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LEARNING ABOUT VARIABLE DEMAND IN THE LONG RUN

Aldo Rustichini® and Asher Wolinsky™”

Abstract

This paper studies the problem of a monopoly who is uncertain about the
demand it faces and learns about it over time through its pricing experience.
The demand curve facing the monopoly is not constant--it changes over time in
a Markovian fashion. We characterize the monopoly’s optimal policy and inquire
how it differs from an informed monopoly’s policy. It turns out that, even
when the rate at which the demand varies is negligible, the stationary
probability with which the monopoly’s policy deviates from its informed
counterpart is non-negligible, as long as the discount factor is below 1.



1. Introduction

This paper studies the problem of a monopoly who is uncertain about the
demand it faces and learns about it over time through its pricing experience.
The existing literature on this problem includes the work of Aghion, Bolton,
Harris and Jullien (1991), Mclennan (1984,1986), Easely and Kiefer (1989) and
Kiefer(1987). The common basic problem, which the first three contributions
share, is one in which the demand curve is fixed and through learning the
monopoly narrows down its initial uncertainty about it. The new angle that
Kiefer (1987) and the present paper add to this literature is that the demand
curve facing the monopoly is not constant--it changes over time in a Markovian
fashion. Thus, even after the monopoly has learnt the state of demand, the
demand is liable to change and the monopoly has to check occasionally whether
it has changed. In Kiefer(1987) the set-up is significantly more ambitious
than ours and consequently it does not obtain many analytic results. We focus,
in turn, on a particularly simple example which allows us to accommodate the
added complexity and to obtain relatively sharp insights into the optimal
monopoly's pricing policy.

In our example, the state of demand follows a symmetric Markov chain and
in the different states the demand curves are inelastic unit demands which
differ in the maximum price buyers are willing to pay. After characterizing
the monopoly’'s optimal policy, we examine the extent of learning--how
different the monopoly’'s policy is from what it would be if the monopoly knew
the state of demand. It turns out that, even when the rate at which the demand
varies is negligible, the stationary probability with which the monopoly’s
policy deviates from its informed counterpart is non-negligible as long as the

discount factor is below 1.



2. Model and Analysis

The demand for the monopoly'’s product varies stochastically over time.
Time is divided into discrete periods labelled t=1,2,.... In each period the
monopoly faces a unit demand with reservation price d*. At the beginning of
the period, before it knows d%, the monopoly quotes a price p*. Thus, if pbsd®
the monopoly will sell a unit, and if p*>d* it will sell nothing. Let I%
record whether or not there has been a sale at period t. That is, I%=1 if
pt<d® and 0 otherwise. The maximum demand price, d*, can assume two values: 1
and D>1. It follows a Markov process with transition probabilities
Prob[d*!=1|d*=D]=Prob[d**'=D|d*=1]=a.
Let w® denote the probability with which the monopoly believes that
d*=1. Thus, w! is the prior and subsequently it evolves as follows
o if 1<p®sD and 1t=1
wtl = { 1-a if 1<p®<D and 1*=0
(l-a)whta (1-wt) if pt=1
Given a price sequence {p'} and a sequence of demand realizations {d%}, the
monopoly’s discounted profit is Y8%'ptI*, where 8<1 is the discount factor. At

the beginning of period t the monopoly knows the history h'=(p!,1%),..

(p*"1,1%°1). Its problem is to choose a pricing policy p®(h%) so as to maximize
E[Y3tptIt].

Note that w' is determined by the prior, w!, and the history, h®. The
following claim restates the well known fact that this monopoly problem has a

stationary optimal solution which depends only on w® (see, e.g., Derman

(1970)), and that the dependence on w® takes a particularly simple form.
p y



Claim 1: The optimal policy is characterized by a cutoff belief W. If w'sW,

pt=D. If wi>W, p'=1l.

Let N be the smallest nonnegative integer such that, if wi=1-« and
pt=...=p*"""" =1, then w'**<W; let N== if there is no such integer. That is, N is
the number of times the seller quotes p=1 after a price offer p,_ ;=D was
rejected. Note that N essentially characterizes the optimal policy, except
perhaps in the first few steps. That is, after a p=D was rejected the monopoly
will quote p=1 for N times in a row, then quote p=D until rejected, and so on.

The following analysis, which is summarized by Claim 2 below,
characterizes the optimal policy (i.e., the optimal N) in terms of the
parameters. Let yy=Prob[d'*N*1=1|d'=1]. Standard calculations (see, e.g.,

Feller(1968)) yield

(1) Yy=[1+(1-2a)8*1) /2.

Let Z denote the expected future profit, evaluated at the end of a period in
which a price D was rejected. Thus, Z is the expected profit generated by a
sequence of prices which starts with N consecutive periods of p=1.

Let Y denote the expected future profit, evaluated at the end of a period in
which a price D was accepted. Thus, Y is the expected profit generated by a

sequence which starts with p=D in the next period.

(2) Z (8-8%1)/(1-8) + 8" lyyZ + NI(1-yy) (D+Y)

(3) Y

8§[(1l-a)(D+Y) + aZ]

The solution to system (2)-(3) is



2[1-8(1-a)](8-8%1)y/(1-8) + &¥I[1-(1-2a)¥1]D

%  (1-8)z =
2[1-8(1-a)](1-3N*1) /(1-8) + 8M1[1-(1-2a)Y])
The monopoly’s optimal N is of course the one that maximizes (1-8)Z. Let

NUM{d{(1-8)Z]/dN} denote the numerator of the derivative d[(1-8)Z]/dN.

(5) NUM{d(1-8)Z/dN} — 8%1[1-8(1-a)](2{1-8(1-a)]logd +

(D-1)8™1(1-2a)¥11og(1l-2a) + (D-8)[logd-(1-2a)™log((1-20)8)]}/(1-3)

Claim 2:

If D<1+[1-8(1-2a)}, then N=es.

If 1+[1-8(1-2a)]<D<2[1-8(l-2a)]logd/[2alogd-(1-8)(1l-2a)log(l-2a)], then N will
be one of the integers which are closest to the unique solution to the
equation NUM{d(1-8)Z/dN}=0.

If D22[1-8(1-2a)]logd/[2alogd- (1-8)(1-2a)log(l-2a)], then N=0.

Proof: Let T(N) denote the term in the curly brackets on the RHS of (5). Note
that T'(N)<0. Therefore, there are three possible cases: (i) if T(N)>0, for
all N, then Z(1-8) is monotonically increasing in N, so that N=« is the
optimum; (ii) if T(0)<0, then Z(1-8) is monotonically decreasing in N, so that
N=0 is the optimum; (iii) if T(N)=0, for some O<N<e~, then this N is the
maximizer of Z(1-8), and since T'(N)<O the integer maximizer is one of the two
integers closest to it.

Now, T(N)>0, for all N, iff T(e)=-2[1-8(l-a)]logd+(D-8)logd20, iff
D<l+([1-8(1-2a)].

T(0) = -2{1-8(1-2a)]logd + D[2alogd-(1-8)(1l-2a)log(l-2a)] < O iff

D>2[1-8(1-2a)]logd/[2alogd-(1-8)(1l-2a)log(l-2a)].



For D in the middle range T(0)>0 and T(«)<0, so there exists a unique N for

which T(N)=0. QED

Thus, given 8 and a, there are three types of optimal policy, depending
on the relative size of D. When D is sufficiently small or sufficiently large
the monopoly will quote always the same price, 1 or D respectively. When D is
in the intermediate range, the optimal policy involves price changes whose

frequency depends on N.

3. The long run behavior

In implementing the optimal policy the monopoly will make two kinds of
error. In some periods it will charge p®=1 when d'=D, while in others it will
charge p'=D when d*=1. The stationary probabilities of these two types of
error capture the frequency with which these errors are made in the long run,
and hence provide some measure of the extent of learning associated with the
optimal policy. In what follows we examine these probabilities, particularly
when the demand changes infrequently (a small). As noted in Claim 2, there are
three types of optimal policy, depending on the relative size of D. When D is
sufficiently small or sufficiently large, the monopoly will quote only one
price. Hence, there will be only one kind of error and its stationary
probability will be the stationary probability of d'=D or d"*=1 as might be the
case. Therefore, the only interesting cases for analysis are when D is in the
intermediate range, where the optimal policy involves price changes, and we
shall focus below on this case.

There are four possible combinations of (p*®,d*): (1,1),(1,D),(D,1) and
(D,D). Let Il denote the stationary probabilities of these combinations. I.e.,

O(p,d)=limp#(t: (p*,d")=(p,d), t<T)/T.



The following claim expresses the long run probabilities of the monopoly’s
errors, II(1,D) and N(D,1), in terms of the parameters and N.
Claim 3: (1-2a)[1-(1-2a)N]-2aN 2a

I(1,D) = ; I(D,1) =
2[2(N+1)a+1- (1-2a)M*1] 2(N+1)a+l-(1-2a)Nt

Proof: 1Initially, let us merge the states (p%,d*)=(1,1) and (p%,d*)=(1,D) into
one state denoted (1l,.), and look at the resulting three state Markov Chain.

Its transition matrix, P, is

(1,.) (D,D) (D, 1)
(1,.) 0 Lo | . ]
(D,D) 0 l-a o
(o, 1 0 0

The stationary probabilities of this Markov chain, n=[x(1l,.),=x(D,D),nx(D,1)],
are the solution to the system nP=r. Thus,
n(l,.) = n(D,1) = «/(2a+1l-Yy); =n(D,D) = (Ll-¥y)/(2a+1-yy).

Note, however, that in terms of the periods of the original model a
visit to state (1,.) lasts N periods, while visits to the other two states
last one period each. After adjusting for this fact, the stationary

probabilities are

(6) O(1l, . )=Nea/[ (N+1)a+l-yy]; I(D,D)=(L-¥y) /[ (N+1)a+1-¥y];

(D, 1)=a/{ (N+1)a+1-yy].

Now, to split state (1,.) into (1,D) and (1,1) let
K(1,n)=E[#{t: d*=D, 1l<ts<n+l)|d'=1] and K(D,n)=E[#{t: d*=D, 1l<t<n+l}|d'=D].

Note that



(7 m(1,D)=M(1,.)K(1,N)/N; I(1,1)=I(1,.)[N-K(1,N)]/N

To get an explicit formula for K(1,N), note that K(1l,1)=«,
K(1l,n+1)=a+aeK(D,n)+(1l-a)K(1l,n) and K(D,n)+K(l,n)=n. It follows that
K(l,n)={(1l-2a)[1-(1-2a)"]-2an)}/4a. Upon substituting the expression for yy
from (1) into (6) and then substituting the result and K(1,N) into (7), we get

the desired formulae. QED

If the changes in demand are frequent, it is obvious that, for a non-
negligible fraction of the time, the monopoly's prices will not be in perfect
accordance with the state of demand. It is less obvious what happens when the
demand changes infrequently. That is, how do M(1,D) and II(D,1) behave when «
is arbitrarily close to 0.

Claim 4&: 2(1-8)+(D-8)log[1-2(1-8)/(D-38)]

lim, o I(1,D) = © 1lim,JI(D,1) = O.
4(1-8)-2(D-8)Llog[1-(1-8)/(D-8)]

Proof: As « approaches 0, it follows from the RHS of (5) that

Limg.o(-2(1-8)+(D-8) [1-(1-2a)"*1]=0,

Hence, 1-2(1-8)/(D-8)=1im,_o(1-2a)N=g 21imNa)

Therefore, limg.q(Na)=-1log{1-2(1-80/(D-8)]/2.

Taking the limits of the expressions given in the statement of Claim 3, using

the above expressions for limvo(l-Za)N and lim,. (Na), we get the 1imll(1,D)

and 1imlI(D,1) formulae in the statement of the claim. QED

4. Discussion

Learning in the long run

Notice that, for &<1, 1lim, MI(1,D)>0. This means that, even when the
frequency of changes in demand is negligible, there is a non-negligible
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fraction of the time during which the monopoly’s price deviates from what it
would be if the monopoly knew the true state. This is the result of balancing
two opposing forces. For a given N, the smaller 1s a the smaller will be the
probability of error II(1,D). But a small « induces the monopoly to "check"
less frequently the state of demand (i.e., N is large), so that once the state
of demand switches from 1 to D, it might take longer for the monopoly to find
this out. The latter force also explains why the probability of the other type
of error, M(D,1), vanishes. That error occurs when the monopoly raises its
price to D to test whether the demand has changed and when the state of demand
changes while the monopoly is charging D. A large N diminishes occurrences of
the former type while a small a diminishes occurrences of the latter type.

These observations are better understood by comparing them with what
happens when the demand does not vary at all, i.e., a=0. When the demand is
fixed, the monopoly’s optimal pricing policy depends on its initial
probability belief, w'=Prob{d=1), where d is the constant state of demand. If
the monopoly decides to learn about d, it chooses p'=D. This is optimal if the
expected benefit of learning about demand, at the risk of possibly missing the
first period’'s sales, exceeds the profit of charging the riskless price p=1.
That is, if

(1-wH)HD/(1-8) + wis/(1-8) = 1/(1-8).

Otherwise, the monopoly chooses p=1 in perpetuity and never learns the true d.
In other words, the monopoly learns the true demand if wls(D-l)/(D—B). In
particular, if w!=1/2 the monopoly learns the true demand if 1/2<(D-1)/(D-8).
Now, in the variable demand case, due to the symmetry, the stationary
probability of d%=1 is 1/2. That is, if the monopoly quotes p=1 for

sufficiently long time, the belief w'=Prob(d%=1) will approach 1/2. If « is



sufficiently small, the benefits of learning about demand are close to what
they are in the fixed demand case, so that if 1/2<(D-1)/(1-8), the monopoly
will switch after a while to D, and if 1/2>(D-1)/(1-8) the monopoly will
charge only p=1 in the long run. Regarding learning, the important difference
between the cases of a arbitrarily close to 0 and a=0 (with w!'=1/2) is that
when 1/2<(D-1)/(1-8) the learning is perfect in the latter case, but is
imperfect in the former case in the sense that the long run probability of a
pricing error, II(1,D), is non-negligible.

The cost of learning is the possible loss of a unit profit, while the
benefit depends on D and 8 and is clearly increasing in both. Observe from the
formula given in Claim 4 that limg.;1im,.II(1,D)=0. That is, when the demand
changes very infrequently and the cost of learning is negligible next to the

expected benefit, the probability of a pricing error is negligible.

Further remarks on the assumptions

The relatively sharp characterization of the long run behavior of this
model owes of course to some of its special assumptions. The important ones
are the finiteness of the underlying states of demand and the finiteness of
the relevant actions (prices). The specific assumptions that there are only
two states, only two relevant prices and that the transition between the
states is symmetric, simplify the exposition but are not crucial. However, the
finiteness of the underlying states of demand and the set of relevant prices
do seem important in a way that does not allow to speculate on what the
results might be in the case with a continuum of states and actions. The role
of the finiteness of the set of relevant prices, which is implied by the
simple nature of the demand, is that it introduces some rigidity into the
seller’s learning opportunities. Specifically, it does not allow the seller to

9



learn from small variations in price, so learning always involves some non-
negligible cost.

We should emphasize that we do not feel too apologetic about these
assumptions. They mean that this model addresses a situation in which the
decision maker faces only a few discernible options and the choice of one
rather than the other involves some non-negligible difference in payoff. The
other model, with continuum of states and actions, is also interesting and
will be useful to analyze (though it is probably substantially more
complicated), but it addresses a fundamentally different situation and does
not necessarily provide a more appropriate model for the pricing behavior we

discuss.
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