A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Barbera, Salvador; Jackson, Matthew O.

Working Paper

Strategy-Proof Exchange

Discussion Paper, No. 1021

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management

Science, Northwestern University

Suggested Citation: Barbera, Salvador; Jackson, Matthew O. (1993) : Strategy-Proof Exchange,
Discussion Paper, No. 1021, Northwestern University, Kellogg School of Management, Center for
Mathematical Studies in Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/221378

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/221378
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 1021

Strategy-Proof Exchange

by

Salvador Barbera® and Matthew O. Jackson™

January 1993

Abstract
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1. Introduction

Allocations which can be decentralized in exchange economies with complete informa-
tion or large numbers of agents are well known. That is, if the members of an economy
know all the parameters of the economy, then there exist institutions which will lead to
Walrasian equilbria. [See Moore (1991) for a recent survey of implementation with com-
plete information.] If there is incomplete information, then it has been shown that the
Walrasian correspondence is almost non—-manipulable for large numbers of agents. That
is, Postlewaite and Roberts (1976) have shown that for large enough replications of the

economy gains from manipulation can be limited to any given level.

Unfortunately, the Walrasian correspondence cannot be achieved when information is
incomplete and the economy is not large. Hurwicz (1972) showed that Walrasian allocations
are manipulable when there is a finite number of agents. Agents are better off not acting
in accordance with their (competitive) demands, but instead should take into account the
influence they have on the price. These difficulties make it impossible to decentralize the
Walrasian correspondence among a finite number of agents when information is incomplete.
As Hurwicz showed, for certain utility profiles of other agents, the Walrasian allocation
associated with an agent’s true utility is worse for that agent than the Walrasian alloca-
tion associated with some alternative utility. This means that Walrasian allocations are

manipulable.

In spite of the Hurwicz results, we might hope that competitive allocations could be
achieved as the Bayesian equilibria of some mechanism. Palfrey and Srivastava (1987) have
shown, however, that the Walrasian correspondence also fails to satisfy Bayesian incentive
compatibility. Thus, the Walrasian correspondence cannot be achieved as the (Bayesian)
Nash equilibria of any game form when there is incomplete information and finite numbers of
agents.! Moreover, even if we consider rational expectations allocations instead of Walrasian

ones, these difficulties cannot be overcome. Bayesian incentive compatibility is also violated

! An exception to this applies if information is non-exclusive, as examined by Postlewaite
and Schmeidler (1986) and Blume and Easley (1990). Information is non-exclusive if the
information of any one agent is known collectively by the other agents. Such an information
structure makes the implementation problem similar to complete information implementa-
tion. However, many relevant situations will not have such an information structure. For
example, agents may know more about their own preferences than about the preferences of
other agents.



by the rational expectations equilibrium correspondence [Palfrey and Srivastava (1987)].

Given that the classic competitive allocations cannot be obtained with a finite number

2 we should try to discover what can be obtained.

of agents and incomplete information,
The question of what is implementable with incomplete information and a finite number
of agents has been answered if agents are Bayesians and we know their prior distributions.
A characterization of allocations which can be implemented in Bayesian equilibria is given
in Jackson (1991). Abreu and Matsushima (1991) present results for virtual implementa-
tion via an iterative elimination of dominated strategies with incomplete information, and
Palfrey and Srivastava (1989) examine implementation in undominated Bayesian equilib-

ria. Palfrey (1990) and Palfrey and Srivastava (1990) provide surveys of the incomplete
information implementation literature.

A shortcoming of the incomplete information implementation literature is that mech-
anisms provided in constructive proofs depend in key ways on exact knowledge of agents’
prior distributions. If the priors are not those anticipated by the mechanism designer, then
undesired equilibria can arise in the mechanisms constructed. So unless we are sure of the
priors, mechanisms demonstrated in this theory are not sure to implement the desired so-
cial choice correspondence . These mechanisms, however, were developed to prove existence
results; not with this sort of robustness in mind. One would like to find simple mechanisms

which are immune to changes in the structure of the environment.

To this end, we characterize the class of strategy—proof social choice functions in classic
exchange economies.® Strategy-proofness implies that regardless of the preferences of the
other agents, an agent is best off with the allocation associated with his/her true prefer-
ences. One way to think of strategy—proofness is as the requirement that Bayesian incentive

compatibility hold for all possible priors. This strong property means that a social choice

2 Even when one considers equilibrium refinements, the Bayesian incentive compatibility
condition is necessary for implementation. This means that refinements will not help us to
implement competitive allocations.

3 For a look at production economies, see Shenker (1992). He examines strategy—proof
social choice functions which satisfy differentiability conditions, extending earlier results of
Satterthwaite and Sonnenschein (1981) on differentiable and strategy—proof social choice
functions . The Satterthwaite and Sonneschein results provide only local implications of
strategy—proofness, and Shenker accomplishes the formidable task of obtaining a global
characterization. In the pure exchange case, however, the differentiablility condition is
quite strong and excludes almost all of the rules which we identify. Thus, there is no clear
relation between Shenker’s work and ours.



function can be decentralized regardless of the information structure in the economy. Fur-
thermore, as it turns out, strategy—proof social choice functions correspond to the outcomes

of very simple and natural trading mechanisms.

In many situations, when designing institutions or markets, one may have some idea of
what information agents are likely to have, without knowing their exact priors. The relevant
incentive compatibility constraint may lie between a Bayesian one and strategy—proofness.
A full characterization of strategy-proof allocation rules will provide an important bench-

mark and help shed light on what can be achieved in more structured situations.

The cost of strategy—proofness is efficiency. It has been shown that in exchange
economies strategy—proof social choice functions which are efficient are also dictatorial.
The first work in this direction was by Hurwicz (1972), who obtained such a result for two
agents and two goods, given individual rationality with respect to an endowment. This
result was extended to many goods by Dasgupta, Hammond, and Maskin (1979), and Hur-
wicz and Walker (1990). Recently, Zhou (1991) has shown that the result holds for two
people without requiring individual rationality or any continuity properties.* Such negative
results, however, do not give us an idea of how inefficent such social choice functions are,
or how the inefficiency depends on the size of the economy. By offering a complete charac-
terization of the strategy—proof social choice functions , we provide a deeper understanding

of the tradeoffs between incentives and efficiency.

Strategy—proof social choice functions are those which can be obtained from trading
according to pre-specified proportions. The number of proportions which can be accom-
modated is proportional to the number of agents. This means that strategy—proof rules
become more “flexible” in choosing the direction of trade as the economy grows. However,
due to the incentive constraints the particular way in which the proportion is chosen cannot
depend on the excess demand of the economy, but instead only on the numbers of agents

on either side of the market. As a result, the inefficiency in the market does not disappear

4 There are strategy—proof, efficient and non—dictatorial social choice functions for three
or more agents. Satterthwaite and Sonnenschein (1981) give an example such that the total
endowment is given to one of two agents, depending on the shape of the preferences of a
third agent. However, this example is not individually rational and also fails to satisfy other
conditions which we will consider, such as non-bossiness. Our characterization result will
show that there are no strategy—proof and efficient social choice functions which satisfy an
anonymity condition and non-bossiness.



in the limit.

This provides a different insight from the results of Roberts and Postlewaite (1976).
They showed that Walrasian allocations were almost incentive compatible as the economy is
replicated. This means that if one insists on efficiency, then one can find allocations which
are almost incentive compatible. However, this allows for small gains from manipulation,
and leaves unclear which allocations will arise if agents act in their own interest and take
advantage of the gains from manipulation.?¢ Here we take as given that agents will act in
their own interest, and characterize the set of allocation rules which are incentive compatible
(strategy—proof ). As it turns out, the rules which are incentive compatible are not close to

being efficient, even for very large economies.

2. Definitions

Consider a classical exchange economy with n agents and ! goods, where both n and {
are finite. The endowment of goods in the economy is e € IR}'. An allocation is a list of

the goods given to each agent and the set of (balanced) allocations is
A={ze R} | Zz‘:Ze‘}.

For z € R}, we use the notation z* to denote the ! dimensional allocation of goods to
agent 1, and z; to denote the allocation of the k-th good given to agent ¢. It is assumed

that ), e} > O for each k.

® Jackson (1992) provides a partial answer to this question by shcwing that for large
enough economies agents will find it optimal to act in accordance with demands arbitrarily
close to their competitive demands. This is only a partial answer since it may be that if
each agent only deviates slightly, the aggregated demands and resulting prices may deviate
substantially.

6 Roberts and Postlewaite (1976) and Jackson (1992) both consider incentive compati-
bility for a given economy, as opposed to across all possible realizations. Their results are
easily extended to situations where there is a finite set of possible realizations of the econ-
omy, but not to infinite ones. Recent work by Gul and Postlewaite (1992) shows that for
large enough replications of the economy, there exist interesting allocation rules (not nec-
essarily Walrasian) which are Bayesian incentive compatible and almost efficient. However,
their work also relies on a ﬁnite’t&' space, and it is not clear how it extends to infinite
type spaces. Mas-Colell and Vivé‘sﬂ%%‘;sider implementation when an infinite state space is
allowed and get a convergence to Walrasian equilibrium, but assuming that the distribution
of types is known to the mechanism designer.
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Agent 1’s preferences are represented by a utility function u* : R' — IR. U denotes the

set of all u* which are continuous, strictly quasi—concave, and increasing.” Let u denote the

vector (u',u? ... u") and u™*, @' denote the vector (u',...,u'" 1, @ u't! ... u")

A social choice function is a map from utilities into allocations, f : U™ — A. A;

represents the range of f and f*(u) represents the allocation given to individual ¢ at u.

A social choice function f is strategy—proof if
u'(f1(w) 2 W (1T, u7Y))

forallie {l1,...,n},ue U and @ € U.

A social choice function f is individually rational (with respect to an endowment e) if

u'(f(u)) 2 wi(e)

for all+ and u e U".

A social choice function f is anonymous if for all u, ¢ and j

f" (u_",j)u" ’ ’JJ) = fj(u_"j) g‘) uj)

whenever @* = %7 and u' = u’.

3. Two Agents

We start with a characterization for two people, and then consider the case of three
or more people in the next section. We first consider the case of two people trading two

goods, since this is the easiest to illustrate.

3.1 Two People and Two Goods

The social choice functions which are strategy—proof in this case are those which can

be derived from the following mechanism, which is referred to as fixed—price trading. The

7 A function ' is increasing if ' > y* and z* # y* implies that v*(z*) > u'(y*), where
> indicates greater than or equal to in all coordinates. The convexity and monotonicity of
preferences are important to our analysis. If the domain of preferences includes all non-
monotonic and non—convex ones, then a strategy—proof social choice function is dictatorial
[see Barbera and Peleg (1990) and Moreno (1991)].
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mechanism is not a direct mechanism, however it is dominant strategy incentive compatible.
Thus a strategy—proof social choice function is defined by finding the outcome associated
with the dominant strategies of the agents as a function of their utilities. An agent is
selected, which for convenience is referred to as agent 1. Two prices are selected for units
of the first good in terms of units of the second good. The first price indicates the price
at which agent 1 can offer to sell the first good, and the second price indicates the price at
which agent 1 can offer to buy the first good. Prespecified limits indicate the most agent 1
can offer to buy or sell.® The selling price is no more than the buying price, and the limits
are such that any final allocation is nonnegative. This mechanism is set and fixed before
agents appear with their preferences. Once preferences are realized, agent 1 chooses either
to offer to buy or to offer to sell good one, and declares up to how much she is willing to
buy or sell. At the same time, agent 2 indicates how much of the first good he is willing
to sell, and how much of the first good he is willing to buy. [Given the quasi-concavity of
preferences, agent 1 will only be willing to either buy or sell; but not both since the selling
price is no more than the buying price. Agent 2, however, may be willing to do both if the
prices are not the same.] If agent 1 has offered to buy, then goods are exchanged in the
amount of the minimum of what agent 1 declared she is willing to buy and what agent 2
declared he is willing to sell. If agent 1 has offered to sell, then goods are exchanged in the
amount of the minimum of what agent 1 declared she is willing to sell and what agent 2

declared he is willing to buy.
EXAMPLE 1. A Non-Anonymous Rule.

Agent 1 is endowed with ten units of each of the two goods and agent 2 is endowed
with five units of each of the two goods. The prices at which agent 1 may offer to buy or
sell are different. Agent 1 may offer to buy good one at a price of 2 (units of good two per
unit of good one) and sell good one at a price of 1. Notice, that given the shape of the
range, agent 1 has a unique best element in the range. If for instance, agent 1 finds buying
3 units of good one most preferred, then she will offer to buy up to 3 units of good one. If
agent 2 has the preferences pictured below, then he will offer to sell up to 2 units of good

one (at a price of 2) and buy up to 1 unit of good one (at a price of 1). In this case, agent

8 The set of all possible trades is closed, but it may be that the range is not connected.
For instance, it is possible that agents are restricted to trade only whole units.
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2 sells 2 units of good one to agent 1 at a price of 2. The final allocation is then (12,6) for
agent 1 and (3,9) for agent 2.

(c,15)

N e

(0,0) (is,¢)
(o, FIGURE 1

If instead, agent 2 has the preferences pictured below, then he will not offer to sell good
one, but will offer to buy up to 2 units of good one. In this case, no goods are exchanged

and the final allocation is the initial endowment.

(0,5
SuTeeme
ne ’m\ch
| 4
- .
(O,C) FIGURE 2 -

((S“/c)

Essentially, in fixed-price trading agents indicate how much they are willing to buy
or sell according to two fixed prices, and then the short side of the market is rationed.
It is easily checked that the outcomes of such a procedure (associated with the dominant
strategies as a function of utilities) define a strategy—proof social choice function which is
individually rational with respect to the endowment point. It is interesting that these are

the only social choice functions which are strategy—proof and individually rational.

THEOREM 1. A social choice function defined on a two person, two good exchange economy
is strategy—proof and individually rational with respect to an endowment point if, and only

if, it is the result of fixed—price trading.



The statement of Theorem 1 is somewhat loose, since we have not yet precisely defined
fixed-price trading. It is possible that the range of a strategy—proof social choice function
is closed but not connected, in which case one must worry about tie breaking rules when
agents are indifferent between two allocations. This is made precise in Theorem 2, of which

Theorem 1 is a special case.

A remark is in order, relating Theorem 1 to the work of Satterthwaite and Sonnenschein
(1981), which also considers strategy—proof social choice functions for exchange economies
(among other settings). ° Satterthwaite and Sonnenschein (1981) showed that if a social
choice function is strategy-proof and everywhere total, then it must be dictatorial. A
dictatorial social choice function in an exchange economy is one which always gives the
same agent the entire endowment. As Satterthwaite and Sonnenschein acknowledged, the
everywhere total condition used in their theorem is not well understood, and may be rather
strong. Of course, given their result, the everywhere total condition must rule out all the
non—dictatorial social choice functions described in the above theorem. One implication of
the everywhere total condition is that at every preference profile, at least one of the agents
must be able to change the allocation by some small change in utility. On the surface,
this seems to be a rather innocuous condition. It is however, violated by the social choice
functions derived from fixed—price trading rules. For instance, if both agents wish to buy
good one and sell good two at the given prices, then no trade occurs. This will remain true
for small changes in utilities, since both agents will still want to buy good one and sell good

two.

3.2 Two Agents and More than Two Goods

We now turn to strategy—proof rules for two agents who are exchanging ! > 2 goods. An

additional definition and some notation will be helpful in describing strategy—proof rules.

°® Theorem 1 is also related to Hagerty and Rogerson (1987). Hagerty and Rogerson
examine strategy—proof mechanisms in a bilateral trade setting in which one agent is a
buyer and one agent is a seller with a single unit of an indivisible good. Although the
settings are not comparable, the Hagerty and Rogerson mechanisms are intuitively the
mechanisms one obtains from the above theorem when additional restrictions are placed on
possible trades. If one agent is declared seller and permitted only to sell one (indivisible)
unit of good one, then the above theorem yields mechanisms similar to those of Hagerty
and Rogerson (1987).



We say that a set B C A is diagonal if for each agent ¢ and for all z and y in B (z # y),
£ ¥y and yf F 200

Given points a, b, and c in A, we write ab to denote the set of points lying on the line
segment with endpoints a and b, so ab = {z | 3y € [0,1] such that z = vya + (1 — 7)b}.
Then ¢ € ab indicates that ¢ lies on the line segment connecting a and b. We write ¢ >; ab
if ¢ > ~a* + (1 — 4)b* for some v € [0,1]. Thus, ¢ >; ab indicates that ¢ lies above the
segment ab from agent 1’s perspective.

Fixed-price trading has an extension to the case of more than two goods called fixed-
proportion trading, which is informally described as follows. Trade may occur along a
number of line segments emanating from the endowment, instead of just 2. As it was for
the two good case, strategy-proofness will imply that one agent always has a uniquely
defined most preferred direction of trade. In particular, this implies that trade occurs along
k < | diagonal line segments are selected, each having the endowment as an endpoint.
The line segments are chosen such that for one of the agents, say agent 1, the following
holds. Choose any z from one segment and y from another segment, then e >, zy. '* This
condition assures that for each utility function of agent 1, points on at most one segment are
individually rational, which turns out to be a consequence of strategy—proofness. The range
A; then consists of a closed set of points lying on these segments, including the endowment
point e. Agent 1 selects a point in A, on one of the segments, and simultaneously agent 2
declares demands along each of the segments. Essentially, the trading procedure is a simple
extension of the fixed price trading for two goods. Agents indicate their desired trades in

k <1 different fixed proportions, and then the short side of the market is rationed.

EXAMPLE 2.

There are two agents and three goods. Endowments are ¢! = € = (5,5,5) and the
total endowment is (10,10,10). Agent 1 can buy units of any good from agent 2, but at

a price of one unit of each of the other goods to do so. Thus agent 1 can offer multiples

10 We say z* >y if 2} > y; for each k.
' It is this condition which implies that k < I. Notice that e >; zy implies that y} —e; <0
whenever a:Jl. — e} > 0. Since neither trade is less than zero, it follows that they are positive

in different coordinates. We can find at most ! such trades which are each positive in some
direction, but never positive in a component for which another is positive.
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(but not combinations) of the trades (1,—1,-1), (-1,1,—1), (-=1,—1,1). The range of f

in terms of agent 1’s final allocations is thus
A; ={ z|3y€[0,1] s.t. either
2! = ~(5,5,5) + (1 — %)(10,0,0), or
z' = ~(5,5,5) + (1 - 7)(0,10,0), or
z' =~(5,5,5) + (1 —4)(0,0,10),}
Agent 2’s allocation, z2, is simply (10,10,10) — z*.
If agent 1’s most preferred point in the range is, say, (7,3,3), then the allocation is

agent 2’s most preferred point from the set of convex combinations of (5,5,5) and (7,3,3).

[Again, allocations are written in terms of agent 1’s final allocation.]

Notice that given the structure of the range, agent 1 always has a unique most preferred
point. Also notice that there is no point on any other segment which agent 1 prefers to
any point which lies between her top and e. For instance, consider the case when her most
preferred point in the range is (7,3,3). Take any point on another segment, such as one
which lies on the segment between (5,5,5) and (0,0,10). By strict quasi—concavity and the
fact that (7,3,3) is most preferred, it follows that £(7,3,3) + 2(0,0,10) = (5,12 ,5) is preferred
to (0,0,10). By monotonicity (5,5,5) is preferred to (5,%%,5), and so (5,5,5) is preferred to
(0,0,10). Since (7,3,3) is preferred to (5,5,5), it follows from strict quasi-concavity that
(7,3,3) is preferred to any convex combination of (5,5,5) and (0,0,10).$

It is this property that one of the agents will only want to trade along one of the
segments that makes the fixed—proportion trading strategy—proof. As it turns out, the
converse is also true: any strategy—proof trading rule must have this property. This is
formally stated in the next theorem after we give a precise definition of fixed—proportion
trading.

Given a set B C A and a utility profile u € U?, let T*(B, u) denote the set of allocations
in B which maximize u*. This set is nonempty if B is closed. In such a case, let t*( B;u) be

a selection from T (B, u).

A social choice function f defined on a two person exchange economy is the result of

fixed—proportion trading if the following hold:

(1) A; is closed and diagonal and contains e. There exists an agent ¢ such that for all

11



z and y in A; either z € ey, y €E ex, or e >; zy.

(2) t' and t7 are such that ¢'(A;;u) # t(As;u*,v7) only if v7 (t'(A;; v, u')) >
v?(t'(As;u)), and for any a € A; t(ea N Ay;u) # t7(ean Ay;v*,u’) only if
v (t'(ean Ap;vt,u?)) > v (t7(ean A, u)).

(3) f(u) =t'(ean Ay, u), where a = t*(A;,u)

Condition (1) assures that A, lies along k < [ diagonal line segments, each having the
endowment as an endpoint. If one chooses any z from one segment and y from another
segment, then e >; zy.

Condition (2) states that ' and ¢’ are choices among ¢ and j’s most preferred points
which are either constant, or choose in favor of the other agent. This defines the strategy-—
proof tie breaking rules which come into play if the range is not connected. Ties will only
ever have to be broken over at most two points, given the shape of the range from (1). In
the case where A, is connected (for instance if f is continuous), then there will never be

any need to break ties and condition (2) does not bind.

Condition (3) states the outcome of f is agent j’s most preferred point in the range

which lies between the endowment and agent 1’s most preferred point in the range.

THEOREM 2. A two person social choice function is strategy-proof and individually ratio-
nal with respect to an endowment point if, and only if| it is is the result of fixed—proportion

trading.

3.3 Anonymous Rules for 2 Agents

The descriptions of fixed—price and fixed—proportion trading seem asymmetric since
one of the agents can only offer to either buy or sell, while the other agent can offer to
do both. There are, however, anonymous social choice functions generated by the types of
mechanisms described in the first two theorems. The anonymous rules are those for which
the prices or proportions are the same for both agents. In this case the range of the social
choice function lies on a line segment and each agent has a single most preferred point.
Thus even though one of the agents can offer to both buy and sell, he will not choose to do

S80.
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EXAMPLE 3. An Anonymous Rule with Two Goods.

Each agent is endowed with ten units of each of the two goods. The same price is
chosen for both buying and selling. For example suppose that the price is 2 (units of good
two exchanged for each unit of good one). Agent 1 declares whether she wants to buy or
sell good one and up how many units of good one she is willing to trade. At the same
time agent 2 does the same. Given the convexity of preferences and the shape of the range,
neither agent will be willing to offer to both buy and sell. If both agents wish to buy or sell,
then no trade occurs. If one agent wishes to buy and one wishes to sell, then trade occurs.
The size of the trade is equal to the smaller of the two declarations. This is illustrated

below.

FIGURE 3

COROLLARY 1. A two person social choice function is strategy-proof and anonymous if
and only if it is the result of fixed—proportion trading along a line segment centered at the

equal split of the total endowment.

Notice that anonymity reduces the dimension of the range of a two person strategy-—
proof social choice function when there are three or more goods. That is, there exist
non-anonymous rules which trade along k < | segments emanating from the endowment.

However, for k to be larger than 2 it must be that the agents are treated asymmetrically

13



as required by condition (1). The only way condition (1) can hold simultaneously for both

agents (anonymity) is for all points to lie on a single line.
3.4 Dropping Individual Rationality for 2 Agents

The previous theorems treat cases in which some sort of individual rationality with
respect to an endowment is satisfied. The next theorem characterizes strategy—proof social
choice functions without the individual rationality constraint. Intuitively, it is a simple
extension of the previous results. Essentially the strategy—proof trading rules are similar to
fixed-proportion trading, except that one of the agents can dictate over a part of the range

which replaces the endowment.

We state the result for the two person, two good case as this is much easier to state

than the general case. It extends to the [ good case in the obvious way.

A strategy—proof social choice function , f, with range A, satisfies the following con-

ditions.

(1) A; is a diagonal set and there exist points a, b, ¢, and d such that
(i) a1 > z1 > d] for all z € A;.
(i) z} >b] > z€aband z] < ¢} >z E cd

(iii) let g be the point of intersection of the line containing a and b and the line

containing ¢ and d. Then there exists ¢ such that for each z € A, either z <; ag or z <; gd.

(2) t* and ¢ are such that t*'(B;u) # t*(B;u’,v?) implies v7(t'(B; v, u’)) > v/(t*(B;u)),
t/(B;u) # t’(B;v*,u’) implies v* (t/(B;v*,u’)) > v* (t/(B;u)).

(3) if t*(A;,u) € ab, then f(u) =t/ (zbN A;,u) where z = t*(A;,u), and if t*'(A;,u) € cd,
then f(u) =t’(cx N Ay, u) where z =t*(A;,u),

(4) otherwise f(u) = t'(A;,u).

Examples of sets A; which satisfy condition (1) are given in the following figures. Agent

{ dictates if her most preferred point in the range is in the region between b and ¢, and
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otherwise the function behaves much like the fixed—price trading defined earlier.

FIGURE 4

THEOREM 3. A two person, two good social choice function is strategy—proof if, and only

if, it satisfies conditions (1) — (4), above.

4. Three or More Agents

With three or more agents, the class of strategy—proof social choice functions is sub-
stantially richer than with only two agents. In order to simplify the analysis, we impose
two conditions. The first condition is really only a simplifying one which eliminates the
necessity of worrying about the tie-breaking rules for situations where the range is finite or
disconnected. We will only consider social choice functions which satisfy:

Consider ¢, u € U™, @', and ¥* such that there exists a € IR', A € R, and X\ € R,
and v € (0,1), such that f'(u) = ¢ + Aa and f'(uv™*,@') = € + Na, @ (vf(uv) + (1 -
) f(u,w)) > @W(f(u) and T (vf (u) + (1 - ) (u™F,8)) > & (f(v,8")). A social

choice function f is tie-free if f*(u) # f'(u™*,4') # f*(u™*, @) for all such 1, u, ¥, and @*.

15
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This condition says that given a fixed utility profile for other agents, if an agent can
obtain two different trades in the same proportion away from the endowment, and at a given
utility prefers some convex combination of those trades to either trade, then the agent is
not forced to choose one of those trades. In the proof of Theorem 4, this condition is only
used to avold tie-breaking when identifying the rationing schemes. Extensions to allow for

the possiblity of ties have been illustrated in Theorems 2 and 3.

The second condition we impose is more substantial, but still quite agreeable. It is the
non-bossy property defined by Sattherthwaite and Sonnenschein (1981). A social choice
function f is non-bossy if for any i, u, and &, f*(u) = f*(u™*,%") implies f(u) = f(u™*, ).

Non-bossiness states that if only ¢ changes preferences and #’s outcome is not changed,
then the outcome of other agents are not changed. It rules out a series of social choice func-
tions which are not dictatorial but are degenerate in other ways. Two examples ruled out by
this condition are [see Sattherthwaite and Sonnenschein (1981)]: (i) the entire endowment
is given to either agent 2 or agent 3, depending on the shape of agent 1’s preferences, and
(ii) agents 1 and 2 choose allocations from prespecified sets and agent 3 obtains whatever

is left.

The interesting thing we have found for three or more agents, is that it is possible to
incorporate a number of prices or proportions. To illustrate, consider the following example
for the n agent, 2 good case. For each integer from n — 1 to n/2, choose two possible prices
for trade. Each price is in terms of units of good 2 per unit of good 1. One price will
be called the buying price (of good 1) and the other, the selling price (of good 1). So for
instance, for n — 1 we might assign the prices of 2 and 1/2. In this case the agents will be
considering possible allocations of the form z* = €' + a(1,-2) and z* = €' + a(—1,1/2).
These prices must be selected so that the buying price is at least as large as the selling
price. Each pair of these is called a trade proposal. Trade proposals must be selected so
that the buying prices form a non-increasing sequence, and the selling prices form a non-
decreasing sequence. Agents simultaneously declare their demands for each of the prices of

trade in each trade proposal.!? Begin with the n-1 trade proposal. If exactly n-1 agents

12 These must be consistent with some utility. For example an agent cannot demand to
buy at one buying price and then to sell at a lower buying price. Notice also, that since
the buying price is at least as large as the selling price, an agent cannot request to buy at
the buying price and sell at the selling price, since both cannot be improving trades for a
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desire to buy at the buying price, or n-1 agents desire to sell at the selling price, then the
particular price is said to be matched. If not, proceed to the n-2 proposal. If exactly (n-2)
agents desire to sell at the selling price, or buy at the buying price then good then trade
is conducted at that price. The procedure is continued until a price is found so that the
rank of the trade proposal matches the number of agents agreeing to buy (sell). If no such
proposal is found then no trade occurs. At most one price will be selected by this procedure.
If a price is selected, then trade occurs at that price. So for instance, if the n-3 buying price
is selected, then n-3 agents will buy good 1 at that price, and the remaining 3 agents will
sell good 1 at that price. The side of the market which has declared demands in excess of
that declared by the other side are rationed according to the uniform rationing rule. This
is the rule which chooses a size of trade such that if each agent is given the minimum of his
or her demand and that size trade, then the market clears.

The social choice function derived from this rule is strategy—proof since it is a dominant
strategy to declare truthful demands. This is seen as follows. Suppose that through honest
declarations some price has been chosen. Suppose that it is a buying price. An agent who
requested to buy at that price could only benefit by being a buyer at a lower price, or a
seller at a higher price. No lower price can be selected with this agent as a buyer, since all
the other agents who are buyers at the original price will also wish to buy at lower prices,
and so the lower price will not be matched. Similarly no higher selling price can be matched.

For large numbers of agents, the above rule is fairly flexible, since it permits trade in a
multitude of different directions. The price is chosen depending on the numbers of agents
lining up on each side of the market. Such rules are not efficient since the selection of the
trading price is not responsive to the exact demands of the agents, but only to they are
positive or negative. However, this is the cost to the incentive compatibility requirements.

We will return to discuss this in more detail.

We now turn to the general characterization theorem. This requires a definition of fixed
proportion trading for a general n~person, [-good exchange economy. The rule consists of
three basic parts. (1) Trade can only occur in one proportion which is selected from an a
priori fixed set of proportions which satisfy some additional restrictions. The proportions

are grouped into subsets which we call “trade proposals”. Each trade proposal has a shape

single utility function.
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similar to that of the range discussed in Theorem 2, which assures that each agent has a
unique most preferred trade from a given proposal. Trade proposals have relative positions
so that they are what we term “nested”. (2) The proportion according to which trade occurs
is selected by examining the demands of agents. Each trade proposal is assigned a number,
and a proportion in that proposal is “matched” if exactly that number of agents demand
trades which are positive multiples of that proportion. The nesting of trade proposals
assures that at most one proportion can be matched at any given preference profile (See
Lemma 1). (3) Agents are given trades in the direction of their demanded trade in the
selected proportion. No one’s trade is larger than their demanded trade; but one or both
sides of the market may be rationed. If rationing occurs, then it is done “uniformly”, so
that the agents who are rationed are rationed equally and no agent receives a trade which

is larger than the rationed amount.
Let us be more specific.

A trade proposal P C IR' is a set of feasible trade proportions which satisfies the
following: (i) if a € P, then a # 0 and a £ 0, and (ii) if ¥ € P and b # a, then there exists
v € (0,1) such that ya + (1 — ~)b < 0.

The shape of a trade proposal is similar to the restrictions placed on the range in the
fixed proportion trading we saw for two agents (Theorem 2). Similarly, there can be at most
[ different proportions in any given trade proposal. The difference is that now there may be
more than one trade proposal. Which trade proposal is chosen, depends on the signs of the
demands of each agent in the given proportions through what we call a matching process (to
be defined shortly). The fact that such a matching process is well defined has implications

for the interrelations of trade proposals which is captured in the following property.

A collection of trade proposals {P(k) | n > k > n/2} are nested if for each k¥’ < k
and a € P(K') and b € P(k), either there exists v > 0 such that 40 < a or there exists
v > 0 € (0,1) such that ya + (1 — )b < 0.

For any k and a € P(k) let a(u',a,¢') be the @ € IR which maximizes v'(e' + aa)
subject to €' + aa € R',. Thus, a(v’,a,€') is the scalar such that a(u’,a,e€')a is ’s most
preferred trade among those in proportion a. Since the endowment is fixed in our analysis,

we will simplify the notation and use o(u',a).
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Given a set of nested trade proposals {P(k) | n > k > n/2}, we say that u matches
a € P(k) if either

(1) there exists C C {1,2,...,n} with #C = k such that a(u*,a) > 0 for each i € C
and a(u',a) < 0 for each i ¢ C, or

(ii) not (i) and either P(k) = {a} or P(k) = {a,~~a}, where k is the smallest integer
which is at least as large as n/2.

A proposal is matched if exactly k agents desire “positive” trades in a given proportion.
The exceptional case is the one where there are too few agents for any particular proposal,
and the upper most proposal only has one possible proportion. In that case, one does not
have to worry about incentives in selecting a proportion in which to trade and so any u
matches.

Since the proportion along which trade occurs is selected by the signs of demands,
rather than their sizes, it will often be necessary to ration. It turns out that the strategy—
proofness condition has strong implications as to which sorts of rationing rules can be used.
In particular, the rationing is done uniformly. !3

Consider u which matches a € P(k) and such that for each i there exists r* € [0,1]
such that f*(u) = €' + r*a(u’, a)a. f satisfies uniform rationing at u if

(a) sign|a(u’, a)] = sign[a(v’,a)], and |a(u?,a)| > r|a(v’,a)| and r* < 1, imply that
£i(w) = £1(w).

(b) sign|a(¥*,a)] = sign[a(u',a)], and either |a(¥’,a)| > r'|a(v’,a)| and ¥ < 1, or
la(4*, a)| = |a(u',a)| imply that f(u~*, &) = f(u).

If trade occurs, then according to the uniform rationing all those who are rationed on
a given side are rationed to the same trade. If some individual is rationed when announcing
a given utility, then the outcome is the same when that individual announces any utility

which requests a trade as large or larger along that same proportion.

The social choice function f is the result of fixed proportion trading on an n person, [

good exchange economy if:

13 For more on strategy—proofness and the uniform rule, see Sprumont (1991). The uni-
form rule arises in other contexts and has other nice properties [see Aumann and Dreze
(1986) and Thomson(1990)).
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(1) For each integer k, n > k > n/2, there exists a trade proposal P(k). If n is even, then
for any a and b in P(n/2) there exists ¥ € IR such that b = ~a.

(2) The trade proposals are nested.

(3) If u matches a € P(k), then for each 1 there exists r' € [0,1] such that f*(u) =
e +ria(u’,a)a, where € + r'a(u’,a)a € R. . If no match occurs, then f(u) =e.

(4) If trade occurs in proportion a at u and agents on either side are rationed, then they

are rationed uniformly. Finally, if f*(u) = €' = f*(u™*, %), then f(u™*, %) = f(u).

Conditions (1) and (2) lay out the structure of the range. Condition (3) states that
trade only occurs if some proportion is matched and then no one receives more than their
demand. (4) indicates that rationing is done uniformly, and that bystanders cannot affect

the trades of others. First we verify that fixed proportion trading is well defined.

LEMMA 1. Ifb € P(k) is matched and a # b isin P(k') for some k', then a is not matched
(unless k' =k =n/2 and a = —b).

PROOF: Suppose the contrary, so that some a € P(k') is also matched. Without loss of
generality, assume that k' < k. From (1), we need only consider k > n/2. First consider
the case where there exists ¥ > 0 such that 4b < a. It follows that any agent who has
a(u',b) > 0 also has a(u*,a) > 0. This means that a cannot be matched. The other case
to consider is where there exists v € [0,1] such that ya + (1 — 4)b < 0 (from the definition
of P(k) if k' = k or from the definition of nested if k' < k). Since k > n/2, there must exist
some ¢ such that both o(u*,b) > 0 and a(u',a) > 0. Let @ = min{a(u’,b),a(u’,a)}. Then
by the strict quasi-concavity of utility u* (e’ +a'b) > u'(e*) and u'(e' + @'a) > u'(e'). Then,
again by strict quasi—concavity, u’[y(e' + @'a) + (1 — 7)(¢' + a'b)] > u'(e*). Simplifying
provides u'[e' + & (ya+ (1-7)b)] > u'(e'). This contradicts the fact that utility is increasing
and that ya+ (1-9)b<0. 1

Fixed proportion trading is illustrated in the following example.

EXAMPLE 4.

There are two goods and five agents who each have an endowment of 10 units of each

good. There are two trade proposals. The trade proposals are P(4) = {(1,-2),(-2,1)}
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and P(3) = {(1,~-1),(~1,1)}. Thus any agent views the trade proposals as pictured below.

P(3)

FIGURE §

Il

+—

Notice that the nesting condition (2) requires that the proposal P(4) “lie below” the
proposal P(3), and that the proposals lie in the same (lower) half space.

Given the utilities pictured below, the proportion (-2,1) is “matched” and so trade
occurs in that proportion. Given the utilities of agents 1 and 2, it is clear that agents 34,

and 5 will have to be rationed.

(-1,

FIGURE 6

THEOREM 4. A social choice function f is strategy-proof, anonymous, and non-bossy if,

and only if, it is the result of fixed proportion trading away from the equal split point.
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Fixed proportion trading is in fact immune to coalitional manipulations. That obser-
vation (See Lemma 4 in the appendix) plays a key role in the proof of Theorem 4.

The anonymity condition is a bit stronger than one might like, since it requires that
the fixed proportion trading be centered at the equal split of the total endowment. This
is easily modified, by instead requiring that anonymity only be satisified in net trades.
It is clear that if we simply move the endowment, that the characterization is essentially

unchanged.!*

COROLLARY 2. A social choice function f iIs strategy—proof, anonymous with respect to
net trades, and non-bossy if, and only If, it is the result of fixed proportion trading away

from the endowment.

5. Concluding Remarks.

The Size of Message Spaces

As many authors have noted, if there is any cost to transmitting information, then one
will wish limit the size of messages which agents need to communicate in order to operate
a mechanism. One appealing aspect of the strategy—proof social choice functions is that
they can be decentralized through fixed—price and fixed—-proportion trading mechanisms,
which are very economical in the amount of information which needs to be transferred. The
most any agent needs to communicate is a finite number of points in R . [Recall that the
mechanisms only need to know each agent’s most preferred trade according to each fixed
price or proportion.] In contrast, to find a Walrasian allocation one must know the demand

function of each agent, which indicates a point for each possible vector of prices.!®

Efficiency and Large Economies

Fixed-proportion trading satisfies a number of desirable conditions. In addition to

strategy—proofness, it satisfies coalitional strategy—proofness, an anonymity condition, in-

14 To be careful about the details, we say that f is anonymous with respect to net trades
if if for all u, ¥ and j f{(u=%7, v, u’) = f/(u™"7,u’, @) whenever u'(z') = u/(y’) and
@ (z') = @W(y’) for all z and y such that z' — €' =y’ — ¢’. [Recall that u' is defined on all
of IR'.] There are no other modification necessary, since our definition of fixed price trading
was deliberately general.

15 See Hurwicz (1986) for a recent survey of work on informationally efficient mechanisms.
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16 and depends only on the ordinal representation of

dividual rationality, envy—freeness,
preferences. The real cost of strategy—proofness is the loss of efficiency. Fixed proportion
trading has a number of sources of inefficiency. First, choosing trade from a fixed menu of
proportions will clearly lead to inefficiencies. It is only by chance that that a proportion
will be chosen which clears the market, without any rationing. Second, if no proportion
is matched, then no trading takes place at all. This leads to a tradeoff. With only one
proportion there is no difficulty in matching, but there may be a large degree of rationing.
With more proportions there may be less rationing in general, but there is also a chance
of not matching. Third, the matching process requires that the majority of agents obtain
trades which are nonnegative multiples of the matched proportion. Since the proposals are
nested, this implies that the majority always ends up in the same half-space. Fourth, when
there are more than two goods, trading is done according to set proportions. Each trade
proposal contains at most | proportions (where ! is the number of goods), and so there are
many directions in which trade can never occur. These last two restrictions on strategy-—
proof rules make it clear that there is no hope for any sort of approximate efficiency result

in the limit (as the economy grows).

16 An allocation is envy—free if no agent prefers the trade received by some other agent
to his or her own. This is a straightforward consequence of Lemma 2 in the appendix and
anonymity.
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Appendix: Proofs of the Theorems
We begin by stating definitions and lemmas which will be helpful in the proofs of the
theorems.
The notation C(z,u') denotes the upper contour set of u* at z:

C(z,u') ={z€ A | u'(2') > v'(z")}.

We say that U* is a concavification of u* through x if
(i) C(z,%') c C(z,v*) and
(i) z € C(z,%') and 2* # 1* = u'(2') > u'(z),

Notice that by the strict quasi—concavity of utility, given any u* € U* and z € A we
can find a 4 € U* which is a concavification of u* through z.

A set B C A is diagonal if for each agent ¢ and for all z and y in B (z # y), 2y
and y' #? z*.

LEMMA 2. If f is strategy-proof and non-bossy, f(uc) = z and %' is a concavification of
u' through z for eachi € C C {1,2,...,n}, then f(u™%,%%) = z.

PROOF: Pick ¢ € C. Suppose that f(u™*,%') = z # z. Since f is non-bossy, z* # z*.
By strategy—proofness u'(z*) > u*(z*). By (ii), this implies that u*(z‘) > u’(z*), which
contradicts the strategy—proofness of f at u. Thus f(u™*,%') = z. Repeat this argument
foreachjeC. |

LEMMA 3. Ifn =2, then the range of a strategy—proof social choice function is diagonal.

PROOF: Suppose the contrary. Then there exist preference profiles u and U such that
f(uv) = = # y = f(u), and (without loss of generality) z! > y*. This implies that and
y2 > z2. For each agent { = 1,2 choose preference %' € U* which is simultaneously a
concavification of u' through z and a concavification of @ through y. The existence of
such a @' is assured by the fact that either z* > y' or y* > z'. Since f is non-bossy!’
and strategy-proof, it follows from Lemma 2 that f(u) = z. Likewise, f(u) = y, which
contradicts the fact that f is single valued. |

Remark that the above is not true for n > 3 as is clear from the general definition of
fixed price trading.

DEFINITION. A social choice function f is coalitionally strategy—proof if for all C C
{1,2,...,n}, u, u°, there exists 1 € C such that u*(f(u)) > v*(f(u=¢,u°)) for eachi € C.

This is a weak version of coalitional strategy—proofness. It requires that no coalition
can deviate and make all of its members strictly better off.

LEMMA 4. If f is strategy—proof and non-bossy, then it is coalitionally strategy—proof .

PROOF: Suppose that for some coalition C there exist u and u° such that u*(f(u=¢,8%)) >
u*(f(u)) for each ¢ € C. For each 1 in C, let & simultaneously be a concavification of u*

17 Since n = 2, 2! # y! if and only if 22 # y? and so any f is necessarily non-bossy.
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through f(u) and a concavification of @ through f(u~¢,%¢).!® It follows from Lemma 2
that f(u=¢,%°) = f(u) and that f(u=C,%°) = f(u=,u®) which contradicts the fact that
f is single valued.

PROOF OF THEOREM 2.

It is straightforward to check that a social choice function which is the result of fixed—
proportion trading is strategy—proof and individually rational with respect to an endowment
point. We show the converse. Let f be a strategy—proof social choice function which is
individually rational with respect to an endowment point e. We show that f must be
defined according to fixed proportion trading. If A, has less than three points, then the
result is straightforward. Therefore, suppose that #A; > 3.

We let O_;(u') = {z | Ju~* s.t. z = f(u~*,u')} denote the option set which agent ¢
offers to the other agent(s).

LEMMA A. Ifze€ O_;(v') and y € O_;(v*), where u*(z') > u'(y'), then either y >; ez or
yz >; €.

PROOF: Without loss of generality, let 1 = 1. Suppose the contrary so that z € O,(u!),
y € Oz(u'), and u'(z') > u'(y'); but y ¥, ez and yz ¥, e.

Let u? be such that f(u',u?) = y. For each € € (0,1), choose u? a concavification of
u? through y such that ?(2?) > %?(z?) = yz >, (1 — €)2. It follows from Lemma 2 that

f(u',87) =y Vee (0,1) (1)

For each € € (0,1), choose ! a concavification of u! through z such that u}(z!) >
ul(e') = (1+¢€)z >, ze. From Lemma 2, it follows that z € O,(t!}) for all € € (0,1).
Individual rationality for agent 1 implies that (1 + €)f(ul,u?) >, ze. Strategy-

proofness for agent 2 and the fact that £ € O2(%!) implies that yz >; (1 — €)f(ul,u?).
Combining these observations,

f@l,@?)e{z|yz > (1 - €)z and (1+ €)z >; ze}. (2)

By the continuity of u! we can find a neighborhood B of z such that u!(z') > u!(y')
for all z € B. For some small enough ¢, {z | yz >, (1 — €)z and (1 + €)z >, :z:e} Cc B. 1
From (1) and (2) it follows that for small enough € u! (f!(u?!,%?)) > u!(f*(u',u?)), which
contradicts the strategy—proofness of f. |

'® Since u'(f(u™?,¥%)) > u'(f(u)), it is possible to find & which is a concavification of v’
through both f(u) and f(u=¢,u°). Let u" be a concavification of @ through f(u=¢,u°).
Choose ' so that C(@*, f(u)) = C(#, f(u)) and C(%, f(u=%,u%)) = C(@, f(u%,u®))N
C(u", f(u=°,u%)).

19 Qur supposition that y #; ez and yz ¥, e implies {z} = {z | yz >, z and z >, ze}.
[To see this, consider z in this set. There exist 4 and « in [0,1] such that yy' + (1 —v)z! >
z! > ae! + (1 — a)z'. If both v and a are 0, then z = z. Otherwise, if 0 # v > a

then y* > e Ly 5"’—_—01::1 which implies y >, ez contradicting our supposition. If a > «
then Ty! + M v > e! which implies yz >, e contradicting our supposition.] The set
{z ]| yz =, (1 —€)z and (1 + €)z > ze} is closed and shrinks uniformly around z as a

function of €. Thus for any neighborhood B of z, there exists a small enough € so that
{z|yz > (1-€zand (1+¢€)z >, ze} C B.
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LEMMA B. Ifz and y are points in Ay, and y >; ex, then y € ex.

PROOF: Without loss of generality let 1 = 2. Suppose that y ¢ ex. This implies that
y # ¢ # e # y. By the diagonality of A;, there exists p € R! _ such that p-e! = p-z! (and
sop-e? =p-2?).

We can find u! such that u!(z!) > ul(y') > ul(e'), u'(z!) > u!(2!) for all z such
that z # z and p- z! < p-z', and such that z € O,(u!).?° Thus by Lemma A it follows
that z € Oz(u') implies that p- 2! > p-z'. We can also find u? such that u?(y') > u?(e')
and u?(e') > u?(z') for all z # e such that p- 2! > p-z'.?! Individual rationality for
agent 2 implies that f(u) = e. This contradicts coalitional strategy—proofness (Lemma
4 and notice non-bossiness is always satisfied when n = 2), since u*(y') > u'(e') and

() > w(el). |

LEMMA C. If z and y are points in A;, then at least one of the following holds: e >, zy;
e >, zy; z, y, and e are collinear.

PROOF: If z, y, and e are not all distinct, then it is clear that they are collinear. So
consider the case in whichz #Zy #e# z. If y >, ex, y >z ex, z >, ey, or £ >, ey, then
the Lemma follows from Lemma B. So we are left to consider the case in which y ¥, ez,
y Y2 ex,z ¥, ey, and z ¥, ey. Suppose that the statement in the lemma does not hold so
that e ¥, zy and e ¥, zy. The fact that no point is greater than any convex combination
of the other two (y ¥, ex, y ¥2 ex, z ¥, ey, T ¥, ey, e ¥, zy and e ¥, zy) implies that
[ > 3 and that there exists p € R} | such that p-e? = p-2? = p-y?. There exists p' € R, |
close to p such that p’ - y2 > p' - €2 = p’ - 2. Now repeat the argument from Lemma B
(using p’ in the place of p).

LEMMA D. Ifz,y, and z are distinct points in A; such that no two are collinear with e,
then there exists ¢ such that e >; zy, e >; yz and e >; zz.

PROOF: Suppose the contrary. Since no two of the points are collinear with e, we know
from Lemma C that it must be that e >; two of the pairs, while e > the third where 5 # 1.
Without loss of generality, suppose that e >, zy, e >, yz, and e >, zz.

By diagonality y; > e} for some k. Then e >, zy and e >, yz implies that z} < e}
and z; < e,. But this implies that 22 > €2 and z2 > €?, which contradicts the fact that
e>rzz. 1

LEMMA E. There existss such that for any x and y in A, either e >; zy, € ey, or y € ez.

PROOF: If there exist z, y, and z, distinct points in A; such that no two are collinear
with e, then the result follows from Lemma D. Otherwise, all points lie on at most two line
segments which have e as endpoints. The result then follows from Lemma C. [

20 First, find u' such that u'(z!) > u'(y') > u'(e!), which is possible since by the
diagonality of A; and the fact that y >, ex implies that e ¥, zy. Concavify u through =
so that u'(z!) > w'(z') for all z such that z # z and p- z! < p-z'. Next find @' such
that z € O, (u'). Let 4! be a concavification of ' through z. Let u! have the same upper
contour sets as ' through e and y, and have upper contour set C(u',z)NC(%!, z) through
z.
21 Let the upper contour set of u? through e intersect the hyperplane {z | p- 22 = p- €%}
only at e, and be close enough to the hyperplane so that u?(y?) > u?(e?).
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Let 1 be the agent identified in Lemma E. Lemma E implies that A; lies on k < line
segments emanating from e. Pick one of these line segments and let a denote its endpoint
(recall that A, is closed). Let U, denote the set of u’s such that T*(A;,u) C ea. It follows

from individual rationality?? that f(u) € ea. It follows from Lemma 4 (which implies
unanimity) that the range of f restricted to U, is Ay Nea. It is also true that U, is the
set of all utilities which are single peaked over A; Nea. The characterization of f over
eaN A; then follows from Theorem 3 in Barbera and Jackson (1991). Then notice that U*
is partitioned by the selection of the k different a’s.

PROOF OF THEOREM 1

Theorems 1 is a special case of Theorem 2.

PROOF OF THEOREM 3.

We show that if f is strategy—proof then it satisfies (1)-(4). Again, the converse is
easily checked.

We accomplish this by extending the domain of f to include extra utility functions
which are single peaked over the range, but are not in U*. We extend f so that it is still
strategy—proof over the extended domain. We then show that the range of the extended
function just over the new utility functions satsifies the candidate range condition and
includes the entire original range. We then characterize f over the new part of the domain,
and from that derive the characterization over the original domain.

Define the binary relation > over A; by z > y if z; > y}. By Lemma 3, A; is diagonal
and so > is complete and transitive when restricted to points in A;. Let A; denote the
closure of A;. It follows that > is complete and transitive when restricted to points in A;.

The utility function u’ is single peaked on A; if T*(A;,u) is a single point and for
each z and yin A;: z > y > t*(A;,u) or t'(A;,u) > y > = implies that u*(z') < v'(y') <
u'[t'(A;,u)]. Let S} denote the set of all continuous utility functions defined over A which
depend only on 1’s allocation and which are single peaked on Z,.

We extend f to the domain (U'US;) x (U? U S?) as follows. The extension is denoted
as f.

(1) fu e U' x U? then f(u) = f(u)

(2) If u € S} x U? and u' ¢ U?, then f(u) is the z in the closure of {z | Jv! €
U', f(v',u?) = z} which maximizes u!. If there is more than one such z choose the one

of those which maximizes u?. [Since u' is single peaked on Ay, it follows that there are at
most two such points.] If both agents are indifferent, then choose the smallest one according
to ».

(3) fue U'US; x S? and u? ¢ U?, then f(u) is the z in the closure of {z | Jv% €

U?, f(u',v?) = z} which maximizes u?. If there is more than one such z choose the one
of those which maximizes u!. If both agents are indifferent, then choose the smallest one
according to >.

LEMMA A’. f is strategy—proof over (U' U S}) x (U? U 5%).

PROOF: First we show that f is strategy—proof over (U U S}) x U2. Then we show that

[ is strategy-proof over (U' US}) x (U? U S?).

22 The strict quasi-concavity of u* and Lemma E imply that u’(e') > u’(b*) for any b ¢ ea.
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Suppose that f is manipulable at u € (U* U S}) x U? by one of the two agents.
Case 1: There exists u* € (U' U S}) such that ul(?1 (u*,u?)) > u? (?1 (u)).

By the definition of f (2), agent 1 cannot manipulate f at u! € S}, u! ¢ U'. Thus
u! € U'. Also by (2) f(u!,u?) is in the closure of {z | 3v* € U*, f(v},u?) = z}. Find

a€ {z |3 €U f(v},u?) = z}. close enough to f(u!,u?) so that u'(a’) > ul(f1 (u)).
(Recall that u'! is continuous.) This contradicts the strategy—proofness of f.

Case 2: There exists 4? € U? such that u2(f2(u1,i'12)) > u2(f*(u)).

Since f is strategy—proof, it must be that u' € S}, u' ¢ U*. Let a = f(ut,d?), b=
T(w), 01 (62) = {z | 30* € U, f(,47) =z}, and o (@) = & | " € U, 7(o",@) = 2},
Since u? is continuous, there are neighborhoods B(a) and B(b) such that u?(a’?) > u?(4'?)
for all o’ € B(a) and ¥ € B(b). Assume that u'(a') > u!(b') [an analagous argument
handles the other case|]. Since a is not in the closure of 0! (u?) [otherwise by (2) it would be
selected over b], there exists some neighborhood B'(a) C B(a) such that B'(a)Nne! (u?) = 0.
Notice also that since a is in the closure of 0 (4?), then any neighborhood of a must intersect
o!(u?). Find v! € U? which has peak in B'(a)No!(4?), and such that there is some b’ € B(b)
such that v (¥') > v!(c) for all ¢ € o' (u?) U o' (u?), ¢ ¢ B(b) U B'(a).?® It follows that
f(v',8%) € B’(a) while f(v!,u?) € B(b). Thus u?(f2(v?,4?)) > u?(f?(v',u?)), which
contradicts the strategy—proofness of f.

We have shown that f is strategy—proof over (U* U S}) x U2. The argument to show

that f is strategy—proof over (U* U S}) x (U? U S7) parallels cases 1 and 2 above. |

LEMMA B’. The restriction of f to S} X sz can be written as
f(u) = min{a, maz[t'(A;,u),b],maz[t’ (A;,u),c], maz[t'(A;,u),t" (A;,u),d]},

where mazx and min are defined relative to >, t* and t' are strategy-proof tie breaking
rules,** and a > b> ¢ > d for a,b,c,d € A;.

PROOF: This follows from Theorem 3 in Barbera and Jackson (1990). The fact that S
includes all the needed single peaked functions can be verified since A, is diagonal and we
can then use “V” shaped utility functions to get the necessary single peaked functions over
A;. That is , in S} it is no longer necessary that utility be increasing. Thus S} includes
utility functions whose upper contour sets are subsets of the upper contour sets of Leontief
preferences. These preferences generate all the single peaked preferences over 4. |

LEMMA C’. A; satisfies (1) (of the definition preceding Theorem 3) with a,b,c,d corre-
sponding to those given in Lemma B’.

PROOF: Strategy—proofness implies that unanimity is satisfied for u S} X sz. This
implies that f restricted to S} x S? has range A;. From Lemma B’ we know that (i) holds.

?* Without loss of generality, assume that a > b. Notice that since u* € S} and u'(a') >

u' (b'), it must be that if z € o' (u?), then either z > a or b > z. [Otherwise 1 would choose
z instead of b from ¢! (u?).] Given the diagonality of A; and the fact that o’ (u?) Uo?(u?)
does not include any points between a and b, such a v! can be found.

24 The rule t'(A;,u) is strategy-proof if and only if t*(A;,u) # t'(A;,u’,v’) implies
o (6 (A, 7, u)) > 7 (A7, w).

30



Next we verify (ii). Suppose that z € A;, z > b, but that z, a, and b are not collinear.
One of the two agents, say agent 1, has a utility function u! € U!, with a as the most
preferred point (or else some a' close to a), which is preferred to b which is preferred to z.
Let agent 2 have a single peaked preference u? with z as peak. By strategy-proofness and
the form of Lemma B’, we know that 7(14) =y, where z > y. [It is not d > z since then
if agent 1 had a single peaked preference with peak at a, the outcome of f by Lemma B’
would be z, and agent 1 would be better off announcing u' and getting y. It is not z, since
then agent 1 could benefit from from deviating from u! and announcing a single peaked
preference with peak at b, thus obtaining b which is preferred to z under u'.] Since the only
assumption made about u® is that it is single peaked at z, the above argument still holds
if u?(a?) > u?(y?), which is a feasible preference. But this contradicts strategy~proofness,
since agent 2 can then deviate and announce a single peaked preference with peak at a thus
improving the outcome from y to a. Hence our assumption was wrong. Parallel arguments
establish that ¢ > z > d are collinear. Thus (ii) holds.

Next we verify (iii). Consider ¢, the agent defined in Lemma B’. Notice that when
u € S}, that by the structure of the expression in Lemma B’, agent 1 can always obtain
any outcome between ¢ and b. Define g as in (iii). We show that all points in A; are “below”
the line segment connecting a and g, relative to 1’s preferences. More specifically, there is
no point z and preference u* € S} such that b > z > ¢ and u*(a’) > u*(z*) > u*(b*) (where 2
is the peak of u* over Z,). Suppose the contrary. Let y be 1’s most preferred point between
b and c. Let j have the single peaked preference with peak at ¢ and u’(a’) > u’(y’). By
strategy—proofness and Lemma B’, the outcome of f at u is y. [The point cannot be outside

of b and ¢ since then ¢ would wish to manipulate f from some single peaked preference
with peak outside b and ¢. And since by Lemma B 1 can obtain any point between b and
¢, it must be his best in this interval.] Now by deviating and announcing a single peaked
preference with peak at a, j can change the outcome from y to a, an improvement. Thus
our supposition was wrong.

LEMMA D’. f is obtained by the procedure (2) — (4) over A;.

PROOF: Combining Lemmas B' and C’', we know that this is true on S; x S? over A,

This implies that if for some u € U' x U? agent 1 ever has a peak in the dictatorial
region, then one of agent i’s tops is chosen (according to a strategy—proof tie breaking
rule). Otherwise, agent i’s peak over A, lies on one of the segments and behaves as a single
peaked preference on the segment. It is then easily checked that the characterization from
Lemma B’ extends. [

PROOF OF THEOREM 4.
We maintain the assumption that the social choice function f is tie—free.

The proof proceeds as follows. Step 1 verifies that if a social choice function satisifies
(1)—(4), then it is strategy—proof , anonymous, and non~bossy. Steps 2 through 5 establishe
the converse. These rely on our knowledge of two person strategy—proof rules. Given
coalitional strategy—proofness (Lemma 4 above), we know what an n person rule looks like
when agents can be partitioned into two groups who have identical utility functions by
applying Theorem 2. [There are some details to work out since the range of the n person
rule lies in JR™' while the two person rules have range in IR?.] Steps 2 and 3 use this
logic to define the shape of the range, and in particular to establish that (1) and (2) of
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the definition of fixed proportion trading are satisfied. Step 4 shows that (3) and (4) hold
on the limited domain where agents can be partitioned into two groups who have identical
utility functions. The rest of the proof consists of making sure that trade is still limited to
these proportions when agents have more diversity in their preferences. Step 5 shows that
if (3) and (4) hold when agents can be partitioned into m groups such that all the members
of a given group have the same utility function, then (3) and (4) also hold when agents can
be partitioned into m + 1 groups such that all the members of a given group have the same
utility function. Thus by induction, Steps 4 and 5 establish that (3) and (4) hold, generally.

STEP 1. A social choice function satisfying (1)-(4) is strategy—proof , anonymous, and
non—bossy.

PROOF: Let us verify that f is strategy—proof : Let f(u) = z and consider f(u=*,w') = y.
Notice that by (3) u'(z') > u'(e'). Thusif y* = €', then u'(z*) > v'(y*). So consider the
case in which y* # €', which implies that (3) applies and a match occurs at u™*, %" and
trade is in proportion a. If z* is also a trade in proportion a , then it follows from (4)
that u'(z*) > u'(y*). If z* is not a trade in proportion a, then either no match occurs
at u or some match other than a occurs at u. Thus, sign[a(¥, a)] # sign[a(u’,a)] and so
u'(e') > u'(y*). Since u*(z*) > u'(e‘), it follows that u'(z*) > u*(y*).

Anonymity is easily checked: Let f(u) = z and u* = u/. If £ = ¢, then z* = z7. If
trade occurs, then according to (3), z* — ¢’ and 27 — ¢’ are in the same proportion. If both
agents recieve their most preferred trades in that proportion then z* = = z7. Otherwise, by
(4) the agents are rationed equally and so z* = z7.

We now verify that f is non-bossy. Consider any ¢, u and ¥, such that f(u) = z,
f(u™", %) =y, and z* = y*. We show that z = y. First consider the case where z* # ¢'.
Then (3) applies, ' = €' + rfa(u’,a)a and y* = €' + 7 (¥, a)a. Since y* = z' # €' it must
be that sign[a(¥,a)] = sign[a(u’,a)], and |a(u,a)| > r*la(u’,a)|. If 1 > ' or r = 1 and
la(¥,a)| = |a(u,a)|, then z = y follows from (4) and the definition of uniform rationing.
The only other possibility is that ¥ = 1 and |a(u',a)| > |a(u’,a)|. Since z* = ¢, this
means that 1 > ¥ and |a(u’,a)| > 7|a(u’,a)|. Applying (4) (and the definition of uniform
rationing) implies that £ = y. Next we consider the case where z* = €' = y*. It follows
directly from (4) that z =y. |

Next, we show that if a social choice function is strategy—proof , anonymous, and
non-bossy, then it satisfies (1)—(4). For any integer k, where n > k > n/2 let

U.={uelU|3Cc{l, . .,n}st.#C=kandu' =uw ifi,j€Cori,j¢C}

Uy denotes the part of the domain in which agents can be partitioned into a group of
size k and a group of size n — k, such that all agents of each group have the same utility.
Notice that U, j2<x<n Uk 1ncludes all profiles where agents can be partitioned into (at most)
two groups such that all agents of each group have the same utility.

STEP 2. (1) holds. That is, for each k, n > k > n/2, there exists a trade proposal P(k),
and if n is even, then for each a and b in P(n/2) there exists v < O such that b = ~a.
Furthermore, if u € Uy then trade occurs only if some a € P(k) is matched and then trade
occurs in that proportion.

PROOF: By anonymity, we can assume without loss of generality that the partition for Uy
is of the first k agents and the next n — k agents.
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Using coalitional strategy—proofness (Lemma 4) and anonymity we can then apply
Theorem 2 to obtain a characterization for f on the part of the domain where u is in U,
for some n > k > n/2 (i.e. when agents can be partitioned into two groups whose members
have identical utilities). From the application of Theorem 2,%° it follows that for one of the
two groups either = € ey, y € ez, or e >; zy for all z and y in the range of f restricted
to Uy and 1 in the group. Find a subset P’ of the range of f restricted to Uy such that
if £ € P’ then z # e and if z,y € P’ then z ¢ ey and y ¢ ez, and also such that for all
z in the range of f restricted to Uy there exists z € P’ such that z € ez or z € ez. [The
condition from the two person characterization implies that the range lies on line segments
emanating from e. P’ is constructed by picking exactly one point from each segment.] Now
let P(k)={a€ R' |3z € P' s.t. a = 1' — ¢'} (pick any 1 in the group since by anonymity
they all get the same net trade). Notice then by the conditions on P’ (condition (1) of
theorem 2) that for all @ and b in P(k) there exists v € (0,1) such that va + (1 — )b < 0.

Next, we show that if n is even, then P(n/2) has at most two elements, and then these
must be opposites. Suppose that there exist a € P(n/2) and b € P(n/2) such that a # b.
Find u € U, /, such that a(u*,a) > 0forn/2 > i > 1and o(u*,b) > Oforn > ¢ > n/2. From

our previous arguments we know that ya + (1 — 4)b < 0. This implies that a < —Q;—"lb

and b < — 7755 a. Therefore afu’,b) <0 for n/2 > >1and ofu',a) <Oforn>1>n/2

Thus trade occurs in both proportions by Theorem 2 and anonymity. This means that there
exists 4 > 0 such that a = —4'b.

We have identified P(k) and shown that it is a trade proposal. We now show that
trade occurs at u in Ui only if a € P(k) is matched and then occurs in proportion a.
In this case it must be that either agents 1 — k or else agents £ + 1 — n who play the
role of the ¢ from the two person characterization. We show that it is the larger coalition
1 — k which plays the role of 1 in the two person analogy. This means that trade only
occurs if @ € P(k) is matched. If k = n/2 then the coalitions are of identical size and so
by anonymity it must be that either coalition can match the proposal. If k = n then by
anonymity there is no trade. So consider the case where n > k > n/2 and suppose that
it is the smaller coalition (agents k + 1 to n) which plays the role of ¢ in determining the
trade. Also suppose that P(k) contains at least two proportions a and b such that b # ~va
for all v € R. [Otherwise trade only occurs when one group demands positive multiples of
a and the other group demands postive multiples of —a and so we can define P(k) so that
trade only occurs when the larger coalition matches a trade in P(k).] Notice that if agents
i > k get the allocation €' + b, then agents 1+ < k must receive e — 5‘;—"6. Find u! such
that u'(e! — 22%b) > u'(e' — 2%a) > u!(e') and so that (¢! — 23Eb) is most preferred
over the line in proportion b and (e! — ®%a) is most preferred on the line in proportion
a. [By the definition of P(k) there exists v/ € (0,1) such that 4'a + (1 — v')b < 0. By our
supposition vb # a for all ¥ € R and so 4'a + (1 — 4')b # 0. This means that for some
v €(0,1) —y2*a— (1 - 4)2%b > 0 and # 0. It follows that we can find p € IR, | such

that p- (¢! — 2z%a) =p-e' < p-(e' — 25%b). We can find u' to have ' — % the most

25 To be careful about the application, for u € Ui let fi(u',u?) = [kf!(u),(n — k) f™(u)],
u'(z') = u'(z'/k) and u?*(z%) = u"(2?/(n — k)). It follows from Lemma 4 that f; is
a strategy—proof two person social choice function . It is also individually rational with
respect to the equal split endowment. [If it was not individually rational at some u € Uy,
then it would not be individually rational for all agents in at least one of the two groups.
If all these agents switched an announced the same utility as the other agents, then by
anonymity there would be an equal split of the total endowment. This would provide
a coalitional manipulation contradicting Lemma 4.] Thus, we can apply Theorem 2 to
characterize f;, which in turn provides restrictions on f over the domain Uy.
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preferred point from the plane {2 € A | p- 2! = p-e'} and upper contour set close enough
to the plane so that it falls below e’ — —£_-b] Let &' be a concavification of u! through

(¢! — 2-Ea) so that (¢! — 2:*a) is most preferred on the line in proportion a and €' + b
is the most preferred point on the line in proportion b. [Notice that by the construction of
ul, u'(e!) > u!(e' +b) and so u'(e* — 2z%a) > u'(e! + b). Thus such a concavification
is possible.] Find u” so that (e” + a) is most preferred on the line with proportion a and
(e” — "k;"b) is the most preferred point on the line through proportion b. Let u denote the
profile so that u' = u! if { < k and u' = u" if 1 > k. Then f(u) = z, where z* = ¢’ — 2:%q
for 1 < k. Let u denote the profile so that w' = U! ifi <n—-kandvw =u*ifk>i>n—-k
and @' = u" if { > k. It follows from Lemma 2 that f(u) = z. Let ¥ denote the profile so
that i = 4! ifi <n—kand & =u" if{ > n—k. Then f(%) =y, where y* = ¢' — 2%b for
# > n— k. This contradicts coalitional strategy—proofness (Lemma 4) since for £ > 1 > n—k
the outcome €' — 2% is preferred to ' — 2=%4 at the utility & and so these agents can all

announce % = u" to manipulate the outcome. [

STEP 3. (2) holds. That is, the trade proposals are nested: for each k' < k and a € P(k')
and b € P(k), either there exists v > 0 such that vb < a or there exists v € (0, 1) such that
va+ (1 — a)b <0 (where 0 € R').

PROOF: Suppose the contrary for some k' < k and a € P(k') and b € P(k). By the
definition of P(-) [see Step 2] there exist z and y such that for i < k' z* = €' + a and for
1>k o =¢ - "—'j%a, and for for j <n—ky’ =e — —£_b, whilefori >n—ky’ =e +b.
Case 1. There exists p € IR, | such that p-a>p-b=0.

Let u! be such that and so that ! +a is the most preferred trade on the line e! ++a and
e! +b is the most preferred trade on the line e! +~b and such that u!(e! +b) > u'(e! +a).2¢
Similarly, find u” so that u®(e? +b) > u'(e! - n’_"k a) and so that e’ + b is the most preferred

trade on the line e! +~b and e! — "f'k a is the most preferred trade on the line e! + va. It

follows that if u* = u! for i < k¥’ and u' = u™ for ¢ > k', then f(u) = z.

Find #' such that @' (e’ + a) > @'(e’ — —£.b) and so that ¢! — —£_-b is the most
preferred trade on the line €' +4b, e! + a is the most preferred trade on the line €' +~a and
u! concavifies u! through e' + a.?” It follows from Lemma 2 that if @ is such that @' = 4!
fori<n—k, @ =u'forn—k<i<k, 6 and @ = u" fori > k', then f(@) = z. However, if
@ =4 fori <n—kand & = u" fori > n—k, then f(u) = y. This contradicts coalitional
strategy—proofness since if n — k < 1 < k' switch from u! to u™, their outcome changes from
e! +atoe' +b,and u'(e' +b) > ul(e! + a).

Case 2. There isno p € RY, | such that p-a>p-b=0.

Let u™ be such that e! +b is the most preferred trade on the line e! + b and e! — "—’j—'k—,a

is the most preferred trade on the line e! + ya and such that u™(e' — —5-a) > u™(e! +b).2®

26 By our supposition 70 £ a for all vy > 0 and ya+ (1 — )b £ O for all v € [0,1]. It
follows that we can find p' € R, | such that p'-b >0 =p’:a. Take u! to have e' + a the
most preferred point from the plane {z € A | p’ - 2! = p' - €'} and upper contour set close
enough to the plane so that it falls below e + b.

27 Take U’ to have ¢! — —%_b the most preferred point from the plane {z € A | p-z' = p-€'}
and upper contour set close enough to the plane so that it falls below ¢! + a.

28 In this case we can find p' € R, | such that p’- —a > 0 =p'-b. Take u" to have ¢! +b
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Similarly, find u' so that u!(e! — nf'k,a) > ul(e! - n—f;b) and so that e! — ""—_—kb is the most
n‘ik'
e! + ~va. It follows that if u* = u! fori <n — k and v* = u™ fori > n — k, then f(u) = y.
Find 4" such that u"(e' +b) > 4" (e! +a) and so that e' +b is the most preferred trade
on the line e! + b, ¢! + a is the most preferred trade on the line e + va and " concavifies
u™ through €' + b.2° It follows from Lemma 2 that if @ is such that & = u! for + < n — k,
g =u"forn—k<i<n-k' and @ = 4" fori > n— k', then f(i) = y. However, if
v =u! fori <n-k'and v' = u" fori > n— K, then f'(u) =¢ — nf'k,afor i<n-Fk

and f*(u) = ¢ + a for i > n — k. This contradicts coalitional strategy—proofness since if

preferred trade on the line e' + 4b and e! — a is the most preferred trade on the line

k
n~k' a,

n—k <1< n-—k switch from u” to u!, their outcome changes from e! + b to e! —
and u™(e' — nflk,a) > u™(e! +b). |

STEP 4. (3)-(4) hold for the case when agents can be partitioned into two groups such
that all the members of a given group have the same utility function.

PROOF: We are necessarily in Uy for some k > n/2. If any proposal is matched at u, then
since there exists k such that u € Uy, it must be that we have matched a € P(k). In this
case we know from Theorem 2 (see Step 2) that trade is in proportion a and the short side of
the market is rationed [with the possibility of no trade]. This means that everyone receives
a trade between 0 and their most desired trade in proportion a and so if a is matched then
trade is in that proportion. Suppose next that no a is matched. We are either in U, and so
by anonymity there is no trade, or else n > k > n/2. In this second case, since there was no
match, it must be that either a(u*,a) > 0 for some a € P(k) and for all 1, or a(u',a) < 0
for all a € P(k) and ¢ € C (where C is as used in the defiition of Uy). In either case, from
Theorem 2 (again see Step 2) it follows that there is no trade. Thus (3) is satisfied.

If there is any trade, then from Theorem 2 it follows that one side gets their most
preferred trade and the other side is rationed equally to some non-zero trade. Finally,
1t is clear that since all agents in each part of the partition receive the same trade, if

fi(u) =€ = fi{(u%,¥), then f(u™*,¥) = f(u) = e. Thus (4) is satisfied. |

STEP 5. If (3)-(4) hold when agents can be partitioned into m > 2 groups such that all
the members of a given group have the same utility function, then (3)—(4) also hold when
agents can be partitioned into m + 1 groups such that all the members of a given group
have the same utility function.

PROOF: The verification of (3) and (4) hold is divided into several parts.
5.1 If there exists a € P(n — 1) such that a(u’,a) > 0 for all ¢, then f(u) =e.

5.2 If a € P(n — 1) is matched, then trade is in proportion a. Any rationing is done
uniformly.

5.3 If for some k, n — 1 > k > n/2, 5.3.1 and 5.3.2 (below) hold for all ¥ > k, then 5.3.1
and 5.3.2 hold for k.

the most preferred point from the plane {z € A | p' - 2! = p'- €'} and upper contour set
close enough to the plane so that it falls below e! — —£-a).

29 Take " to have e! + a the most preferred point from the plane {z € 4 | p'-z! =p'-€'}
and upper contour set close enough to the plane so that it falls below e! + b.
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5.3.1 If #1 such that a(u',a) > 0 is larger than k for some a € P(k) and #i such
that a(u*,b) > 0 is less than k' for all ¥ > k and b € P(k'), then j(u) =e.

5.3.2 If for some a € P(k), #4 such that a(u*,a) > 0 is equal to k, then trade is in
proportion a and any rationing is done uniformly.

5.4 If #1 such that a(u',a) > O is less than k for all k and a € P(k), then either f(u) = e
or there exists a such that trade is in proportion a and P(k) = {a} or P(k) = {a,—~a} for

some v > 0, where k is the smallest integer greater than or equal to 7.

Induction on 5.3, given 5.1 and 5.2; combined with 5.4 cover all the possible situations
which can occur when agents can be partitioned into m + 1 groups such that all members
of each group have identical preferences.

We use A, B, and C to represent elements of the partition of agents. z# denotes the
allocation which each agent in A receives. n* denotes the number of agents in group A.

Proof of 5.1. Suppose the contrary. By non-bossiness, it must be that all allocations
are different from the endowment. [If some group C changed utilities to match some other
group, then all agents get their endowment since there would be only m groups. So if C get
their endowments at u, then non-bossiness implies that all agents get their endowments at

u.] Pick A. For each B # A there exists v € (0,1) and A > 0 such that

(1-47)(z* - e*) +1° (2P —¢®) < ~A7a. (1)

[If not, then we can find @ such that z# and z® are both preferred to the endowment and
a(,a) > 0. If both A and B had utility 4 there would be only m groups and no trade.
They could manipulate via u# and u® to get z* and z% ]

If A2 = 0 for each B # A, then it must be that all allocations are collinear. Then find
two groups B and C such that 22 and z“ lie on the same side of the endowment and 4
such that z2 and z© are both preferred to the endowment and «(d,a) > 0.° If both B
and C had utility u there would be only m groups and no trade. They could manipulate
via u? and u® to get z® and z©.

So consider the case A® > 0 for some B. Summing (I) over B # A

(:tA _eA) Z n3(2;7 )+ Z nB(.'z:B _eB)_ _ Z ni;\Ba'

B# A B#A B#A

Since 35, , 07 (27 — ) = —n*(2* — €*), it follows that

(:IZA—CA)[Z fL;—ﬁ_nA]S— Z nB,\Ba.

B
B#A 7 B#A 7

3¢ Notice that the allocations must be individually rational for each agent. [Any group

can get e by announcing the same utility as some other group.] Thus neither 2 < —§a nor
¢ < —6a. Since =€ and z© lie on the same side of the endowment, we can find such a 4.
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Since Y 5, 4 "—:—Qi > 0 it follows that either } -, , ﬂfl—;il —n? >0andso (z# —e?) <

~aa for some a > 0,0r 35, ﬂ%’ﬂ —n? < 0andso (z* —e?) > aa for some a > 0.%!
By individual rationality [again, any group can get e by announcing the same utility as
some other group], it follows that (z* — e*) > aa for some a > 0. Since A was arbitrary,
the same holds for all groups, which contracts the fact that the sum of the allocations is
equal to the sum of the endowments.

Proof of 5.2. Suppose that a € P(n — 1) is matched but that trade is not in proportion
a. Then there exists p € IR, | such that p-a = 0 and some group of agents A such that
p-z>p-(e+a)forallie A

First notice that a(u?,a) > 0. [Otherwise, find 44 with u#(z*) > u#(e*) and
a(t*,a) > 0. By step 5.1, f(u™4,84) = e and A can manipulate at &* via u® ]

Case 1. There exists a group of agents B # A such that p-zf =p- (e® + a).

Without loss of generality (by Lemma 2) assume that z? is the most preferred point in
the plane {z | p-z = p-(e? +a)} under u?. Find 4 which has the following properties: (i) z°
is the most preferred point under 4 in the plane {z | p-z = p-(e® +a)}, (ii) 4(z*) > @(z?),
(ii) «(u,d) > O for any k' and b € P(k') such that p- (¢ +b) > p- (¢’ + a), and (iv)
a(t,b) < 0 for any k¥’ and b € P(K') such that p- (e’ +b) < p- (¢’ + a). [This is possible by
taking the upper contour set of U/ through z tangent to the plane {z | p- 27 =p-€’} at 27
thus satisfying (i), and sufficiently close to the plane to satisfy (ii) and (iii). We can also
make sure that the contour set through e is close enough to the plane to satisfy (iv).] Let
¥ be such that & = @/ foralli € AUB and @' = v’ for all{ ¢ AU B. At 4, individuals
can be partitioned into m groups with identical utilities and so we know that (3) applies.

Then f(u) = y where p-y* < p-¢ for all 1 € AU B. The only way this might not
happen is if ¥ matched some b € P(k') with b #a. If p- (¢ +b) > p- (¢’ + a) then by (1)
and (2) it must be that ¥’ < k and b > ~va for some v € IR, v # 0. (The other possibility
is that there exists v € (0,1) such that ya + (1 — 4)b < 0 which contradicts the fact that
p-(e7+b) > p-(e?+a) = p-e’.) All agents 1 ¢ AUB with a(u’,a) > 0 will have a(u,d) > 0,
as well as all agents in AU B (by (iii)). So there are at least k agents with a(uw,b) > 0
and there cannot be a match. If p- (e’ + ) < p- (¢’ + a) then by (1) and (2) it must be
that there exists v € (0,1) such that ya + (1 — 4)b < 0. Then by (iv) at most the agents
i ¢ AU B with a(u’,a) < 0 will have a(@',b) > 0. There are less than k such agents, and
so there cannot be a match.

Now concavify %7 and u’ through both z and y to @ for j € B. [This is possible
since both @’ and v’ have r as the unique most preferred point in the plane {z | p- 27 =
p- €'}, and so both have the same ordering over z and y.| It follows from Lemma 2
that f(u#,4%,u"42) = y and that f(u?,4%,u"*8) = z. Agents in group A can thus
manipulate f at (44,%?,u”42), by announcing u®.

Case 2. There exists a group of agents B # A such that p-z2 > p- (e + a).

Find @ which has the following properties: (i) ¢ + a is the most preferred point under
U in the plane {z | p- 2 =p- (¢® + a)} and (ii) 4(z*) > G(e* + a) and G(z*) > u(e? + a).

It follows that the number of agents with a(u‘,a) > 0 is at least n — 1. Thus,

(u4,4%,u=4P) is trade in proportion a, or is the endowment. Individuals in groups 4
and B can all be made better off by announcing u, which contradicts coalitional strategy-
proofness.

B
31 Since 0 £ —a, it is not possible that 3>, , % —nt =0.
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Case 3. p-z’ <p-(¢f +a) forall 5 ¢ A.
3.1 There exists a group B # A with a(u®,a) > 0 and such that if ¥* = u®, then
f(u=2,4*) = y where u? (y7) > uB (28).

Consider @ with a(4,a) = a{u®,a) and @(z*) > @(y*). Then f(u™*B 84 08) =y
Let %2 be a concavification of & and u? through y® and a concavification of u? through
z8 . Tt follows from Lemma 2 that f(u=4% 4% 44) =y and f(u=Z,%7%) = z. Group 4
can then manipulate via u*.

3.2: Not 3.1. For any B # A with a(u?,a) > 0, if ©* = u®, then f(u™*,u") = y where
u? (27) 2 w7 (7).

Let n be the agent with sign[a(u’,a)] < 0. If there exists any B # A (n ¢ B) such
that B < €2 + Aa for A > 0, then let B’ denote the such B with y2' closest to e. For all B
with n ¢ B (including A) such that 2P £ B + Aa for any A > 0, concavify uf through z%
and choose lower contour sets of u? so that a(u?,a) > a(u®’,a). If there does not exist
any such B’,3? then choose all u' i # n to have the largest possible a(u’,a) > 0. In either
case, if A announced u®, for any B # A (n ¢ B) then all agents with sign[a(u’,a)] > 0
receive the same trade y’ — e/ = Ya.

For each 1 ¢ A,# n there exists §* < 1 and 0 < A* < 1 such that

M(z® —e*)+ (1 - M)(z' - ¢) < 6'Ya. (II)

If this were not true for all §' < 1, then we could find a utility & with both z# and z*

prefered to e + Ya and a4, a) > au',a). If A and B (such that i € B) both had @, then

the outcome would be y and they could manipulate f via u?,u?.

It follows from (II) that

n"’\‘. A A 5 N n.'6‘
Z (1__,\.')(1 —et)+ Z ni(z —¢€') < Z (1_/\‘.)}’0. (111)

i¢A #n i¢A#n igdA,#n

Noting that 32,4, ., n(z' —e') = —ny(z* — e?) — (2" — ), (IIl) is rewritten as

[ Z (Ini—/\;:j_nA](IA —eA)S[ Z (lain;‘,)]}’a—(a:"—e"). (IV)

TgA#n i¢A,#n

Since z" — " < —(n — 1) — €Y a for some ¢ > 0, we can rewrite (IV) 33

[ 2. (1ni/\;e) - nA](IA R [ 2 (lﬁinj\") ~(nmn- E]Ya. )

igA,# igA,En

2 If { = 2 then it must be that all B # A (n ¢ B) are such that z8 < e® + Xa for some
A > 0. The extra complication enters only when { > 3.

33 It must be that z" — e® < —8a for some § > 0, otherwise, we could concavify u"
through z" and choose a(u”,a) > 0. The outcome would still be z contradicting 5.1. It
must be that § > 0 since 5.1 implies that n can get at least e by matching any other
agent’s utility. Given that z" — e® < —&a for some § > 0, by concavifying u" through z",
we can choose a(u",a) so that y™ — e" is shorter than the projection of z" — €* onto a.
Finally, notice that y* — e” = —(n — 1)Ya.
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Since p- (z* — e*) > p-a =0, it follows from (V) that

[ 3 (171:—/\;‘)_'_1"]50 (V1.

igA,#n

Since §* < 1 for each 1 > 1, it follows that }:‘.¢A‘¢"n; T €> 3 idasn n,ﬁl';,\’\,, which

implies that
fl,‘/\‘ n.-5"
E T E 1_,\‘.—(71—1)-—6. (VII)

If (VI) holds with equality, then (V) and (VII) would imply that 0 < —a which is a
contradiction. Thus (VI) holds with inequality, and so (V)-(VII) imply that z# —e* > 7Y a
for some v > 1 (where v isin fact (3,4, ., (16—3%\',— —(n=1) =€/ iga sn T"i%‘,— nal).

The fact that 4 —e# > vY a for some v > 1 coupled with (II} implies that z* —¢* < §Ya

for i ¢ A,# n and some § < 1. This is impossible since we know that u*(z*) > u*(y*) and
a(u*,a) > Y. Thus our original supposition was incorrect.

To complete the proof of 5.2, we need to show that there exists r* € [0,1] such that
f*(u) = €' + r*a(u’, a)a for all i and that any rationing is done uniformly.

First, consider i = n. Agent n can force f(u) = e by a change of u” so that a(u",a) > 0.
This means that f™(u) = e" + r"a(u™,a)a for r* > 0. Suppose that r™ > 1. Concavify
u” through z" to u" such that a(u" a) = a(u ,a). Then fr(u™",u") = f"(u), which
contradicts the tie-free assumption, since at ™ a convex combmatlon of z" and e" is
preferred to either. Hence, f"(u) = €” + r"a(u",a)a for some r* € [0,1]. (Rationing on
this side of the market is necessarily uniform since there is only one agent with a(u",a) < 0.)

Next, consider B such that a(u?,a) > 0. If B matched some other B’ with a(u?’,a) >
0, then trade would be in a nonnegative multiple of a. This (together with the tie-free
condition) means that fZ(u) = ¢f + r®a(u?,a)a for some r2 > 0. First, we show that
r8 < 1. If B announced the same utility as n, then the outcome for B, y?, would be such
that vy® + (1 — 4)z®? < €® for some v € [0,1]. [Otherwise find u? with &2 (y?) > @7 (zZ)
and z8 = o(uf,a)a+e®. a € P(k— 1) would still be matched and so B’s trade would have
to be in proportion a, but then B could manipulate by matching u™.] Suppose that r* > 1.
Then consider &% with a(%?,a) = a(u®,a), and U2 (yy® +(1-7)z?) > @8 (2B) = BB (v®).
The tie-free condition implies that that f(u~?,u®) # z®. Since we know from our previous
argument that f*(u=2,%%) = € + 7P a(u®,a)a for some 2 > 0. Strategy-proofness at
@’ implies that ¥? < rB and strategy—proofness at u® implies that ¥ < 1. Concavify
u® through z€ to 4P such that o(@?,a) = a(u®?,a). Then fZ(u=2,4P) = fZ(u), which
contradicts the tie-free assumption. Hence, r® € [0,1]. Next we show that the rationing
is done uniformly. Suppose the contrary, so that there exists B # n and A # n such
that r? < 1 and r*a(u?,a) > r®a(u®,a). In this case it must be that if B matched A,
then the outcome for A and B would be z®. [By strategy—proofness it must be a trade
at least as large as zB. If it is larger, then by strategy—proofness at u? it must be to a
point beyond a(u®,a). In that case, we could concavify u® through zZ to %% such that
a(1®,a) = a(u?,a), and get a contradiction of the tie free assumption.] This implies that if
A matched B, then the outcome for A and B would be z? (according to uniform rationing
for m groups). However, then at 44 = u® group A can manipulate via uA. Thus our
supposition was wrong and so rationing is done uniformly.
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Proof of 5.3.1 Without loss of generality, assume that there exists b € P(k + 1) such
that vb < a for some v > 0, and b # a.3* This implies that there exists some group A with
a(u®,a) > 0 and a(u?,b) <O0.

Case 1. a(u?,b) =0, and a(u?,a) > 0 implies a(u®,b) > O for all B # A.

In this case, it must be that z# = e4. [It cannot be that p-z# > p-e# forany p € R/, |
such that p-b = 0, otherwise we can find 4 with z4 preferred to any trade in proportion b
and with a(%,b) > 0, and a(@,c) < 0 for any ¢ # b, ¢ < b for some v > 0. Then either b
is matched at some k > k in which case f#4(u#,4%) is trade in direction b, or else 5.3.1
applies for some k > k in which case there is no trade. Either way, A can manipulate via
u?. Thusp-z# < p-e* forall pe R, suchthat p-b=0. If z# # e*, then A could
find a 44 as described above so that the outcome is arbitrarily close to e (set a(u“,b)
close to 0) which is better for A than z#. Thus, z# = e*.] It must also be that % = ¢?
for all B # A. Suppose the contrary. Then there must exist some B and p € R, |, such
that p-2% > p-ePf and either p-a =0 or p-b = 0. Then find @ such that a(t,a) > 0,
a(t,b) < 0, and 4(z?) > U(e?). It follows that f(u~4B 44 4%) = e (since 5.3 holds for
m groups). Let &* concavify both u# and 44 through e#. Then f(u=4-% 44 ,8%) = e and

f(u=#,44) = z. Then B can manipulate at &% via u?.

Case 2. a(u?,b) < 0, and a(u®?,a) > 0 implies a(u®,b) > 0 for all B # A.

Suppose that z# # e*. It follows from case 1 that there exists some 4y > 0 such that
z# < e# —~b. [Case 1 implies that e# is available to A so the outcome must be individually
rational for A. If p- z# > p- e* for some p € R, | such that p-b =0, then A with u* as
in case 1 could manipulate.] The facts that a(u?,a) > 0 and u®(z*) > u?(e*) guarantee
that z4 £ e* — va for any v > 0. Consider any p € IR, , such that p-z# = p-e* and
p-a > 0. [Since z# £ e* ~ va for any v > 0 and z# < e* — b for some v > 0, it follows
that there exists such a p.] There is no C # A such that p-z° > p- z#, otherwise find @
with both z¢ and z* preferred to e and a(@,a) > 0 and (@, b) < 0. The outcome if both
A and C announced # would be e, and they could manipulate via u* and «“. Thus all B
are such that p-z® = p-z#. Slightly altering p to p' € R/, | so that p' - z* = p' - e* and
p' - a > 0 implies that all & are collinear with e and z#. [If { = 2 then there is no need
to alter p.] If there are two groups with nonzero trades in the same direction, then it is
possible to find & with both trades preferred to e, and either a(€,a) > 0, and «(%,b) < 0,
or a(u,b) > 0 (in which case both groups had a(u?,b) > 0 to begin with). The outcome if
both groups announced @ would be e and so they could manipulate via u. Thus there must
be some group C with z° = ¢“. Find @ with z# preferred to e, a(@,a) > 0, and (@, ) < 0.
It follows that f(u=4'¢ 84, 8°) = e. Let 4 concavify both u® and @° through €. Then
f(u™4C,84,%°) = e and f(u"C,%°) = z. Then A can manipulate at 44 via u®. Thus
our supposition was wrong and so z# = e*. It then follows from case 1 and non-bossiness

34 To see that this is without loss of generality, consider the construction of the proposals
described in step 2. In step 2, alter the construction as follows: For any k and a € P(k — 1)
such that there is no b € P(k) such that vb < a for any v > 0, let a € P(k). P(k) will
still meet the definition of trade proposal, and the trade proposals will still be nested. It
will simply be the case that when a € P(k) is matched for u, then there is no trade and so
r* = 0 for each 1 where f*(u) = €' + ra(u’,a)a. Thus the previous steps of the proof still
hold. Finally, notice that for the premise of 5.3.1 to hold, it must be that a ¢ P(k+1). By
our new construction this means that there must exist some b € P(k + 1) such that 6 < a
for some v > 0.
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that f(u) =e.

Case 3. a(u?,b) <0, and a(u?,a) > 0 and a(u?,b) < 0 for some B # A.

First take the case that a(u®,a) > 0 implies a(u®,b) > O for all C such that B # C #
A.

Neither z8 nor z# can be such that p-z# > p-e# for some p € R/, | such that p-b=0,
otherwise they could manipulate from one of case 1 or 2. Since each can get ¢ by matching
the other, it must be that 24 < e* — vb and % < ¢® — +'b for some v and 7' greater than
or equal to 0. If either gets e then cases 1 and 2 and non-bossiness imply that the outcome
is e. So consider the case where both are not the endowment. Repeating the argument from
Case 2 leads to a contradiction. Thus, f(u) =e.

Iteration of the above argument covers the case where additional groups B’ # A are
such that a(u?’,a) > 0 and a(u?’,b) < 0.

A

Proof of 5.3.2 This is analagous to the proof of 5.2, except that in Case 3 we must consider
the possibility that a(u’,a) < 0 for all { ¢ A. This means that n, = k. In that case,
first suppose that for all B # A, 2% — ¢® < —)a for some A > 0. Let ©* concavify
u# so that a(%i*,a) = 0. This implies that a(%4,4) < O for all b € P(k) for all k > k.
Find @ with both 28 and z€ preferred to ¢ where B # A # C. Since ny, = k and
a(t4,b) < 0 for all b € P(k) and k > k, it follows that f(u4,8?,3%,u"4%:C) = e.
However, f(u#,u®?,u“ u=4-8:¢) = z, and so groups B and C can manipulate f. Thus
our supposition was wrong and so there exists some B such that zZ — e £ —\a for all
A > 0. In this case, concavify u®? to u? so that a(u?,a) > 0. This means that either some
b € P(k) is matched for k > k or else 5.3.1 applies. Since z # e, it must be that some

b € P(k) was matched. However, then z# should be a nonnegative trade in proportion b,
which contradicts the fact that p-b <0 < p-(z# — e#), where p us as defined in the proof
of 5.2..

The proof that there exists r* € [0,1] such that f*(u) = €' + r* a(u’, a)a for all 1 and
that any rationing is done uniformly is a straightforward extension of the proof of the same
fact in step 5.2.

Proof of 5.4 Without loss of generality, whenever there exists b € P(k) for some k > k
and no a € P(k) such that b < ~ya for some v > 0 for any kK, k>k>k, thenlet be P(k)
forallk, k > k > k. [We could make such a construction in Step 2. P(k) will still meet the
definition of trade proposal, and the trade proposals will still be nested. It will simply be
the case that when b € P(k) is matched for u, then there is no trade and so r* = 0 for each
i where f*(u) = €' 4+ r*a(u’,a)a. Thus the previous steps of the proof still hold.]

First let us treat the situation in which there exist a € P(k) and b € P(k) such that
b # ~a for all ¥ # 0. We must show that f(u) =e.

Case 1. There exists A with a(u®,b) = 0, and such that if A had a(i*,b) > O then
there would be enough at least k agents with a(u',b) > 0.

In this case, it must be that z# = e#. [See Case 1 of 5.3.1.] It must also be that
zB = ¢ for all B # A. Suppose the contrary. Choose p € IR!. , such that p-a < 0 for all
a in all P(k). [The fact that such a p exists follows from the fact that the fact that P(k) is
a trade proposal and it contains a and b with b # ~a for all 4 # 0.] Since z # ¢, there must
exist B # A and z® # € such that p-z® > p-€®. Then find t such that a(4,a) < 0 for all
a in all P(k) and u(z?) > u(e?). It follows that f(u=4F 44 uP) = e. Let u4 concavify
both u# and 4# through e*. Then f(u=4® 44 ,4%) = e and f(u=*,4*) = z. Then B

can manipulate at 4? via u?.
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Case 2. There exists A with u?(y*) < u®(e?) for any y # e such that y* < e* +
Zaep(g A, a for some set of A, such that A, > O for each a. [y*# lies in the convex hull

of P(k).] Also, if A had a(u*,b) > O then there would be enough at least k agents with
a(u',b) > 0.

Suppose that 4 # e4. Case 1 implies that e# is available to A so the outcome must
be individually rational for A. It also follows from case 1 that z4 < e4 — 4b for some v > 0.
[Otherwise some A from case 1 could manipulate.] Thus there exists p € IR! | such that
p-z? =p-e* and p-a <0 for all a in P(k). There is no C # A such that p-z€ > p-z4,
otherwise find & with both z€ and z# preferred to e and «(%,a) < 0 for all a in P(k).
The outcome if both A and C announced u would be e, and they could manipulate via
u# and u®. Thus all C are such that p-z¢ = p- z4. Slightly altering p to p' € IR, | so

A

that p' - 4 = p' - e# and p' - a < O implies that all z€ are collinear with e and z#. [If
| = 2 then there is no need to alter p.| If there are two groups with nonzero trades in the
same direction, then it is possible to find @ with both trades preferred to e, and a(%,a) <0
for all a in P(k). The outcome if both groups announced % would be e and so they could
manipulate via u. Thus there must be some group C with 2z = e“. Find @ with z*4
preferred to e and a(u,a) < 0 for all a in P(k). It follows that f(u=4C,44,4°) = e. Let
4 concavify both u€ and 4° through e“. Then f(u=4¢,44,4°) = eand f(u~%,%°) = z.

Then A can manipulate at 4“4 via u®. Thus our supposition was wrong and so z# = e*.

It then follows from case 1 and non-bossiness that f(u) =e.

Case 3. There exists A with u® (y*) < u®(e?) for any y # e such that y* < e* +
Zaep(k) Aga for some set of A, such that A, > O for each a. [y* lies in the convex hull of

P(k).] But not case 1 or 2.

First notice that z4 must be individually rational for A. [A can match any other

group to get e since we are not in case 1 or 2.] If z4 = e# then follow the argument of
case 1. If zP = e€f for any B # A the same argument holds. So consider the possibility
that z? # €® for all B. If 4 < e® — b for some b € P(k) and v > 0, then follow the
argument of case 2. So suppose that z# £ e# — 4b for any b € P(k) and vy > 0. Consider
any B# A. If e 2 ¥'z# + (1 — +')z® for any v € [0, 1] then we can find & with z# and z®
both preferred to the endowment. If z2 £ e® + 4a for any a € P(k) then we can choose
# so that a(u,a) < 0 for all a € P(k). If zP < e® + ~b for some b € P(k), then it must
be that a(u®?,b) > 0 and so choose @ so that a(u,b) > 0. In either case, if both A and B
announce 4, then the outcome is e and they can jointly manipulate f via u* and u?. So
e > ~'z* + (1 —+')z® for some v’ € [0,1] for any B # A. This means that all z® are in
line and in the opposite direction from z#. Find two such groups B and C and a common
preference u which prefers z% and z€ to e. [If z° < €® then it must be that z¢ < €©
and so both groups could jointly manipulate by announcing some u with a(u,a) < 0 for all
a € P(k) to get ¢,] If z8 < ef + 4b for some b € P(k) and v > 0, then it must be that
a(u?,b) > 0 and a(u®,b) > 0 and so choose @ so that «(%,b) > 0. Otherwise choose @
so that a(4,a) < 0 for all @ € P(k). In either case if both B and C announce @, then the
outcome is e and they can jointly manipulate f via u? and u®.
Case 4. Not cases 1, 2 or 3.

Suppose z # e. Then there exists some A and p € IR, | such that p-z* > p-e* and

p-a <0 for all a € P(k) for any k. Then there exists &4 such that u#(z4) > U4 (e*) and
u? (y*) < u*(e*) for any y # esuch that y* < et +3° , p(x) Aaa for some set of A, such
that A, > O for each a. This contradicts Cases 1, 2 and 3. Thus f(u) =e.
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Finally, let us treat the case where either' P(k) = {a} or P(k) = {a,—~a} for some
~ > 0. We show that if there is any trade, then it must be in proportion a.

Without loss of generality we can treat the case P(k) = {a} as if it were P(k) =
{a,—~a} for some 4 > 0. [We could make such a construction in Step 2. P(k) will still
meet the definition of trade proposal, and the trade proposals will still be nested. It will
simply be the case that when —va € P(k) is matched for u, then there is no trade (unless
k = n/2 and a is also matched) and so r* = O for each § where f*(u) = €' + rfa(u’,a)a.
Thus the previous steps of the proof will still hold.]

There must exist some groups of agents with a(u‘,a) = 0, otherwise some other step
applies. If there is only one such group A then z# = e#. [The proof of this parallels case 1 of
5.3.1.] It must also be that z® is in proportion a for all B # A. Suppose the contrary. Then
there must exist some B and p € IR!, | such that p-z® > p-ef and p-a = 0. Then find G such
that a(i,a) = 0, and @(z?) > 1(e?). It follows that f4'Z(u=4F 44 GF) = 4B Let &4
concavify both u# and @4 through e#. Then f8(u=42 %4 ,4%) = ¢f and f(u™4,4%) = z.

Then B can manipulate at @% via uf.

If there are two groups of agents A and B with a(u‘,a) = 0, then both get the en-
dowment. [Neither zf nor z# can be such that p-z#* > p-e* for some p € R _ such
that p-a = 0, otherwise that group could manipulate from the previous case or if a were
matched. Since they can get e by matching the other, it must be that the outcome is e.]

We can repeat the previous argument to establish that all other groups trade in proportion
a.

Iteration of this reasoning allows for additional groups B # A such that a(u?,a) = 0.
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