) with infinitely many points in
its support. We can approximate h by sequences (sk) and (rk) of lotteries
such that s, and r, have only k elements in their supports and for all k,

k k
1 1 =

1 1 1 1 . * * *
h > and r > h. Since f 2"h 2"g and both £ and g have no

> Spe1” Sk K Tk41®

more that two points in their supports, one can easily ensure that (Sk) and

(rk) are both contained in (g,f) and also that for any £ > 0 there is K € N
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such that if k > K then supxeX|Rk_(x)-Sk_(x)| < 53. The latter implies that

- - - * *
(Sk ) and (Rk } converge pointwise to H . Let h - f + (l—ah)g and for

Q “h

* * * * )
all k € N, Sk'Q akf + (1-ak)g , rk hQﬁkf + (1-5k)g . If llm(ak) = a and

lim(ﬁk) = B, we want to show that a = a = B. Notice that, by stochastic do-

minance, £ = ®nZ a. By claim 2, for any £ > 0 there is K € N such that if k

> K then |ak—ﬁk| <eg, le. fA=-a=a On the other hand, the by dominated

he

convergence theorem, U(h) = lim U(s which completes the proof of claim 1,

k)?

*
r, q ~,af +

To complete the proof of the theorem, let q,r € (g,f), q > q

Q
(1~a)g* and r ~QBf* + (1-B)g*. By linearity of U(+), U{(q) - U(r) = (ea-
B)(U(E)-U(g")). And since a > 8, U(q) > U(r).

Now let r € (g,f). Then r ~Qfode-(x), i.e. U(r) = U(jXLde'(x)).

Using linearity of U(+) again, one gets that U{r)} = fxu(x)dR_(x). //

Theorem B. If [on,g] is a vNM-interval then there exists a utility

function u: X - R representing >

x on Y € X, where Y = [xo, sup>xsupp(g)],

and such that for all s,r € [LxO,g], s >r iff fxu(x)ds-(x) > fxu(x)dR_(x).

Q
Proof. Assign u(xo) = 0. Take any x € X\[XO]. There is a unique maximal 8
such that g 28lx + (1-f)Lxy. We can define § by setting f - G (x) > 0. Then
indeed, g ZlﬁLx + (1-5)Lx0 and hence g ZQﬁLx + (l-ﬁ)LxO. Alsc for every a >
B, not g ZlaLx + (l—a)LxO, i.e. not g ZQaLx + (1-a)LxO.

Furthermore, there is a unique vy € (0,1) such that BLx + (l-ﬁ)LxO = L X

B

~Q7g + (1'7)Lx0. Now assign u(x) = y/8.

We will denote the unique B and v associated with a specific x € X by
ﬂX and L

i3

To see that u(+) represents >X on Y notiece that if x >Xy then Bxs ﬁy
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by dominance argument. If in addition Lﬂx ZQLﬂy, u(x) > u(y), we are done.
However, it could be that L > L x.

8" Qs
Claim 1. Let %X,y € Y be such that x >y and L

ﬁy >QLﬁx' Then yx/ﬁx>

1y/ﬂy-
Proof. Since x >Xy, ﬁx< ﬁy. Also ﬁyLy + (1-ﬁy)Lx0>QﬁxLx + (l—,@x)LxO and ﬁxLx
+ (l-ﬂX)LxO-vag + (1-v J)Lx,, ﬂyLy + (l-ﬁy)on-nyg + (l—wy)on, with 7y>
7X-
There exists the unique § € (0,1) such that ﬁxLx + (l-ﬁx)Lx0~Q6[ﬁyLy +
(l-ﬁy)on] + (1—5)Lx0= SﬁyLy + (1-5By)LxO. Since Lx >QLy, 5X< Eﬁy.

Moreover, 68 Ly + (1-§ Lx. - 6 + (1-§ Lx., i.e. Lx + (1-
ﬁy y + ( ﬁy) 07 Q% Ty8 ( vy) 0 B (

Q
ﬁx)LXO—Q67yg + (l-Syy)on. Since T, is unique, V= 67y and, thus, yx/ﬁx>
67y/6ﬂy— 7y/ﬁy. The claim is proven,

Define U: Q + R by letting U(s) = fxu(x)dS_(x), for every s € Q. It
follows that U(+) is linear. Now without loss of generality we can assign
u(x) = 0 for all x € X\Y and set u(xo) = (l-plu(xl))/(l-pl), which implies

U(g) = 1. Let us show that for all s,r € [on,g], s > r iff fxu(x)ds-(x) >

Q
fxu(x)dR‘(x).

We start with the proof of

Claim 2. For all r € [on,g], r -Qag + (l-a)LxO implies U(r) = U(eg +
(l-a)on).
Proof. First, consider lotteries with finite support and use induction on
the number of elements in support. If r has only one point in its support
the result follows from the definitions of u(s+) and U(-). Suppose the claim
is true for all lotteries with n points in the support. Consider r which
support contains n+l points.

Notice that since r € [Ix,,g], there is at least one point y in the

0
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support of r such that X 2y If all y € supp(r) are such that X2y then we

are done since for every such y there exists Vy € (0,1) such that Ly -nyg +

(l-vy)on. Let there is x € supp(r) such that x zxxl. r can be represented

as r = (71Ly1 +.. .+ 7nLyn) + alx, where x zxy for all y € supp(r). Consider
' ' . 1,

r'= (71/(1-a))Ly1 +...+ (7n/(1-a))Lyn. r'e [on,g] since r > r'., Hence,

there exists a'e (0,1) such that r’-Qa'g + (l-a')LxO and by assumption U(r’)

=Ula'g + (1-a’)Lx By the properties of a vNM-interval, there exists § €

0)’

(0,1) such that r -_§g + (1—6)Lx0 then since r = (l-a)r’ + alx, (l-a)a'g +

Q

(l—a)(l-a’)on + alx - 6g + (1-6)Lx0.

Q
Since ﬁXLx + (1—ﬂX)Lx0~Q7Xg + (1-7X)Lx0 one can substitute in every
lottery within a vNM-interval (ayx/ﬁx)g + [a(l-yx)/ﬂx]on for alx + [a(l-
B.)/B, 1%, .
If we have a(l-ﬁx)/ﬁxs (l-a)(l-a') then I(l-a)a’+(a7x/ﬂx)]g + [(l-a)(1-

a')+a(l-1x)/ﬁx]Lx0- bg + (l-E)LxO. By the stochastic dominance argument, the

Q
corresponding coefficients are equal and so are the utilities, which proves
the claim.

Next we will show that a(l-ﬁx)/ﬁx> {(l-a)(l-a') might not be the case.
First, recall that for any lottery from our vNM-interval the total weight of
the outcomes which are better than X1 has not to exceed ﬁx: l-pl. Assume
that a(l-ﬁx)/ﬂx> (l-a)(l-a') and use the equivalence ﬁxLx + (l'ﬁx)LxO-nyg +
(1-7X)Lx0 to increase the coefficient by Lx as much as possible.

There are two cases. If (l-a)a’/’rx < (l-a)(l-a')/(l—yx), i.e. 7x> a',
we need to have (l-a)a'ﬁx/yx + a < ﬂx, which can be reduced to Tx/ﬂx > (1-
a)a'/(ﬂx—a). From a(l-ﬁx)/ﬁx> (l-a){l-a') we obtain that (l-a)a'> (ﬁx-a)/ﬁx,

which leads to 7x> 1. A contradiction.

Now consider the case when ao'> L Then r -Q[(l-a)a'- 7X(l-a)(l-a‘)/(l-
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101t (e + B (1-a)(1-a’)/(1-7 ) ]1x + (1-B_)(1-a)(l-a’)/(1l-v )Lx, and we

need to have ﬁx[(l-a)a'- 7X(1-u)(l-a')/(1-7x)] + a + ﬂx(l-a)(l-a')/(l-yx) <

ﬁx. After simplifications one gets that either e« = 0 (a trivial case) or ﬂx
1. The latter means that P= 0 and one cannot have Pyt ph> 1 as required. A
contradiction.

To extend the proof of the claim for the lotteries with infinite
support one may repeat the reasoning used in the proof of the theorem A.

Now let q,r € [on,g], q >.r, ag + (l-a)LxO and ¥ - _fg + (1-ﬁ)Lx0.

Q" 1 Q
By linearity of U(+), U(q) = a and U(r) = 8, a > 8, i.e. U(q) > U(r).

Take s € (g,f). Then s -QjXLxds'(x), i.e. U(s) = U(foxds'(x)). Using

linearity of U(+) again, one gets that U(s) = fxu(x)ds_(x). //

Similarly, we can establish existence of expected utility represen-

tation for the lotteries from the interval [f,LXO].

To summarize the results above we can formulate

Theorem C. >_ is a weak order on Q satisfying axioms Al-a4 iff

Q
i) Q = [on,g] U (g, £y v [f,LxO], where each >Q—interval is a vNM-

interval;
.. . 1 0, . 1
ii) for all q,r € Q, g & [on,g] iff g > q and r € [f,Lx"] iff r >7f;

iii) there exist utility functions Uy, Uy, Ug from X inte R such that uy

provides expected utility representation for >, on [on,g], u, on (g,f) and

Q
0
u, on [£,Ix7].
iv) There are lower and upper thresholds in outcomes (xl,xhe X, XhZXX1

and probabilities (pl,phe [G,17, P1tP,> 1) such that if

each s € Q is evaluated by a pair v(s) = (vl(s)’VZ(S))’ where vl(s) =
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1 if S'(xl) > Py vl(s) =3 if S-(xh) =< 1-ph; vl(s) = 2 otherwise. vz(s) =

,u4, and u, are as in iii),

fxuvl(x)dS (x), where u 2 3

1

then for all q,r € Q, q >.r iff v{(q) lexicographically exceeds v(r).

Q
Proof. The "only if" part follows from lemmata 2.2, 2.3, the remark closing
section 2, and theorems A and B. The "if" part can easily be checked

directly. //

Notice that § (xh) =< 1-ph implies S (xl) < Py-
We will refer to the procedure for lotteries' evaluation described in

part iv) of the theorem C as procedure P.

4. PROPERTIES OF PROCEDURE P AND ITS COMPARISON WITH OTHER MODELS

Let us first briefly discuss some superficial features of P.

The fact that a person first cares about the lower threshold and only
after that about the upper one bears some flaver of risk aversion. The
defence of this point can be split into two arguments. First of all, Q might
be a vNM-interval itself. However, when it is not the case a decision maker
first concentrates on unfavorable ocutcomes in his evaluation of a lottery.
In that case a natural justification for this procedure is an evolutionary
argument along the following lines: if someone does not succeed in getting
10 million dollars he can try it once again later, but if he cannot survive
today he will not have another chance either to survive or to become a
millionaire.

Despite close resemblance to the expected utility model our procedure
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may violate both the Archimedean and the Independence axioms.

Observation 4.1. The procedure P may violate the Archimedean axiom.

Proof. Suppose that x,= 0; P{= 0.4; X~ 5; Py 0.7 and s, q, r are as below:

1
s: x| -10] G ] 100] q: x| 2 | r: x | 1 |
p | 0.2] 0.2] 0.6] p 111 Pl 11].
v(s) = <1, 58>; v(q) = <2, 2>, v(r) = <2, 1>. Hence, q >Qr >Qs.
aq + (l-a)s: x | -10 | 0 | 2 ] 100 |

p | 0.2(1l-e)]| 0.2(1-a)] o | 0.6(1-a)]

[@Q + (1-)S] (0) = 0.4(l-a) < 0.4 = p,. Thus, v;(ag + (1-a)s) is

either 3 (hence ag + (l-a)s >.r) or 2. In the latter case vz(aq + (l-a)s) =

Q

58 - 56a > 2 > 1 and again aq + (l-a)s >.r. Therefore the Archimedean axiom

Q

is violated. //

In fact P violates not only the Independence axiom but also a weaker

Betweenness axiom,

Definition 4.2. Betweenness. For all q,r € Q, if q >.r then for all a £

Q

(0,1 q >Qaq + (l-a)r >Qr.

Observation 4.3. P may violate betweenness.

Proof. Let x1= 0; p1= 0.6; xh= 10; ph= 0.5.

r:x 9 | q: x | -10] 5 | 10 |
p 11| p | 0.31 0.2] 0.5]

vir) = <2, 9>; v(q) = <3, 3>. Hence, q >Qr.

For any e € (0,1), t =aq + (l-a)r: x | -10 | 5 | 9 | 10 |
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P |l O0.3a| 0.2a] 1-a| O0.5«]

v(t) = <2, 9-6a>. Hence, r >Qt. /7

Lack of so many desirable properties makes P less attractive from the
normative viewpoint. Yet we argue that it is descriptively plausible.

Let us try to use P to explain the Allais paradox as presented in
Kahneman and Tversky (1979). (In the sequel we will always assume that X is
a compact subset of R containing 0 and u(x) = x, ¥x € X unless X and u(-)
are specified explicitly. Hence we will sometimes not distinguish between
outcomes and their utilities to simplify notation. Even in such a restricted
form our model can explain many paradoxes.)

Consider the four lotteries:

3000] O |
0,25]0.75],

A:x | 4000] O | B:x | 3000| C:x | 4000] © | D:x
P p

J
p |l 0.8] 0.2] | 1 | p | 0.2] 0.8] J

where x denotes a prize (in $) and p - the probability of getting that
prize.

Empirical evidence shows that for most individuals A < B and D < C
(with the symbol "<" standing for the "less preferred than" relation. Such a
preference pattern violates the independence axiom {and hence the expected

utility representation), since in the presence of the lottery

E: x | 0|
pl1]

we have 0.25A + 0.75E = C and 0.25B + 0.75E = D,

We will apply P to a general form of the parodox written as follows:

Arx |21 0] B: x | Y | C. x| 2] 0 | D: x | Y| 0O |
ple| l-of pl 1] Pl ef| 1-a8] pl sl 1-8],

where Z > Y>> 0, 0 << a <1, 0 <« § << 1, aZ > Y, where notation a > b >> ¢

conveys the idea that b is "much closer" to a than to c.
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Let X, = 0; pl> 1-a8; xh< Y; ph> a, then v(A) = <2; aZ>, v(B) = <3; Y>;
v(C) = <2; afZ> and v(D) = <2; BY> agreeing with the Allais paradox
preference pattern. Needless to say, the choice of utility function as well
as any of the four parameters for this example is not unique.
This builds a link to prospect theory by Kahneman and Tversky (1979)
and its generalization cumulative prospect theory (Tversky and Kahneman

(1990)). One of the principles observed by Tversky and Kahneman (1990) is

diminishing sensitivity which they illustrate by the following example:

. x| 25,000 [ 25,000 | 25,000 |
x| 25,000 | 0 | 75,000 |
f': x| 0 | 25,000 | 25,000 |
g x| 0 | 0 | 75,000 |
pl 0.01 | 0.89 | ©€.10 |

Experimental data confirm that prevailing preferences express that f

>Qg but g’ > f' which is inconsistent with expected utility theory.

Q

Once again we would like to apply P to a general form of the

preferences above. Assume that

f: x| 2 | Z | Z |
g: x| Z ] 0 1 Y |
f'ox | 0 | Z | A |
g’ x| 0 | 0 | Y |

pl o | B8 | 1l-a-8 |,

where Y >> Z >> 0, 0 < a << 1l-a-8 << 8 (i.e. 1-2-8 1s "sufficiently"
different from both a and 8.} Let (l-a-B)ulY) > (l-a)u(Z); xy = 0; pl> a+f;
x, < Z; P> l-a.

Then according to P, vl(f) = 3 yhile vl(g) = 2 (hence f >Qg) but g’
>Qf’ since vl(f') = vl(g') = 2 and vz(g’) = (l-a-A)ulY) > (l-a)u(Z) =
v, (£7).

This example is noteworthy because it is inconsistent with Loomes's and

Sugden’s (1983) regret theory or Fishburn's SSB (1984) mcdel.



24

Another model for resolution of preference "paradoxes" was proposed by
Schmeidler (1989) who introduced non-additive probabilities. Since his model
deals with choice under uncertainty rather than risk it is not always easy
to interpret his results in the terms we employ. However, there is a feature
in Schmeidler’s model, namely, that sometimes an individual simultaneously
prefers to buy insurance for some risky outcome and gamble on another, which
can be explained by P.

Suppose a decision maker is not sure what he is going to do next
Thursday. With probability .5 he may receive a new plece of equipment and
work on it. If the new equipment does not arrive he will participate in a
small lottery. The new equipment when arrived may fail with probability .01,
which will result in the loss of $1,000. If it operates normally then the
decision maker can make a profit of $50. However, he has an option to buy a
warranty for only $10.50, which will guarantee his profit if the equipment
arrives. An entry to the lottery costs $10, and if lucky the decision maker
can win $100, which has probability .2. The decision maker may also sell his
right to enter the lottery to his friend for $12. He has to decide whether
to buy the warranty for equipment and/or to sell the right to enter the
lottery.

Available options can be represented by the following lotteries:

A: x | -1,000 | 50 | -10 | 100 | B: x | 39.5 | 12 |
p | _0.005 ] 0.495 | 0.4 | 0.1 | pl 051 0.51,
C:x | 39.5 ] -10 | 100 | D: x | -1,000 | 50 | 12 |
pl_0.510.4 | O.1 | pl 0.005 | 0.495 | 0.5 |,

where A corresponds to not buying any insurance at all, B corresponds to a
purchase of insurance for both risky outcomes while C and D only for one of

them. Suppese that xq= 0; Py 0.5; X = 20; Py = 0.6. Then v(A) = (2; 25.73),



25
v{B) = (2; 25.75), v(C) = (3; 25.75); v(D) = (2; 25.75). Hence C 1is
preferred over all other lotteries, (Note that v{(B) = v(D) = v{A) only
because of linearity of utility function assumed for simplicity.) This
example may give an insight at why we observe that the same people who
insure their cars are buying lottery tickets.

One of the main advantages of Yaari’s (1987) dual choice theory is that
it can separate twoe conceptually different properties of risk aversion and
diminishing marginal utility of wealth {which are mixed together in the
classical expected utility theory). P also can separate these two effects to
a certain extent. As shown by the previous example, even when a utility
function is linear in prizes a person might not be risk neutral. The
attitude towards risk may partially be reflected through the thresholds that
characterize an individual.

Chew (1983) axiomatized the generalized quasilinear mean. All properti-
es of this functional described as desirable in its application in decision
theory except betweenness are met by P. Chew also criticizes the other
theories including prospect theory as well as approaches by Handa (1977),
Karmarkar (1978) and Machina (1982) for inability to explain St.Petersburg's
paradox described, for example, in Luce and Raiffa (1937). St. Petersburg’s
paradox is perfectly explained by P.

Comparing procedure P with the model of combined expected utility and
maximin criteria suggested by Gilboa (1988) notice that they both explain
the Allais paradox and both allow violations of continuity and independence
in particular cases, but there is still one difference we would like to pay
attention to. Consider an example from Gilboa (1988):

Aa: x | 4.000,000] 0 | B:

x_} 3.,000,000] A: x | 4,000,000)
pl 1- o | a] p_| 1 | p_| 1 L,
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where a prize of 0 basically plays the role of the consequence of death.
According to Gilboa’'s model for any a > O, Aa< B and B <. A. In our meodel

Q Q

discontinuity arises not at a = 0 but could occur twice: when 1 - a = and

P
when a = Py - Typically neither of these switches happen at a = 0. This seems
to be more plausible since people definitely participate in events with
strictly positive probability of death even with relatively low complimenta-
ry prizes, provided that the probability of death is small encugh (for
example, we cross streets and take planes). Hence we would expect that one
will prefer to cross the street and then get 4,000,000 (i.e. Aa) rather than
just receive 3,000,000 (i.e. B).

What we argue here is that the thresholds in utility and probability
are interrelated and that for at least some of their particular choices a
certainty effect is indeed an "almost certainty"” one. We believe that this
fact is more apparent and easier to capture when the desirable prize in Aa
is close to sup([x € X}, the upper threshold in prizes is high and the
difference in utilities between the favorable outcomes in Aa and B is
substantial.

We would also like to mention that prospect theory (Kahneman and
Tversky (1979)) as well as the theories by Handa (1977), Karmarkar (1978)
and Yaari (1987) might violate first order stochastiec dominance. Specific
examples and more detailed discussion can be found in Quiggin (1982).

Cumulative prospect theory by Tversky and Kahneman (1990) discusses a
weighing function used in lotteries’ evaluation. They argue that it is not
well-behaved for very low or very high probabilities which could be either
greatly overweighed or neglected altogether. P does approximately the same.

Namely, it overweighs probability close to 1 when the outcome assaciated



27
with that probability is below the lower threshold or better than the upper
threshold while chances to occur below the lower threshold are negligible. P
underevaluates small probabilities associated with unfavorable outcomes if
the chance to get a very desirable prize is high enough.

In this section we tried to show that P is not refuted by experimental
evidence. In this connection we would like to cite Camerer (1989) who
processed a large amount of experimental data to compare different theories
and came to a conclusion that each theory can account for some of expected
utility violations but not all. In that respect procedure P is not an

exception.

APPENDIX

Proof of the lemma 2.2. If Q is a vNM-interval itself choose g = on, f =

on and Q may be represented as Q = [LXO,LXO] v (g, f)u [LxO,LxO]. Suppose

that there are q,r € ¢, q >.r such that q and r are not in a vNM-interval.

Q
Without loss of generality, let, by axiom Al, [on,r] be in a vNM-interval.

Denote it [on,g|, meaning that it might be [on,g) or [on,g}. Note that q
¢ [Lx,,gl.
If Q\[on,g| = |g,LxO] is a vNM-interval then ¢ = [on,g] U (g,LxO) U

O,on], Suppose that |g,LxO] is not

0 0 0
[Lx ,Ix ] or Q = [on,g) U [g,lx ) v [Lx
a vNM-interval, i.e. there exist s,t € |g,Lx0], s >Qt such that s and t are

. . . - . . 0, . .
not in a vNM-interval. Since [Lx,,s] is not in a vNM-interval, [t,Lx ] is in

O 1
a vNM-interval. Let us call it |f,LxO].
Finally, consider |g,f| = Q\([on,g| U If,LxO]). The only way axiom Al

can be met is if |g,f| is a vNM-interval. Indeed, let there be h,w € |g,f|,
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h >Qw such that h and w are not in a vNM-interval. Then neither [on,w], nor
[h,LxO] is in a vNM-interval.
Thus, Q = [on,gl U g, fl U |f,Lx0], where each >Q—interval is a vNM-
interval. //

Proof of the lemma 2.3. Suppose there exlist g € (r,s] such that not s alq.

Then suq >ls and, by axiom A3, suq >Qs, while, by axiom A2, suq is in the

same vNM-interval, which contradicts maximality of vNM-intervals.
Similarly, if for s € [r,s] not gq 21r then r >1qﬂr, i.e. r >Qqﬂr. But

qnr € [r,s]. A contradiction,

Conversely, if s Zlq zlr then, by axiom A3, q € [r,s]. //

Proof of the lemma 2.4. We will prove the lemma for g, since modifications
required for the other lotteries are rather straightforward. Assume without
loss of generality that (g,f) is an open VNM-interval. Suppose that G ()
increases at exactly two points x,y € X\[xo}. Suppose F (x) < G (x). Take
r,s € Q such that F (x) <R (X) < G (x), § (X) > G (x), S (y) <G (y) and R
(z) = 1 for some z € (x,y). Then r,s € {(g,f). Also g >1rns, i.e. rns €
[on,gl in contradiction to axiom A2,

Let F (x) = G (x). Notice that if F (x) = G (x) then F (y) < G (y)
(otherwise g>lf.) Take r,s € Q such that R (x) < G (x), S (%) > G (x), F
(y) < S"(y) < G (y) and for some z € (x,v), R (z) = 1. Then t,s € (g,£).
Also g >1rﬂs, i.e. rnNs € [on,g] in contradiction to axiom A2,

If G () changes its value at more than two points one can easily find
a contradiction, by a similar construction.

Now let G (+) increase at only one point x € X\[XO). Then for any s,r €
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{(g,f) neither g er nor g le, i.e. R (x) € G (x), S (x) < G (x) and hence

rns € {g,f) in compliance with axiom A2. //

Proof of the lemma 3.5. Assume that for every x € X there is d, € [on,g]
such that x € supp(qx). Take x = xo. But g zqu. Therefore, er supp(g).
Conversely, assume xoe supp(g). Fix x'e X. Take q € Q such that q(x) = g(x),
if x ¢ {x',xo}, q(xo) =0; qx')y = g(x’') + g(xo) > 0. Then g 21q, i.e. q €
[on,g] and x'€ supp(q).

ii) is proven similarly.

iii) £ >Qg, thus, not g zlf and there exists y € X such that G-(y) > F
(y). Since G and F are continuous from the right there is an interval
[v,z) € X such that for every x € [y,z) G (x) > F-(x), Take s € Q such that
s(x) is strictly increasing and for every x € [y,z), G (x) > 8 (x) >F (x).

Then neither s zlf nor g zls, i.e. s € (g,f) and supp(s} = X. //
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ENDNOTES

1. This allows for the following trivial generalization. Let X be a set of
outcomes, or prizes, zy is a weak order on X represented by a utility
function w: X » R whose range is a closed interval. Corresponding strong
preference >, and indifference -_, are defined as usual. Let x_ € inf> X and

X X 0 %

xO € sup, X. We will assume without loss of generality that X = X|._, i.e.
X
all indifference classes in X contain only one element. So we may identify X

with an interval [a,b], determined by the range of w(-).

2. Axiom A4 reduces Q to the form Q = [on,g] v (g, f) v [f,LxO]. We will
accept it for the rest of the paper by default, mentioning here that three
other forms of Q may be obtained through modification of this technical
axiom (of course the results and their proofs must be adjusted accordingly
with the necessary changes being straightforward).

If we use

Axiom A4'. A vNM-interval has a semi-open vNM-interval adjacent to
itself iff it is closed
instead of axiom A4 then Q = [on,g) U (g, f] v (f,LxO].

Similarly,

Axiom A4", Each vNM-interval either contains on or is semi-open
corresponds to Q = [on,g) ufg,f) v [f,LxO] (where [f,LxO] is possibly a
singleton).

Finally, q = [on,g] u (g, f] u (f,LxO] (where [on,g] might be a
singleton) if we employ

Axiom A4'''. Each vNM-interval either contains LXO or is semi-open.
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3. To ensure that both (sk) and (rk) are in (g,f) it suffices to select s,
and r, such that their supports contain x

procedure of constructing sequences (sk) and (rk) in a way that guarantees

1 and Xy respectively. The standard

convergence in the sup norm can be found, for example, in Halmos (1974),

p.115, exercise 6.



