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INCENTIVES TO CULTIVATE FAVORED MINORITIES
UNDER ALTERNATIVE ELECTORAL SYSTEMS

by Roger B. Myerson

Introduction

In an election campaign with many competing candidates, a candidate can
try to appeal broadly to all voters equally, or a candidate may concentrate
more narrowly on winning the support of minorities or special interest groups.
Which strategy is better for winning an election? In this paper, we find that
the answer to this question may depend crucially on the rules of the electoral
system,

The focus here is on the creation of favored minority groups in election
campalgns, so we consider situations in which all voters are initially the
same, and we consider equilibria which are symmetric both across candidates and
across voters. Nonetheless, we can show that some electoral systems may
encourage candidates to build winning support by proposing transfer schemes for
the benefit of a small minority of voters, thus breaking the symmetry among
voters and creating favored minorities by their campaign promises. Under
plurality voting, for example, if there are 10 candidates in the race then a
candidate could easily win with only 20% of the vote, and so a campaign promise
to tax 80% of the voters for the benefit of a 20% minority could be a
successful strategy. We will show, however, that other electoral systems (such
as Borda voting and approval voting) may significantly reduce such incentives
to favor minority interests.

In general, there are several different reasons why a politician may want

to make campaign promises that pander to special interest groups. A candidate



may make promises to a special group of voters in order to get votes from them,
or to get donations for his campaign expenses, or to get bribes and kick-backs
for his personal use. In this paper, we focus exclusively on first of these
incentives. (The second requires a theory of how campaign spending influences
votes; see Morton and Myerson 1992, for example. The third is essentially the
topic of Myerson 1993.)

If a candidate could get away with it, he (or she) might try to win by
promising everything to every voter. So we must assume that there are some
limits on a candidate’s ability to misrepresent himself as all things to all
people. In this paper, we assume full rational expectations, so that each
candidate must make promises that he can actually fulfill if elected. Thus, in
our model, each candidate’s campaign promises must satisfy a budget constraint,
which is determined by the quantity of public resources that he would be able
to allocate if he won the election.

For example, suppose that there are 1 million voters, and a winner of the
election would have $1 million of public resources to allocate among these
voters. Then a candidate cannot make promises which average more than $1 per
voter. The equitable solution would be, of course, to promise $1.00 to every
voter. In a two-candidate race, such an equitable candidate would lose,
however, if the second candidate promised $1.25 to 80% of the voters and $0 to
the other 20% of the voters, which is also credible because the promises
average to $1 per voter. The first candidate could beat this second candidate,
however, by switching to a strategy of promising $1.50 to half of the voters
and $0.50 to the other half, but this strategy could also be beaten by other
feasible strategies for the second candidate.

To identify optimal strategies in a Nash equilibrium, we must first



specify the technical details of the game, and we must keep the formulation
simple enough to be tractable. In this paper, I consider one such simple
formulation. To introduce the model in its simplest case, I begin by
considering the two-candidate case. The analysis 1is then extended to cover all
rank-scoring rules with any given number of candidates. The characterization
of the unique symmetric equilibrium for general rank-scoring rules is the main
result of this paper (Theorem 2). In subsequent sections, I also analyze the
equilibrium offer distributions for approval voting and for single transferable
vote, and I then extend these results to elections for multiseat councils.

The last section of the paper examines the close relationship between the
results of this paper and Cox’'s (1987,1990) analysis of centripetal and
centrifugal incentives in electoral systems. We find that electoral systems
which encourage more diversity of candidates’ positions, according to Cox's
analysis, generally also incite candidates to create more inequality among
voters, according to the results in this paper. That is, electoral systems
which encourage candidates to advocate the interests of existing minorities may
also incite candidates to use narrow campaign strategies that create favored
minorities, even in situations where all voters are initially the same. These
results should offer insights of practical importance for the constitutional

design of democratic institutions.

Two-candidate elections

We begin by studying a race between two candidates, numbered 1 and 2, who
are competing for some office. Each voter votes for one of the two candidates,
and the winner is the candidate with the majority of the votes. (In a

winner-take-all two-candidate election, this is essentially the only neutral



anonymous electoral system, so comparison of electoral systems will have to be

deferred until we consider multicandidate elections, beginning in the next
section.)
In our model, each candidate’s strategy for generating campaign promises

is described mathematically by an offer distribution, which is a probability

distribution over the nonnegative real numbers. 1In this offer distribution,
the probability of any interval may be interpreted as fraction of the voters
for whom the candidate’s offer of government benefits has a value that is in
this interval. Equivalently, if a candidate’s offer distribution has a
cumulative probability function F(+), then F(x) denotes the probability that
randomly sampled voter will be someone to whom the candidate has promised
benefits that are worth less than x dollars.

Given that we want to investigate questions about the relative equality
inequality of the distribution of public benefits, the simplest possible way
formulate the government’'s service technology is to assume that benefits are
derived purely from the allocation of linearly divisible resources. So each
candidate’s budget constraint is expressed, in our model, as a constraint on
the average offer per voter that a candidate can promise. Specifically, we
assume here that each candidate's offer distribution must have mean 1, to be

considered credible by the voters.

or

to

To avoid specifying the number of voters and dealing with the complexities

of large finite numbers, we will consider the number of voters to be

essentially infinite. We should, however, interpret such an infinite model as

an approximation to a large finite population with millions of voters. Under
this interpretation, the budget constraint tells us that the winner of the

election will control resources which have a monetary value that is equal in



magnitude to the number of voters. The winner will divide these resources and
allocate them to the voters in whatever way he has promised during the
campaign.

If candidate 2 could make offers after observing candidate 1's offers to
all voters, then candidate 2 could always win the election. For example,
candidate 2 could identify a small group of voters who are promised the most by
candidate 1 (say, the top 10% in candidate 1's distribution) and offer nothing
to this group. Then candidate 2 could offer every other voter slightly more
than candidate 1 has promised him (or her), where the excess over candidate 1's
offers is financed from the resources not given to the voters in the first
group. So every voter outside of the first small (10%) group would vote for
candidate 2, who would win by a landslide (90%). To avoid this simple outcome,
we assume here that the two candidates must make their campaign promises
independently.

We want to consider an electorate that is initially homogeneous, before
the candidates make campaign promises. Thus, we assume that candidates’ offers
are independent across individual voters, so that no voter’s offers have any
specific relationship with any other set of voters’ offers. That is, each
voter's offer from each candidate is assumed to be drawn from the candidate’s
offer distribution independently of the candidate’s offers to all other voters,
and independently of all other candidates’ offers to all voters. This
independence assumption greatly simplifies our analysis, because it allows us
to completely characterize a candidate’s campaign promises by the marginal
distribution of his individual offers to voters, without saying anything more
about the joint distribution of offers to various sets of voters. The

infinite-population assumption was introduced above essentially only to justify



this simplifying assumption of independence across voters.

We also assume that all offers must be nonnegative. One way to justify a
nonnegativity assumption is to suppose that taxes are not in question in this
campaign, and the candidates are only debating how the tax revenues should be
redistributed to the voters. A more sophisticated model would allow taxes to
be variable, but would recognize that tax-avoidance activities would increase
the total economic cost of raising each additional dollar of revenue, as the
tax rate increases. In such a framework, our model can be justified by
supposing that there are no such tax-avoidance costs as long as taxes are below
some maximal level, but tax-avoidance activities would make it infinitely
costly to extract any additional tax revenue above this maximal level. To
justify the l-mean budget constraint, we can redefine the unit of money (if
necessary) so that these maximal taxes would average one monetary unit per
voter.

So at the beginning of the game, each candidate i simultaneously and
independently chooses an offer distribution. We may represent candidate i's
offer distribution by a cumulative distribution function Fi’ where Fi(X)
denotes the fraction of the voters to whom candidate i will offer less than x.
Each offer distribution must have mean 1, and so Fi must be a nondecreasing
function that satisfies

e
fo x dF, (x) = 1,

as well as

o
IA
(]

F.(x) =0, V¥
i
and
11mXQw Fi(x) = 1.

Next, each voter goes to each candidate’s campaign headquarters and gets an



offer that is randomly drawn from the candidate’'s offer distribution,
independently of all other offers. (We may suppose that the voter must show
his voter’'s identification number when he gets his draw, to fix it verifiably
and prevent him from coming back for a second draw if it is low.) Then, on
election day, each voter knows how much each candidate has offered him, and he
votes for the candidate who has promised him more. The winning candidate is
the one who gets the most votes.

Let Py denote the probability that a randomly sampled voter would prefer
candidate i over candidate h. So in Riemann-Stieltjes integral notationz,

Pip = jg F, (x) dF, (%),

That is, the probability that any given voter prefers i to h is the expected
value of Fh(x) (the probability that h offers less than x to this voter) when x
a random variable drawn from the Fi offer distribution. With a voting
population that approaches infinity, the fraction of the voters who prefer i
over h i1s almost surely Piy- So candidate 1 wins (almost surely) if Pis > Pyy
and candidate 2 wins if Poq > Pyo- We assume throughout this paper that each
candidate i1s motivated purely by the objective of winning the election. Thus,
we can formulate the candidates’ competition as a two-person zero-sum game in
which the payoffs to candidates 1 and 2 respectively are (1,-1) if Pys > Poy
(-1,1) if p12 < p21, and (0,0) if p12 and p21 are equal.3

Because this game is symmetric, both candidates must get expected payoffs
of 0 in equilibrium. We look for a symmetric equilibrium, in which both

candidates use the same offer distribution.

Theorem 1. In a two-candidate race, the unique symmetric equilibrium is
for each candidate to generate offers from a uniform distribution over the

interval from O to 2. That is, the cumulative distribution F of the



equilibrium offer distribution for each candidate must satisfy

F(x) =x/2 1if 0 =< x =< 2.

This result is a special case of Theorem 2, which is proven in the next
section, so we do not give a formal proof of uniqueness here. However, it is
worthwhile to verify here that this uniform distribution on [0,2] does give us
an equilibrium. When both candidates draw their offers independently from the
uniform distribution, they each expect to get half of the votes, of course. If
candidate 1 stays with the uniform distribution on [0,2] while candidate 2
deviates to some other distribution F2, then candidate 2's expected vote share
is

Jo Fp(x) dF,(x) = Sy (x/2) dF, (x) = (f: x dF,(x))/2 = 1/2
(because Fl(x) = x/2 when 0 < x < 2, and Fl(x) =1 =< x/2 when x > 2, and
the mean of candidate 2's distribution must equal 1). So candidate 2's vote
share cannot be increased by deviating to another distribution.

This result is not really new. Game theorists since Gross and Wagner
(1950) (see also Owen 1982, pages 78-83, and Shubik 1970) have found such
uniform distributions in equilibria of "Colonel Blotto" games, where each of
two competitors divides a fixed supply of resources over a set of
battlefields. To apply the "Colonel Blotto" terminology to our context, we can
reinterpret battlefields as voters, for whose votes the candidates compete with
their offers. The hardest part of Gross and Wagner’s problem was to construct
joint distributions for allocations which always sum to the given total but
which give uniform marginal distributions for each battlefield/voter. We have
avoided such difficulties here by allowing the offers to be made independently
to the various voters and by only requiring that the budget constraint be

satisfied in expected value.



The advantage of our simplified formulation is that it will enable us to
go beyond this "Colonel Blotto" literature and get results about more
complicated situations in which more than two candidates are competing. Such
games will allow us to get important new insights into the comparison of

multicandidate electoral systems.

Multicandidate competition with rank-scoring rules

We consider now an election there are K candidates for a single

indivisible office, and in which the voters vote according to a rank-scoring

election rule. Such an electoral system can be characterized by an ordered
sequence of K numbers, which we denote here by S1s Sgy +oy Sps where
= > > =
1 S 28,2 ... 258, 0.

Without any loss of generality, we normalize the highest and lowest point

values to be 1 and O respectively. In the election, each voter must indicate
ranking of the K candidates on his ballot; then this voter’s ballot gives the
top-ranked candidate $1 points, the second-ranked candidate S5 points, and so
on, with the j’'th ranked candidate getting sj points. Each candidate’s score
is the average of the points that he gets from all voters. The winner of the

election is the candidate with the highest score.

Plurality voting (or single nontransferable vote) is a rank-scoring rule

in which s, = 1 and sj = 0 for all j > 1. More generally, for any V between 1

and K, a rule where each voter must distribute V _noncumulative votes on his

ballot is represented by letting Sy = S, = ... =8y = 1, and sj = 0 for all

j > V. Negative-plurality voting (in which each voter votes against one

candidate and winner 1is the candidate with the fewest such votes against him)

can be characterized as a rank-scoring rule in which s, = 1 for all j < K, and



only sK = 0. Borda rule is a rank-scoring rule in which sj = (K - j)y/(K - 1),
for each j.

s.), let s denote the average of

Given any rank-scoring rule (sl,sz,..., K

the ranking points that a voter can give, so
R 'S
=1 7]
Thus, s = V/K 1in a voting system where each voter must vote for exactly V of
the K candidates, and s = 1/2 for Borda rule.

We assume as before that, at the beginning of the campaign, each candidate
must choose an offer distribution, which is a probability distribution over the
nonnegative real numbers that has expected value equal to 1. During the
campaign, each voter gets an offer or promised payoff from each candidate that
is independently drawn from the candidate’s offer distribution. Thus, a
distribution in which most of the probability mass is near 1 would denote a
campaign strategy of appealing broadly to most of the voters. On the other
hand, a campaign strategy of offering special favors to small groups would be
denoted by a distribution that has positive mass at numbers much higher than 1,
balanced by a large mass near O.

A symmetric equilibrium of this game is a scenario in which every
candidate is expected to use the same offer distribution, and each candidate
finds that using this offer distribution maximizes his chances of winning the
election, when he knows that all other candidates are also independently
allocating their offers according to this distribution, and all voters perceive
that the K candidates all have the same probability of winning the election.

In this paper, we focus exclusively on finding such symmetric equilibria. (The

existence and significance of nonsymmetric equilibria of voting games has been

examined by Myerson and Weber 1993, and Myerson 1993.)

10



As a consequence of the symmetry assumption, we can suppose here that the
voters vote sincerely. Each voter thinks that, in the event that his vote
could actually decide a close race between two of the candidates, it is equally
likely to be any pair of the K candidates who are in this close race. (In the
terms of Myerson and Weber 1993, we are assuming that each voter perceives that
all of the K(K-1)/2 pivot probabilities are equal.) Thus, each voter should

rank the candidates in order of their offers to him, giving s, points to the

1

candidate who offers him the most, S5 points to the candidate who offers him
the second-most, and so on.

Consider the situation faced by a given candidate i when he chooses his
offer distribution, assuming that each other candidate will use the equilibrium
offer distribution. Let F(x) denote the cumulative probability that any given
voter will be offered less than x by any other given candidate, according to
this equilibrium distribution. When candidate i offers x to a voter, the
probability that this candidate i will be ranked in position j by this voter is
P(j,F(x)), where we let

PGLa) = a3 - @I TTR - DG - G- D).
(Here "!" denotes the factorial operator, so (K - 1)! = 1x2%x...x(K - 1).) That
is, P(j,q) denotes the probability that exactly K - j of the K - 1 other
candidates will offer the voter less than x, given that each other candidate
has an independent probability q of offering less than x to this voter. Thus,
if candidate i offers x to a voter, then the expected value of the points that
this voter will give to this candidate is R(F(x)), where we let

R(Q) = = P(j,a)s,.

j=1 y

(Things could be slightly more complicated if there were a positive probability

of other candidates offering exactly x, but we can ignore such complications

11



here. We will show in the proof of Theorem 2 that the equilibrium distribution
cannot assign positive probability to any single point.)

When all candidates independently use the same offer distribution, they
must all get the same expected score, which must equal s, the average point
score given by each voter. So there is a symmetric equilibrium in which all
candidates use the cumulative distribution F if and only if, for any other
distribution G that is on the nonnegative numbers and has mean 1,

Jg R(F() dG(x) = 5.

Theorem 2. 1In a K-candidate election under the rank-scoring rule with
ranking points (51’52”"’SK)’ there is a unique symmetric equilibrium of the
candidates’ offer-distribution game. In this equilibrium, each candidate

chooses to generate offers according to a distribution that has support on the
interval from O to l/é, and which has a cumulative distribution F(s+) that
satisfies the equation

x = R(F(x))/s, VYx € [0, 1/s].

Proof. To find an equilibrium, we show first that the equilibrium offer
distribution must be continuous, that is, it cannot have any points of positive
probability. 1If all candidates used an offer distribution that assigned a
positive probability § to some point x, then there would be a positive fraction
(6K) of the voters who would be exactly indifferent among the two candidates.
Any candidate could then move his average point score among this block from s
up to sy by giving an arbitrarily small increase (say, ¢) to most of the voters
to whom he was going to offer x; and the cost of this increase (e§) could be
financed by moving an arbitrarily small fraction (e¢/x) of this block down to

zero. That is, if the distribution had a positive mass at some point, then a

12



candidate could gain a positive block of votes by a transfer of resources that
would lower his score from only an arbitrarily small number of voters.
Applying the definitions of P(-,+) and R(:), we now show that
R(0) = s

-0, R(1) =s, =1,

K 1

and R(+) is a continuous and strictly increasing function over the interval
from O to 1. These equations hold because P(j,0) equals 0 unless j equals K,
P(j,l) equals O unless j equals 1, and P(K,0) = 1 = P(1,1). Continuity of R(+)
follows directly from the formulas, because R(q) is a polynomial in q. To show

that R(+) is increasing, first verify that

K
R<q> = Zj=2 <Sj_l - Sj> Zm<j P(”‘;q>;
using Sy = 0. Then observe that
2m<j P(m,q)

denotes the probability that more than K - j other candidates have made offers
in an interval of probability q, and this probability must be a strictly
increasing function of q. The ordering of the sj values guarantees that at
least one term in this R(q) expression must have a positive (sj_l - 5,)
coefficient, and none can be negative.

Next, we show that the lowest permissible offer 0 must be in the support
of the equilibrium distribution of offers. The essential idea is that, if the
minimum of the support were strictly greater than zero, then a candidate would
be devoting positive resources to voters near to the minimum of the support of
the distribution. He would expect to get almost no votes (SK = 0) from these
voters, because all other candidates would almost surely be promising them
more. Thus, it would be better to reduce the offers to 0 for most of these

voters in order to make a serious bid for at least some of their votes.

The above argument can be formalized as follows. Because there are no

13



points of positive probability, the cumulative distribution F(+) is

continuous. Let z denote the minimum of the support of the equilibrium
distribution, so F(z) = 0 but F(z + ¢) > 0 for all positive . Now, select
any fixed y such that y > z and F(y) > 0. For any ¢ such that

0 <e<vy -2z, acandidate might consider deviating from equilibrium by
promising either y or O to each voter in the block of voters whom he was
supposed to offer between z and z + ¢, according to his F-distributed
random-offer generator. These voters in this block were going to be given
offers that averaged some amount between z and z + ¢, so he can offer y dollars
to at least a z/y fraction of these voters without changing his offers to any
other voters. Among this z/y fraction of the block, he would get an average
point score of R(F(y)), by outbidding the other candidates who are using the F
distribution; so the deviation would get him an average point score of at least
(z/Y)R(F(y)) from this block of voters. (The voters moved down to zero in this

deviation would give him s, = 0 points.) If he follows the equilibrium,

K
however, he gets at most R(F(z + ¢)) as his average point score from this block
of voters. So to deter such a deviation, we must have

(z/y)R(F(y)) = R(F(z + ¢)), and so z =< yR(F(z + €))/R(F(y)). But R(F(z + ¢))
goes to R(F(z)) = R(0) = 0 as ¢ goes to 0, and so z must equal O.

Now, let x and y be any two numbers in the support of the equilibrium
distribution such that 0 < x < y. A candidate could deviate by taking a block
of voters to whom he is supposed to give offers close to x, according to his
equilibrium plan, and instead he could give them offers close to y to an x/y
fraction of this block and he could offer O to the remaining (1 - x/y)

fraction. Because the support of the distribution contains 0 as well as x

and y, neither this self-financing deviation nor its reverse (offering close to

14



X to a block of voters of whom an x/y fraction were supposed get close to vy,
and the remaining (1 - x/y) fraction were supposed to get close to 0) should
increase the candidate's expected average point score from this block of
voters. Thus, we must have

R(F(x)) = (x/Y)R(F(y)) + (1 - x/y)R(F(0)).
But R(F(0)) = R(0) = 0, so R(F(x))/x = R(F(y))/y for all x and y in the
support of the equilibrium distribution. So there is some positive constant «
such that, for all x in the support of the distribution,

R(F(x)) = ax.
The maximum of the support, where F(x) = 1, must be where ax = R(1l) = 1; so the
maximum of the support must be at l/a.

The support is the region where the cumulative distribution function is
increasing, and F has no discontinuous jumps, so F(x) can equal the strictly
increasing function R_l(ax) on the entire support only if the support is the
connected interval from O to the upper bound 1/a, with no breaks in between.
(The inverse function R-l(-) is well-defined and strictly increasing on [0,1]
because R(+) is a strictly increasing function from [0,1] onto [0,1].)

To evaluate the constant a, we use the fact that the mean offer must
equal 1 under the F distribution, so

fé/a x dF(x) = 1.
We also know that a candidate who uses the same offer distribution F as all the
other candidates must expect the average point score s, so

s = fé/a R(F(x)) dF(x) = fé/a ax dF(x) = a.
Thus, the support of the F distribution is the interval from 0 to l/a = 1l/s,
and the cumulative distribution satisfies the formula

R(F(x)) = sx, Vx € [0,1/s].

15



It only remains to verify that we do get an equilibrium when F satisfies
this formula. In general, for any nonnegative x, we have R(F(x)) =< SX,
because R(F(x)) = R(1) = 1K< sx when x > 1/5. So using any other
distribution G that has mean 1 and is on the nonnegative numbers, would give a
candidate an expected score

fg R(F(x)) dG(x) < fg sx dG(x) = s,
with equality if the support of G is contained in the interval [0,1/s]. Thus,
no candidate can increase his expected score by deviating from F to some other
distribution, when all other candidates are using the distribution F.

Q.E.D.

As a simple measure of potential inequality, the maximal offer may be

defined as the highest offer in the support of a symmetric equilibrium offer
distribution, for any given electoral system with any given number of
candidates. By Theorem 2, this maximal offer is just the reciprocal of s, the
average of the ranking points, for any rank-scoring rule. Given any K, this
average s is smallest under plurality voting, in which each voter gets a single
nontransferable vote, because we then have sj = 0 for all j > 1.

Thus, for any given number of candidates, plurality voting generates the
most inequality of offers in a symmetric equilibrium, in the sense of
maximizing the maximal offer that candidates give any voters. (Of course, we
should not necessarily assume that the number of candidates for an office would
remain constant when the electoral system is changed.) For plurality voting,

R(q) = P(1,q) = ¢~ % and 5 = 14K,
So the equilibrium cumulative distribution satisfies

x = FCN/am = kEEHST, e (0,170/07 = [0k,
and so,

16



F(x) = (x/k) /KD

vx € {0,K].
When there are 4 candidates under plurality voting, each candidate offers less
than 0.50 to half of the voters, and offers less than 1 to 65% of the voters,
but makes offers more than 2 to 20% of the voters, with some voters getting
offers as large as 4. When the number of candidates increases to 10, then each
candidate offers less than 0.02 to half of the voters, and favors a 16%
minority with high offers above 2, some of whom get as much as the maximal
offer 10. In general, the symmetric equilibrium under plurality voting has a
maximal offer of K which is larger than the median offer of K(.SK_l) by a
factor of 2K-l.

Each candidate i knows that, when the other K - 1 candidates use the
equilibrium distribution for plurality rule, the probability of his being
ranked first by a voter to whom he offers x is

RS RPN VICSI DN S

) x/K.
That is, the highest of the other K - 1 candidates’ offers, which candidate i
must exceed if he is to win the voter'’'s vote, has a uniform distribution over
the interval from O to K in equilibrium. Because of this uniform distribution,
adding an extra ¢ units of money to the offer of any one voter has as much
chance of gaining his vote, no matter what this original offer might have been
(between 0 and K - ¢). Thus, there is no incentive for the candidate to revise
his offers by taking from one voter and giving to another.

Among rank-scoring rules, for any given number of candidates K, the lowest
possible maximal offer is K/(K - 1), which is achieved by negative-plurality
voting, where sj =1 for all j < K. 1In this sense, negative-plurality voting

gives us the most egalitarian offer distributions. 1In equilibrium under

negative-plurality voting, no voter is offered more than 1.34 when there are 4
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candidates, and no voter is offered more than 1.12 when there are 10
candidates.
Following the insightful analysis of Cox (1987), we may characterize

negative-plurality voting as a last-place punishing scheme, whereas (ordinary)

plurality voting is a first-place rewarding scheme. Under negative-plurality

voting, each candidate wants to minimize the fraction of the voters who think
that he is the worst candidate, so candidates try to avoid offending many
voters. Each candidate makes low offers close to 0 to a small minority of
voters, in order to finance competitive offers above 1 to the majority, but the
number of such neglected voters is kept small. For negative-plurality voting,
the equation in Theorem 2 becomes

x = (1- (- Fe) /- 1K
This formula implies, for example, that each candidate offers less than 1 to
only 37% of the voters when there are 4 candidates, and each candidate offers
less than 1 to only 23% of the voters when there are 10 candidates.

Under a voting rule in which each voter must vote for exactly V of the K
candidates, the maximal offer is K/V, because s = V/K. Using the general
formula in Theorem 2 to compute the inverse of the cumulative distribution
function, standard deviations of the equilibrium offer distributions can also
be calculated. Table 1 shows such these standard deviations for voting systems
with V noncumulative votes and K candidates. Notice that, like the maximal
offer K/V, these standard deviations increase as K increases and as V
decreases. In each row of Table 1, the leftmost entry is for plurality voting
and the rightmost entry is for negative-plurality voting. The probability
densities of the equilibrium offer distributions, when there are 4 candidates,

are shown for the cases of V =1 (plurality), V =2, and V = 3
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(negative-plurality) in Figures 1, 2, and 3 respectively.
[INSERT TABLE 1 AND FIGURES 1, 2, 3 ABOUT HERE]

Borda voting is another important rank-scoring rule, in which
s; = (K- 3)/K - 1).
So s = 1/2 and the maximal offer is 2. The function R(F(x)) under Borda rule
is the expected value of (K - j)/(K - 1), where j is a random variable such
that K - j has a binomial distribution with expected value (K - 1)F(x). Thus,
by Theorem 2,
x/2 = 3% = R(FGO) = 2y PULFGONK - /(K - D)
= (K - DFx)/(K - 1) = F(x), Vx e [0,2].
So for any number of candidates K, the equilibrium offer distribution under
Borda rule is a uniform distribution over the interval from O to 2. The
standard deviation of this distribution is approximately .58.
For a voting rule which has the same maximal offer as Borda but which has
a tighter distribution as measured by the standard deviation, consider the

rank-scoring rule in which s, = 1, sj = 1/2 for all j such that 1 < j < K, and

1
Sg = 0. (This rule is equivalent to giving each voter one positive vote and

one negative vote.) Figure 4 shows the offer distribution for this rule when
K = 4. The maximal offer under this voting rule is also equal to 2 for all K,

because s = 1/2, but the equilibrium offer distribution has standard deviation

.52 when K = 4, and .37 when K = 8.
[INSERT FIGURE 4 ABOUT HERE]

As we compare these equilibrium offer distributions, the fact that

plurality voting generates much greater inequality among voters than other
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electoral systems may be quite disturbing. In defence of plurality voting, one
may argue that our symmetry assumption is unlikely to be satisfied in plurality
elections with many candidates. Duverger’'s law (see Riker 1982) predicts that,
in multicandidate races under plurality voting, the voters will take only two
candidates seriously, and each voter will vote for the candidate whom he
prefers among these two serious candidates (even if there are other candidates
whom he likes even better). That is, the symmetric equilibrium in which every
candidate is considered to have a serious chance of winning is much less likely
to be observed than one of the nonsymmetric equilibria in which only two
candidates are considered to have a substantial chance of winning. By showing
the problematic nature of the symmetric equilibrium that Duverger’'s law
excludes, the analysis here casts a rather favorable light on Duverger's law.
If Duverger’'s law did not hold, then the use of plurality voting in
multicandidate winner-take-all elections would more often give us elected

leaders who deliberately appeal to only a small minority of the voters.

Approval voting

Under approval voting, each voter indicates approval of a set of

candidates on his ballot. A voter is allowed to approve of any number of
candidates. Each candidate’s approval score is then the fraction of the voters
who have approved of him. That is, each voter can give each candidate either
an approval worth 1 point, or a disapproval worth O points, and the winner is
the candidate who gets highest average point score from the voters. Approval
voting is a scoring rule but it is not a rank-scoring rule, because the point
scores of various candidates cannot he determined simply from a voter’s

rank-ordering of the candidates. For example, when there are three candidates,
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one voter might give an approval vote only to his one favorite candidate,
whereas another voter with the same rank-ordering of candidates might give an
approval vote to each of his top two candidates.

We need to formulate a voter’s decision criterion, to describe how each
voter would decide how many candidates to approve, in a symmetric equilibrium
under approval voting. Let us number the K candidates 1,2,..., K. Now
consider a voter, and let ug denote the value of the offer that candidate i has
promised to this voter. The voter's decision to give an approval vote to
candidate i will only matter if candidate i is in a close race with some other
candidate h (where h would win unless this voter adds an approval vote for i).
In such a case, giving an approval vote to candidate i would change the voter's
payoff from W to ug - Our symmetry assumption implies that, in the case of
such a close race involving candidate i, any of the other K - 1 candidates is
equally likely to be the candidate h who is in a close race with candidate 1.
Thus, the expected net gain for the voter from giving an approval vote to
candidate i is proportional to

%o (- w)/(K - 1) = (up - WE/AK - D),
where

{1=th /K.

-1 "%h

Thus, in a symmetric equilibrium, each voter should compute the average u of
the offers that the K candidates have promised him, and he should give an
approval vote to every candidate i such that u, > u, and he should not approve
of any candidate who has offered him less than this average u.

Given any m candidates who are generating their offers independently
according to the cumulative distribution function F(«), let Am(x) denote the

probability that the average of their m offers is less than x, for any given
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4 . .
voter. Now, suppose that some candidate i offers an amount uy to some voter,
while the other K - 1 candidates are selecting their offers independently
according to the cumulative distribution function F. Then the probability of

candidate i getting an approval vote from this voter is A (ui), because

K-1
candidate i's offer us is greater than the average of all K offers if and only
if us is greater than the average of the other K - 1 candidates’ offers.

To win, a candidate wants both to increase his own score and decrease the
scores of his opponents. Under approval voting, increasing the vote score for
candidate i1 is not the same thing as decreasing the vote scores of the other
candidates, because the total number of points that each voter gives is not
fixed under approval voting (unlike the rank-scoring rules that we considered
in the preceding section). For any candidate h other than i, let B(ui) denote
the probability that candidate h will get an approval vote from any given
voter, when candidate 1 offers ug and all other candidates' offers are drawn
independently from the F distribution.5

Candidate i would gain by deviating from the F distribution to some other
distribution G, when all other candidates are expected to use the F
distribution, if the deviation would cause candidate i’'s average approval score
to become higher than the other candidates’ average approval scores. We are
assuming here that the number of voters is large or effectively infinite, so
that a candidate's average approval score is equal to the probability of any
one voter giving him an approval vote. Thus, there is an equilibrium in which

all candidates generate offers according to the F distribution iff

> A dG(x) = [ B(x) dG(x

0 K_l(X) (x) = o (x) (x)

for every nonnegative distribution G with mean 1. (Unwinding the definitions,
it can be shown that this inequality becomes an equality when G = F.)
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It seems quite difficult to explicitly calculate equilibrium offer
distributions for approval voting.6 I have analyzed approximate solutions for
a discrete version of this problem, in which all offers are integer multiples
of 0.05. The resulting equilibrium probability distribution for the case of 4
candidates is shown in Figure 5. For any number of candidates up to 10,

Table 2 shows the standard deviation of the equilibrium offer distribution, the
maximal offer, and the average approval score for each candidate, in the
symmetric equilibria that have been found for this .05-discrete approximation.
In each case, I have found only one equilibrium for each number of candidates.
The convergence of the algorithm seemed sufficiently robust to justify a
conjecture that this symmetric equilibrium may be unique, but I cannot prove

that there is a unique symmetric equilibrium under approval voting.
[INSERT FIGURE 5 AND TABLE 2 ABOUT HERE]

As Table 2 shows, equilibrium offer distributions for approval voting have
maximal offers that are between 1 and 2, and these maximal offers decrease as
the number of candidates increases. As Figure 5 illustrates, the support of
the equilibrium offer distribution is not convex when K > 3. 1Instead, each
candidate gives offers that are greater than 1 to a majority of the voters,
while the remaining voters (a minority which decreases in size as K increases)
get offers that are close to O.

To get some iIntuition for these results, suppose that the number of
candidates K is large, and consider a nonequilibrium scenario in which all
candidates draw their offers from the uniform distribution on O to 2. The
central limit theorem tells us that the average of any K - 1 candidates’ offers

to any given voter has a distribution that is approximately normal, with mean 1
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and a small standard deviation. The probability that a candidate would gain
(or lose) a voter's approval by slightly increasing (or decreasing) this
voter's offer is proportional to the probability density of the average of the
other K - 1 candidates’ offers, and the normal approximation has a density that
is highest at 1. So a candidate could increase his expected approval score by
decreasing offers that are far from 1, and then using the resources thus made
available to correspondingly increase offers that are close to 1. The result
of such transfers would be to move towards a distribution in which some voters
get offers near 0, and the rest of the voters get offers are larger than 1 but
less than 2. Such a distribution is in fact shown in Figure 5, where about 31%
of the voters get offers close to 0, 25% of the voters get offers close to
1.15, 15% of the voters get offers close to 1.50, and 29% of the voters get
offers close to 1.70. It can be shown that, like the rank-scoring rules of the
preceding section, the equilibrium offer distribution under approval voting

must be continuous, even though the support of the distribution is not convex.

Single transferable vote

Let us consider now a simple version of single transferable vote (STV), in

which K candidates are competing for a single office. (Multiseat councils will
be considered in the next section.) Each voter submits a ballot that ranks the
K candidates in some order, chosen by the voter. These ballots are then
recounted a sequence of times until a candidate wins. In the first count, each
voter’s ballot is counted as a vote for the candidate who is listed at the top
of the voter’s rank ordering. If no one candidate gets a majority in this
count, then the candidate with the lowest share of the votes is eliminated from

consideration, and each ballot that was assigned to this candidate is
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reassigned to the candidate who is ranked highest on the ballot among those who
have not yet been eliminated. Then the ballots are recounted, and this process
is repeated until some candidate gets a majority. When a candidate gets a
majority of the votes in a count, then that candidate wins the election. Thus,
STV is a ranking rule, in the sense that each voter’'s ballot can be written as
a rank-ordering of the candidates, but it is not a scoring rule, because a
voter’s rank-ordering does not simply generate one point score for each
candidate.

Our symmetry assumption implies that voters will vote sincerely under STV
(because a voter will not perceive any pair of candidates as being more likely
than any other pair to be in a close race where his vote could make a
difference in the outcome). That is, we may assume here that each voter will
rank the candidates in order of their offers to him, putting the candidate who
has offered the most at the top of his rank ordering.

In a symmetric equilibrium of our model, we should expect the candidates
to divide the votes equally at every round, and so we need to be careful about
the interpretation of ties. Remember that our model assumes that the number of
voters is infinite, but this assumption is meant only as an approximation to a
large finite population. When two or more candidates get the same share of the
votes in our model, we should understand that this means that the difference in
their vote totals is a vanishingly small or infinitesimal fraction of the
overall population, but (because the population is very large) there may still
be hundreds of votes difference between the absolute vote totals of these
candidates. Thus, a tie for last place in our infinite-population model should
be interpreted as an outcome in which exactly one of these candidates is

actually the lowest. By symmetry of the scenario, each of the apparently tied
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candidates is equally likely to be the actual last-place candidate who then is
eliminated.

When all candidates independently generate offers from the same cumulative
distribution F, there will be a symmetric allocation of votes, and so no
candidate will ever get a majority until there have been K - 1 counts, at the
last of which all but two candidates will have been eliminated (and so each
will get an approximate 50% share, which will really be a strict majority for
one of the two candidates). At the first count, each candidate will have a
probability 1/K of being eliminated, and a probability (K - 1)/K of being
retained for the second count. At the second count, each remaining candidate
will have a probability 1/(K - 1) of being eliminated, and a probability
(K - 2)/(K - 1) of being retained; and so on. Each candidate's probability of
winning is thus

(K- /KK - 2)/(K - 1))...(1/2) = 1/K.

Now suppose that some candidate i deviates from this symmetric scenario
and generates offers according to some other cumulative distribution G, while
all other candidates continue to use the F distribution. Consider a count in
which candidate i is one of n candidates who have not yet been eliminated. A
voter who has been offered Uy by candidate i will rank candidate i at the top
of his list, when the eliminated candidates are ignored, if candidate i offered
him more than the other n - 1 candidates, which has probability F(ui)n_l. So
candidate i's vote share at this count will be

Jo E ™ deu).
If this vote share is greater than the average 1/n, then candidate i will
surely not be eliminated at this count. On the other hand, if this vote share

at this round is less than 1/n, then candidate i must be in last place, because
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the other candidates are symmetric in this scenario, and so candidate i will
surely be eliminated at this count.

Being strictly higher than everyone else in the early counts is irrelevant
if elimination is certain at any one of the later counts. So a deviating
candidate’s probability of winning will go to zero if his expected vote share
is less than the average at any of the K - 1 counts of the ballots. Thus, we
may say that there is an equilibrium in which all candidates use the F
distribution iff there does not exist any probability distribution G on the
nonnegative real numbers, with mean 1, such that

5o Ee™ T de) = 1m,
for every n in (2, 3, ..., K}, and
I FeH™ ! dex) > 1/m,

for at least one number m in {2, 3 K}.

We can now show that there are multiple symmetric equilibria under STV.
These equilibria include offer distributions that are arbitrarily close to any
of the equilibria that we got for plurality voting when the number of
candidates was between 2 and K. Thus, any number between 2 and K can be the
maximum of a symmetric equilibrium offer distribution under STV. The intuition
behind this multiple-equilibrium result is simple. To gain from deviating from
a symmetric scenario, a candidate must avoid losing in K - 1 counts, and so an
equilibrium can be supported by any profile of campaign strategies that deters

such deviations in at least one of these K - 1 counts.

Theorem 3. Let (A2, A AK) be any vector such that

L) K‘l,

A >0, VYn e {2, ., K -1, K}, and EK A= 1.
n m=

2 "m
Let F be defined by the equation

x = =N nkn(F(x))n_l, vx € [0, 3N

n=2 m=2 m/\m]'
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Then there is an equilibrium under single transferable vote in which all

candidates generate offers according to the F distribution.

Proof. VWNotice first that the function F described in the theorem always

exists, because the equation directly defines its inverse

-1 K n-1
F “(q) = Zn=2 nAnq , Yq € [0,1].

Then F is well defined because Fvl is strictly increasing and thus one-to-one

on its range. To verify that the mean is 1, observe that
1 -1 1 K n-1
fg x dF(x) = [, F (a) dg = [j (5__, nA q" ") dq
K 1 n-1 K
-3, mA (fo q dg) = =, mA_(1/n) = 1.

If the F distribution did not form an equilibrium, then there would exist

an offer distribution G such that

K 0 n-1

zo_, Uy (FG) dG(x))n > 1
because the coefficient of An would be at least 1 in each term, with at least
one strict inequality. Then, by the definition of F, we would get

K n-1 0
1< o G, s (Fa)H™ ) deGo) = [ % d6(x),

and so the deviation G must have a mean greater than 1, which is not

permissible for a candidate. Q.E.D.

In the extreme case where some An coefficient is close to 1 and all other
Am are close to 0, the equation in Theorem 3 that defines F becomes close to
n-1 . . . P9 e
x = n(F(x)) ,  which characterizes the symmetric equilibrium offer

distribution for plurality voting with n candidates.

Multiseat elections

We have until now only discussed the case of individual candidates

competing for a single office, but most of our results can be readily extended
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to competition for multiple seats and to competition among parties. The
crucial defining property of the symmetric equilibria that we have studied is
that no candidate can break the symmetry in his own favor (scoring higher than
the still-symmetric other candidates) by deviating from the equilibrium
strategy. This characterization of symmetric equilibria remains the same when
there are many seats at stake, as long as the number of candidates is greater
than the number of seats.

For example, consider an election in which K candidates are competing for
L seats in a council, where 1 < L < K - 1, and a rank-scoring rule is used

with ranking points (s1 ,sK) such that 1 = s, 2 s, > ... =2 s_ = 0. The

1Sgn 1 2 K

candidates with the L highest scores will win the L seats. Suppose, for
simplicity, that each candidate who wins a seat in the council will control a
portion of the government budget that has an expected average value of one
dollar per voter. Each winner will allocate his portion of the government
budget to the voters according to the campaign promises that he independently
generated from his offer distribution. (A more complicated story might say
that a member of the council will get a share of the budget only if he is a
member of a governing majority coalition that will take control of the council
after the election. When the candidates are symmetric, however, we may assume
that any candidate who wins a seat will be equally likely to be included in the
governing coalition, and so each candidate has the same expected budget to
allocate if he wins.)

Under these assumptions, the symmetric equilibrium offer distribution, for
any given rank-scoring rule, is exactly the same as described in Theorem 2. In
this multiseat case, each candidate has a probability L/K of winning in the

symmetric equilibrium, but (as in the l-seat case) he still would deviate only
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if doing so would raise his expected score above the other still-equal (by
symmetry) scores of the other K - 1 candidates. So the conditions for a
symmetric equilibrium with K candidates depend only on the ranking points
,SK) but do not depend on the number of seats L, as long as L < K.

(sl,sz,...

Thus, our results for the l-seat case in Theorem 2 can be immediately

generalized to multiple seats. For example, the rank-scoring rule with the
ranking-points vector (1,0,...,0) is called single nontransferable vote or SNTV
when there are multiple seats at stake. So the symmetric equilibrium offer

distribution for SNTV with K candidates and L seats is the same as the
symmetric equilibrium offer distribution that we found for plurality voting
with K candidates in the l-seat case.

Similarly, the equilibrium offer distributions that we described for
approval voting with K candidates and 1 seat, apply equally well when the
K candidates are competing for L seats and the winners will be the candidates
with the L highest approval scores.

Under single transferable vote, we do find some difference in the case of
multiple seats. With L seats, the majority quota is replaced by a 1/(L + 1)
quota, and the recounting stops after the count in which one candidate is
eliminated out of L + 1 remaining. Thus, we need to revise Theorem 3 by
changing the number "2" to "L + 1" throughout, but then the revised theorem can
be applied to the case where L seats are being allocated under STV. So when K
candidates compete for L seats under STV, there are multiple symmetric
equilibria in which the maximal offers range from L + 1 up to K.

The most substantial difference that we may find in the multiseat case is
that the assumption of a symmetric multicandidate equilibrium may become more

compelling. In single-seat plurality elections, Duverger's law predicts that
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two candidates will be distinguished as the only two serious contenders. In a
multiseat election under SNTV, however, we should expect that there will be
more serious candidates than seats (see Reed 1990 and Cox 1992). Thus, with
multiple seats, we cannot use Duverger’'s law to escape from the fact that
single nontransferable vote may encourage candidates to make extreme promises
to narrow subsets of the electorate.

SNTV is used in multiseat districts in Japan, and it is also used in
intraparty competition in some open-list proportional representations systems,
as in Brazil. 1In open-list PR systems, when a party nominates more candidates
than the number of seats that it wins, the nominated candidates who actually
get the party’s seats are determined by voters’ votes for the individual
candidates. To be specific, suppose that a party has nominated K candidates,
but the party is expected to win only L seats, and each voter who votes for the
party can vote for one individual candidate on his ballot. The party’s L seats
will be won by those among its candidates who get the L highest scores, in this
contest among the individual candidates. Then our analysis of plurality voting
and SNTV with K candidates can be directly applied to the race among the K
nominees of this party for its L seats. Our results suggest that the K
nominees will make highly unequal offers to voters, and each will concentrate
his attention on a small minority of the voters who support the party. This
prediction is consistent with the bailiwick phenomena (in which candidates seek
votes only in very narrow subsets of the electoral district) that Ames (1992)
has described in Brazilian legislative elections. Our model predicts that the
candidates could be induced to substantially broaden their appeal if the
individual candidates in party lists were ranked by another voting system, such

as Borda or multiple noncumulative votes or approval voting.
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The analysis of this paper can also be applied to the competition among
parties in proportional representation systems. For simplicity, suppose that
each party may expect to control a portion of the government budget that is
proportional to the share of the legislature that it wins. Suppose also that
each party will allocate its portion of the budget to individual voters in
proportion to its campaign promises, which it has independently generated for
every voter according to its offer distribution. Each voter must choose one
party to support, and each party gets seats in proportion to its share of the
vote. So each voter should support the party that has promised him the most.

Under these assumptions, our analysis of proportional representation looks
like that of plurality voting and SNTV, because proportional representation
uses the same ranking-points vector (1,0,...,0) and thus is also a pure
first-place rewarding scheme. The symmetric equilibrium offer distributions in
a proportional representation election among K parties will be the same as the
symmetric equilibrium offer distributions in a l-seat plurality election among
K candidates. Thus, in a proportional representation system, if there are many
parties that are perceived as having similar potential to participate in the
process of forming a government, then each of these parties may feel compelled
to narrowly appeal to a small group of voters, and their campaign promises may
tend to create special-interest divisions even in an otherwise homogeneous

electorate.

Minority representation

This paper has focused on only one attribute of electoral systems: the
degree to which they may encourage candidates to create inequalities among the

voters by favoring some voters at the expense of others. For a full comparison
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of electoral systems, we must consider other models that emphasize other
attributes of electoral systems. One other attribute that we should at least
briefly consider here, because of its close relationship to the main topic of
this paper, 1s the ability of electoral systems to guarantee diverse
representation of minority groups. We follow here the seminal analysis of this
question by Cox (1987, 1990).

Consider again an election in which K candidates are competing for
election to a council of L members, and people vote according to a rank-scoring

rule with ranking points (sl ,sK) such that 1 = g, = s, =...2s_ = 0. Ve

1 Sor 1 2 K

assume that L < K - 1, and the candidates with the L highest scores will win
the L seats. Suppose now that (instead of making a discretionary allocation of
a given budget, as has been assumed in this paper up until now) government
officials have only one simple Yes-or-No policy question to decide. (E.g:
"Should our nation ratify the new regional trade agreement?") At the beginning
of the campaign, each candidate must choose to be either on the affirmative
side or on the negative side of this policy question. Every voter has
preferences one way or the other on this question, and will select his vote to
try to maximize the number of elected officials who have chosen the policy
answer that he prefers. As usual, we suppose that the number of voters is very
large (or is an infinite measure space). Let Q denote the fraction of the
voters who prefer the affirmative answer to the policy question, and suppose
that Q is common knowledge.

Let us now ask, how large must the affirmative fraction Q be to guarantee
that there does not exist any symmetric equilibrium in which all of candidates
are expected to choose the negative side of the policy question? That is, what

is the largest minority group that may be ignored by all candidates in the
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election, when each candidate chooses his policy position so as to maximize his
probability of winning a seat? This upper bound for the size of a voting

block that all candidates could ignore may be called the Cox threshold.

If all candidates choose the negative side of the policy position, then

(by symmetry) they must all expect the same average score

- K
s = X, s. /K,
=1 7]
and so each candidate has a probability L/K of winning a seat. If one

candidate deviates to the affirmative side, while all other candidate stay on
the negative side, then this deviating candidate will get a score

QSl + (1 - Q)S = Q:

K
because the affirmative voters will rank him at the top of their ballots, while
the negative voters will rank him at the bottom of their ballots. The symmetry
assumption implies that the other K - 1 candidates who are all on the negative
side will get the same expected score, and we know that the scores of all K
candidates must average to s. So the deviating candidate cannot expect to win
if Q < s, but the single deviating candidate should expect to win a seat if
Q > s. (The large-population assumption is used here only to justify the
assumption that the candidate with the highest expected score will almost
surely have the highest realized score.) So to guarantee that there 1s no
symmetric equilibrium in which the affirmative block is ignored by all K
candidates, the affirmative block must be greater than an s fraction of the
electorate. Thus, as Cox (1987, 1990) has shown, the Cox threshold for a
rank-scoring rule is s.

Of course, guaranteeing that some candidates will offer to represent the

affirmative block of voters does not guarantee that the affirmative block will

actually win representation in the council, except in the case of L = K - 1.
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When there are seats for all except one candidate, then a lone candidate on one
side of the policy question will fail to get a seat only if he is the lowest
scorer, which cannot happen if his score Q is above the average score s. Thus,
a block of voters that is larger than s is sure to win at least one seat in
equilibrium when L = K - 1, even without the symmetry assumption.

For any rank-scoring rule, the Cox threshold s is exactly the reciprocal
of the maximal offer that we found in Theorem 2. In this sense, the
rank-scoring rules that are best for guaranteeing representation of small
minorities, in large multiseat elections, are also the worst for deterring
candidates from creating inequalities in a homogeneous population. That is,
electoral provisions (like SNTV) that are designed to give representation to
diverse minority groups may also have the effect of encouraging candidates to
create special interest groups and minority conflict even when it would not
otherwise exist. Designers of electoral systems should recognize a tradeoff
between these two desiderata: guaranteeing representation for minority groups
in the electorate, and encouraging individual candidates to appeal broadly to
the electorate as a whole.

With respect to these two desiderata, however, there seems no reason to
use a system that has a low Cox threshold (which encourages a diversity of
narrowly focused candidates, rather than candidates who try to appeal broadly
to the whole electorate) unless the number of seats being filled is large
enough for this diversity of candidates to be translated into a diversity of
elected officials. 1In a single-seat election with two policy alternatives, for
example, the minority cannot be represented by a winning candidate unless the
majority is left unrepresented after the election.

To guarantee that clear majority interests are not neglected by all
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candidates in equilibrium, a good electoral system should have a Cox threshold
that is not greater than 1/2. For example, negative-plurality voting with 10
candidates would give us a Cox threshold of s = .90. So even if 89% of the
voters preferred the affirmative position in our simple model, there would
exist a symmetric equilibrium in which all 10 candidates chose the negative
policy position. If one candidate deviated alone to the affirmative side, he
would get a zero rating from 11% of the voters, while the nine negative
candidates would each expect to get zero ratings from .89/9 = 9.89% of the
voters, and so the affirmative candidate would lose. Of course, there exists
another equilibrium in which all candidates coordinate on the majority side.
However, the danger of having an equilibrium in which an overwhelming majority
is so completely unrepresented makes negative-plurality a very undesirable
system. This danger of neglecting majority interests similarly leads us to
reject all rank-scoring rules that have 1/s < 2, even though, by Theorem 2,
such rules may seem good for reducing the inequity of candidates’ offer
distributions.

The exact reciprocal relationship between the Cox threshold and the
maximal offer which we have found for rank-scoring rules does not necessarily
apply to other electoral systems. Under single transferable vote with K
candidates and L seats, the Cox threshold is 1/(L + 1), because a candidate is
guaranteed a seat when he is ranked at the top by more than 1/(L + 1) of the
electorate. But Theorem 3 shows symmetric equilibria in which some voters get
offers that are arbitrarily close to K, which can be strictly greater than
L + 1. Thus, we find maximal offers which are above the reciprocal of the Cox
threshold for STV.

Under approval voting., with any number of candidates and any number of
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seats, the Cox threshold is 1/2. If the candidates differed only in their
positions on one binary policy question, then each voter would sincerely
approve all candidates who adopted his preferred position; and so each
candidate would maximize his approval score by choosing the position that is
favored by the majority. (See Cox 1987, and Myerson 1993.) But Table 2 shows
that, for approval voting with more than two candidates, the maximal offers in
symmetric equilibrium offer distributions are strictly less than 2. So we find
maximal offers which are below the reciprocal of the Cox threshold for approval
voting, and approval voting allows us to get maximal offers less than 2 without

having a Cox threshold above 1/2.
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NOTES
This research was initially inspired by conversations with Barry Ames and
John Londregan. 1In writing this paper, I have also benefitted from many
discussions with Robert Weber. Support from the Dispute Resolution Research
Center at Northwestern University and from the National Science Foundation is

gratefully acknowledged.

1. With a finite population of M voters, and with a fixed supply of M dollar's
worth of public resources to be allocated, campaign promises could not be
independent across all voters, because the offers to all voters would have to
sum to the given number M. However, as the number M increases, independently
distributed offers can be more and more closely approximated. If the mean of
the candidate’s offer distribution is not more than 1 and the support of the
distribution is bounded then, for any small positive number ¢, M voters’ offers
that are drawn independently from the candidate’s distribution would have
probability less than ¢ of totalling more than $M(1l + &), when M is
sufficiently large. Thus, taking the limit as the population goes to infinity,
we can assume that each candidate makes independent offers to every voter.
Conversely, de Finetti’s theorem in probability theory implies that, if an
infinite number of voters are treated identically by a candidate, in the sense
that their offers are exchangeable random variables, then their offers must be

conditionally independent given the candidate's offer distribution.

2. The Riemann-Stieltjes integral is a generalization of the Riemann integral
which allows us to express expected values with respect to both continuous and

discrete probability distributions. Let a(x) denote any bounded continuous
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function of the variable x, and let b(x) denote any bounded and nondecreasing

function of x. Then the Riemann-Stieltjes integral

Jo ax) @b

can be defined as the limit, as n - +w=, of the sum

(=2]

zi=1 a(i/n)[b(i/n) - b((i—l)/n)].
If the function b is differentiable, then

fz a(x) db(x) = fg a(x) b’ (x) dx.

3. The candidates’ payoff functions are discontinuous when their expected

scores are equal. Simon and Zame (1990) show that,

to find the equilibria of

such discontinuous games, we may need to allow the payoffs to be endogenously

redefined at points of discontinuity, requiring only that these endogenous

payoffs should be selected in the convex-valued upper-hemicontinuous extension

of the original payoff function. However, we are analyzing here only symmetric

equilibria (which must exist because the game is symmetric),

and candidates who

use the same offer distribution must have the same probability of winning. So

the methodology of Simon and Zame leads us to use a simple model in which

candidates with the same expected score have the same probability of winning.

4. For each m > 1, Am(-) is the cumulative probability function for the

average of m offers that are sampled independently from the F distribution.

These cumulative functions may be inductively calculated by the equations

Il

Ay (x) = F(x),

Am(x) fgx An_l((mx - z)/(m - 1)) dF(z),

1

To derive the above formula, we use the fact that, if y is the average of m - 1

candidates’ offers and z is another candidate's offer,
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these m candidates offers is ((m - 1)y + z)/m, which is less than x if and only

if y= (mx - z2)/(m - 1).

5. To formally define B(ui), consider any other candidate h, consider some
specific voter, and let y denote the average of the offers to this voter from
all candidates other than i and h. Then candidate h will get an approval vote
from this voter if

Uy > (uh + vy + (K - 2)y)/K.
So, assuming K = 3, candidate h will get an approval vote if

(K - Duw - u)/(K-2) >y.
Thus, the probability that candidate h will get an approval vote from this
voter, when candidate i offers uy and all other candidates’ offers are drawn
from the F distribution, is

B(up) = [ Ag o (((R - Du - u)/(K - 2)) dF(w).

Here AK-2<y) =0 if y < 0.

6. In an equilibrium under approval voting, no candidate i1 should be able to
increase the average value of AK-1<ui) - B(ui) for some block of voters by
transferring promised resources among these voters. So let x and y be numbers
such that 0 < x <y and such that x is in the support of the F distribution.
Suppose that candidate i is consider the following perturbation of the F
distribution: all voters who were supposed to be given an offer close to x
(according to the random-number generator that implements F) will instead be
offered either 0 or y, and, to make this perturbation self-financing, the
fraction of these voters who will get y will be close to x/y. As a result of

this perturbation, the net change in the average of candidate i’s objective
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(AK_1 B), for this block of voters, would be
(/) (A () = BO) + (1 - x/¥) (A 1(0) = B(O)) - (A, () - BG))

= (Cly) - C(x))x,
where the function C(+) is defined such that

C(z) = (AK_l(z) - B(z) - AK_l(O) + B(0))/z, Vz > 0.
This gain must be nonpositive if x is in the support of the F distribution, and
it must also be nonnegative if y and 0 are in the support of the F distribution
(in which case the above perturbation could be reversed). So we can construct
an equilibrium offer distribution by choosing F so that the support of the F
distribution is in the set of numbers z that maximize the function C(z). This
C-maximization condition is difficult to solve analytically, because C(¢)
depends on F(+), but iterative methods can be used to find approximate
solutions. The Pascal program that I have used to find approximate equilibrium

offer distributions for approval voting is available from the author on

request.

7. There is some technical complexity in the case where the deviating
candidate i’'s expected vote share exactly equals the average 1/n in an STV
recount when n candidates remain. The definition of equilibrium used here is
consistent with the simple assumption that, when expected vote shares are
equal, then each candidate is equally likely to be eliminated. However, if G
is strictly different from I, then we cannot be sure that an equal expected
vote share in the infinite-population limit implies an equal probability of

being last in the case of a large finite population.
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Number of noncumulative votes that each voter must cast

Number of

Candidates 1 2 3 4 5 6 7
2 .58
3 89 45
4 1.13 70 38
5 1.33 .89 59 33
6 1.51 1.04 .75 .52 .30
7 1.66 1.18 .89 67 47 28
8 1.81 1.31 1.01 .79 .60 L4 .26

TABLE 1. Standard deviations of the equilibrium offer distributions, when each

voter must cast a given number of noncumulative votes.
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Number of Candidates Std. dev. Max. offer Fractn. <1 Avg. score

2 .58 2.00 .50 .50
3 .71 1.90 .34 .55
4 .70 1.70 .31 .60
5 .66 1.60 .29 .63
6 .65 1.50 .29 .66
7 .61 1.45 .27 .69
8 .61 1.40 .27 .71
9 .56 1.35 .24 .74
10 .54 1.35 .23 .74

TABRLE 2. The standard deviation of a candidate’s offers, the maximal offer,
the fraction of voters offered less than 1, and the average approval score for
each candidate, in equilibrium under approval voting. (Calculated using a 0.05

discrete approximation.)
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Figure 2. Offer distribution with 2 votes, 4 candidates.
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Figure 5.

Offer distribution with 4 votes, 4 candidates.
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