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Abstract

The representation of a cooperative transferable utility game as a
linear combination of unanimity games may be viewed as an isomorphism between
not-necessarily additive set functions on the players space and additive ones
on the coalitions space.

We extend the unanimity-basis representation to general (infinite)
spaces of players, study spaces of games which satisfy certain properties and
provide some conditions for o—additivity of the resulting additive set
function (on the space of coalitions). These results also allow us to extend

some representations of the Choquet integral from finite to infinite spaces.



1. Introduction

Real valued set functions, which are not necessarily additive, are
extensively used in decision theory. In one interpretation they represent a
transferable utility cooperative game; in another——non-additive probabilities
and belief functions. In yet other models these functions—and Choquet
integration with respect to them——appear as representing decision rules for
multi-criteria decision problems, and, in particular, multi-period and social
choice problems.

It is well-known that the set of "unanimity" games is a linear basis for
the space of such functions (i.e., games) in the case of finitely many
players. In Gilboa-Schmeidler (1992) we discuss some implications and
interpretations of this "canonical representation" of games, and provide
several results which are all rather simple consequences of this
representation.

The purpose of this paper is to extend the analysis to the general case,
of possibly infinitely many players. Note that while infinitely many agents
in a decision problem may be simply a matter of mathematical convenience, in
the context of decisions under uncertainty infinitely many states of the world
are almost a logical necessity. (See Savage (1954), who suggests that a state
of the world would "resolve all uncertainty.")

The first goal is, therefore to provide a canonical representation
theorem for the general case. We show that every game v can be represented as
a linear combination of unanimity games according to a finitely additive
signed measure By (on the algebra of set coalitions). We introduce a new norm

on games, and show that with respect to this ("composition") norm, the spaces



of games for which u, is bounded and/or o—additive are Banach spaces.
Further, the space of games with bounded composition norm consists of
precisely those games which are differences of totally monotone games.

We also provide sufficient conditions for u, to be c-additive and show
that all games v which are polynomials in measures would indeed have a
o-additive pu,,.

Finally, we provide two results reinterpreting the Choquet integral.
The first shows that for every game v there are sets of finitely additive
measures, ¢t and C°, such that the integral of any function f w.r.t. (with
respect to) v is simply the difference between its minimal integral w.r.t.
measures in C* and the minimal one w.r.t. C°. The second result states
(loosely) that if v is totally monotone, the Choquet integral may be
represented as minimum of means or as mean of minima.

Since all these results appear, for the finite case, in Gilboa-
Schmeidler (1992), we shall not expatiate on them here. The reader is
referred to the above for discussions, interpretations and many additional
references.

This paper is organized as follows. Section 2 provides basic
definitions and quotes some known results. Section 3 presents the main
results, the proofs of which are to be found in Section 4. Finally, Section 5

concludes with a few remarks.

2. Preliminaries

Let I be a nonempty set of players or states of the world and let Z be

an algebra of coalitions or events defined on it. We do not assume that Z is

a o~algebra unless specifically stated. If Z is finite, we will assume



w.l.o.g that so is 0 and that T = 20,

The following definitions are formulated for the players space (0,Z).
However, they will be understood to apply to any measurable space and, in
particular, to the space of coalitions to be introduced in the sequel.

A function v: £ - R with v(g) = 0 is called a game or a capacity. The
space of all games will be denoted by V and will be considered as a linear
space (over R) with the natural (pointwise) operations. Similarly, the
product of two or more games is to be construed as a pointwise operation.

For v € V we will use the following definitions:

(1) v is monotone if A ¢ B implies v(A) < v(B) for all A,B € Z.

(2) v is normalized if v(&) = 1.

(3) v is additive if v(A U B) = v(A) + v(B) for all A,B € ¥ with

ANB=¢g. Such a v is also called a signed finitely additive measure.

(4) v is g-additive if v(Uj.; A;) = ).y V(A;) whenever A; € Z,

]

Uj=y A € Z and A; N Aj = @ for i # j. Such a v is also called a signed
measure.

(5) v is convex if for every A,B € %, v(A U B) + v(ANn B) =

v(A) + v(B). It is superadditive if the above holds for all A,B € ¥ with

ANB=¢g. v is concave or subadditive if the converse inequalities hold,

respectively.
(6) v is pnonnegative if v(A) = 0 for all A € Z.

(7) v is totally monotone if it is nonnegative and, for every n =1

n I|+1
and Ay,...8y € B, v(U ey A 2 Tipgteqr,. . n)) LI vy 1A

(8) v is a finitely additive measure if it is nonnegative and

additive.

(9) v is a measure if it is nonnegative and c—additive.
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(10) v is outer continuous if for all {Ai)iz1 Cc Z Ajsq € Ay, Ny, 1 Ai € Z
3 1imi»m V(Ai) = v(r\i21 Ai)'

Observe that additive games are totally monotone, totally monotone are
convex and convex are superadditive.

Given a real valued function f: 2 - R, it is said to be measurable if,
for every a € R, {(w|f(w) 2 a) and {w|f(w) > a) are elements of £. The set of
all bounded measurable functions will be denoted by F. In general, it does
not have to be a linear space if T is not a o—algebra. (This was noted by
Wakker (1990).)

A function f € F is said to be simple if f = Zq=1 ailAi where a; € R,

Aj € Z and lg is the indicator function of B € Z. The set of simple functions

is denoted Fo.

For v € V and f € F, the Choquet integral of f w.r.t. (with respect to)

v is defined to be

[ fav - [ vitole) 2 ehide » f_" [vi{w|flo) 2 £}) - v(Q)]dt.

Note that it is well-defined if v is monotone and f is bounded. Also,
it is always well-defined if ¥ is finite. Finally, observe that this
definition coincides with the standard one if v is additive.

For v € V we define the core to be

Core(v) = {p| (i) p is a finitely additive measure;

(ii) p(A) = v(A), V A € T;

(iii) p(@) = v()}.

Note that we allow for a finitely additive measure to be identically



zero. For instance, if v = 0, Core(v) = {v}.
It will be useful to denote ' = Z\{(g).

For T €-Z', define the unanimity game on T to be the game u; € V definec

by
AT
p(2) {1 |
0 otherwise.

We now turn to quote some known results.
Theorem 2.1 (Shapley (1965)): Every convex game has a nonempty core.

Theorem 2.2 (Rosenmuller (1971, 1972), Schmeidler (1984, 1986)): A monotone
game v is convex if and only if

(1) Core(v) = &;

(ii) for every f € Fq (f € F)

f fdv = minpeCore(v) f fdp.

We now turn to quote some results which, to the best of our knowledge,
exist in the literature for the finite case only. The first one is the
"decomposition” or "canonical representation" theorem, which is the key to

many other results.

Theorem 2.3: Suppose X is finite. Then {urlqey 1s a linear basis for v.

The unique coefficients {a¥}TEz, satisfying

— \
v = Lre @7 Ut

are given by
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Yecr (D ITHISIv(s)y = v(T) - L{I1rIc{T, . .. )} LM o1

where Ti = T\(wi} and T = (w1,...,wn}.
In the sequel, (a¥} will refer to the above coefficients whenever ¥ is

finite.

Theorem 2.4: Suppose Z is finite. Then v is totally monotone iff a¥ > 0 for

all Te 2.

Theorem 2.4 is due to Dempster (1967) and Shafer (1976). Both Theorems
2.3 and 2.4 are generalized in Gilboa-Lehrer (1991) to real-valued functions
defined on arbitrary finite lattices. One of the main goals of this paper is
to extend them to set functions on infinite algebras.

In the finite case the canonical representation consists of summation
over elements of Z'. 1In other words, we were using a measurable space

(2',2%") and for each v € V we implicitly defined a signed measure on it by
By (A) = Z1a a¥.
Then the decomposition theorem took the form
vV = ZTex’ a¥uT = le urdp, (T).
In the general case we therefore need an algebra on Z' for which a

similar representation holds.

This algebra will be constructed as follows: for T € I, define TCES by



T=(Se=|SCT}.

Denote 68 = {i|T € ') ¢ 22 . Let ¥ be the algebra generated by 8, and let ¥

be the o—algebra generated by it. Thus ¥ C ¥c 28 It is easy to see that
these inclusions would be strict for large spaces (say, if G = [0,1] and Z =
B([0,1]) )

In case ¥ is finite, we define the composition norm of v to be

vl = Yrepr le¥l

Theorem 2.5 (Gilboa-Schmeidler (1992)): Suppose Z is finite. Then for every

v € V there are unique totally monotone v',v € V such that

and

vl = v+ vl

Furthermore, |v| = v(Q) iff v is totally monotone.
We now extend the definition of the composition norm to the general
case. Given a sub-algebra Z; € Z, and v € V, let v|2 denote the restriction
0

of v to 2g- Then define, for v € V,

|v| = sup(] Zy is a finite sub-algebra of Z}.

v |
ZoII

It is simple to check that “'“ is indeed a norm. When no confusion is

likely to arise, we will refer to it as "the norm."



We also note without proof that if v is additive, the composition norm

of v coincides with the variation norm as defined, say, in Dunford-Schwartz

(1957).

3. Statement of the Main Results

In this section we state the main results, which extend the canonical

representation theorem and some of its implications.

Theorem A: For every v € V there exists a unique signed finitely additive

measure g, on (Z',¥) such that

(*) v =[5 up du,(T).

Furthermore [v| = HpVH and the mapping v |~ u, is linear and continuous.
Conversely, every additive p, on ¥ defines v € V by (*). Finally, v is

totally monotone iff 4, is nonnegative.
In the sequel, p, will always refer to the (signed finitely additive)
measure on ¥ defined by v.

Let us now introduce the following subspaces of V:

yP

(vev | |vl] <=

VU

(v eV | u, is a o-additive signed measure).

(Equivalently, V7 = (v € V | p, has a (unique) o-additive extension to @).)



ybe = yb A yo.

Theorem B: VP, V¢ and VP’ are Banach spaces with respect to |e].

Furthermore, vb = (v+ - v | v+,v' are totally monotone}.

Corollary ("Min Minus Min"): Let v € Vb. then there exist two sets of
finitely additive measures, ¢t and C”, which are convex and closed in the

w*—topology, such that for all f € Fj

fn fdv = min + fn fdp - min _ fn fdp.
peC peC

(The proof uses Theorems B and 2.2.)
The following two theorems provide sufficient conditions for v to belong
to V7.

First let us introduce the subspace of polynomials in (o-additive)

measures: define
K
poA = {37 a; L A | N21,K 21
and a; € R for i < Nand A;; is a measure on {1}.
With this definition we may state:

Theorem C: poA C ybe

Next we consider the special case in which 0 is countable.
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Theorem D: If Q is countable, the mapping v |- g, is a bijection from
{veV | v is totally monotone and outer continuous)
onto

{p | p is a measure on V¥}.

We now proceed to discuss two additional results relating to the Choquet
integral. These were also presented in Gilboa-Schmeidler (1992) for the case

of a finite Z.

Theorem E: (Related results appear in Choquet (1953-54), Murofushi-Sugeno

(1989), and Wasserman (1990).) Let v € VP’ and f € F. Then

Jo fav = [ [infr £(w)]dp (T).

Corollary ("Mean of Mins and Min of Means"): Assume that v € V’ is totally

monotone and that f e Fy. Then

Jo fav = [pr [infer £(0)]dp (T) = ming core(yy Jo £dP.

4, Proofs and Related Analysis

4.1 Proof of Theorem A:

Let us define a basic element to be a subset of %' of the form
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for some A,B; € ' and n > 0. Note that § = &' is a basic element. We will
agree that a representation of a basic element as above presupposes that
3 = By G A Vis<n, B; ¢ Bj for i #» j. Under these assumptions, the

representation is unique.

Lemma 4.1.1: Every member of ¥ can be represented as the union of finitely

many disjoint basic elements.
Proof: Recall that ¥ is the algebra generated by
6= (A]| AESZ).

Hence, every element of ¥ can be written in its disjunctive normal form

as

. ke o o -
U [(jr_w1 A n (jr_w1 (Byy) )]

(where O denotes disjoint union.) W.l.o.g. assume ki = 1. (If ki =0,
introduce Ajq = a.)

It only remains to note that if A = n, A,, then A = Ny Ay |

It will be useful to denote, for (B.

n
1}i=1 <z,

A, CBYTo1) = Taicqt...np LI Tv(n 1 By).

Let us now define u, on basic elements by
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py(A\ Uy By) = v(a) - a,((B;)).

Next, extend p, to ¥ by additivity. Notice that this definition implies

linearity of u, in v.
Lemma 4.1.2: 4, is well-defined and additive on V.

Proof: Let Z, be a finite sub-algebra of ¥ and let ¥, be the corresponding

sub—algebra of ¥. By Theorem 2.3 one can see that for A,B1,...,Bn € Zg,

A n n - v
B\ Vst Bi) = Lires | 1ca, TeB, , isn) OT

Since every two members of ¥ belong to ¥, for some finite Zy, the

desired conclusion follows. n
Lemma 4.1.3:
(*) v = [p updu, (T)

Proof: For every s € I,

Jor up(S)du (T) = p, ((T|ur(S) = 1)) = p ({T|T € S}) = u,(S) = v(S). W

Next we have

Lemma &4.1.4: 4, is the unique measure on ¥ satisfying (¥*).
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Proof: Let p be a measure satisfying (*). Obviously,

p(é) = pv(é) = v(S) for all S € Z.

Next consider a basic element (A \ Uq=1 Ei). Since u is additive, it

has to satisfy

p(A\ Uy By = p(A) - p(U]oy By =

p(A) = Taleqt...ny (DI ucng o B

v(A) = A, ((By)].1) = my(A \ Uiy Bp).

which also implies B, = p throughout ¥. B

Next, observe that for any finite sub-algebra ¥y C ¥ and its
corresponding ¥y C ¥, the norms of v and p, restricted to Z; and ¥,,
respectively, are equal. This implies that |v| = HpV”.

Since the map v |- p,, is linear, it is also continuous.

The fact that every u on ¥ induces a v € V is immediate. We are

therefore left with

Lemma 4.1.5: v is totally monotone iff u, is nonnegative.

Proof: Assume v is totally monotone. Consider a basic element (A \ U2=1 ﬁi)

and a finite algebra ZO containing {A),{B)q=1. Then pV(A \ Uq=1 ﬁi) is the

sum of several coefficients {a¥) (as in 4.1.2 above) all of which are nonnegative.
Conversely, suppose 4, is nonnegative, and consider B1,...,B € X. Ve

n

need to show that
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n n
However, denoting B = Uq=1 B;,
v(B) = p,((Bj)]=) = uy(B\ U]y By) 20. W

This completes the proof of Theorem A.

4.2 Proof of Theorem B

Let us start with the claim that VP V% are Banach spaces. It is obvious
that VP and V° are linear subspaces of V, and we have noted that |e| is a
norm. We therefore need to check only completeness.
Lemma 4.2.1: VP is complete.
Proof: Standard.
Lemma 4.2.2: V° is complete.
Proof: Let {v,},,4 be a Cauchy sequence in V’. Let v be the pointwise limit
of {v,}. By standard arguments, v is well-defined and v - Vn” -+ 0 as n » «.

We only need to show that u, is o-additive.

However,

O N PN N A
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Hence, u, 1is the limit (in the wvariation norm) of {yv }
n

n- The latter being

o—additive, so is the former. |

Note also that since both V° and VP are Banach spaces, so is
vPr = yb n ye,
Next we wish to show that VP consists of all differences between totally

monotone functions. It is obvious that if v is totally monotone,

vl = v(Q) < =
and therefore {v+ - v v+,v' totally monotone} C Vb.

The converse is given by

Lemma 4.2.3: Assume v € V?. Then there are totally monotone v*,v” such that

v = v' — v'. Furthermore, there are unique such v* v’ satisfying

vl = Iv* + vl

Proof: Given v € V°, notice that ““v“ < o, i.e., p, is bounded. Then, by
Jordan’s decomposition theorem, there are finitely additive measures p+,p'

such that By = p+ - p~ and

v e VO e P

Defining vtve by ptou respectively yields the representation of v.
Furthermore, the uniqueness of p+,p' (satisfying the norm equation) implies

that of v*¥,v™. [ |
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The characterization of V° as differences of totally monotone set
functions reminds one of the space BV, defined and discussed in Aumann-Shapley

(1974) for @ = [0,1] and £ = B([0,1]). They define the variation norm to be
HVHvap = Sup{2?=o [V(Si49) — V(S{)| | @ =S5 C ... €Sy =0},

and BV to be the Banach space of all games with bounded variation norm.

Another clone is the summation norm, defined in Gilboa (1989) as
IVl gum = suptXhoq [V(Si)| | (Sy,...,S,} is a partition of Q)

BS denotes the Banach space of all bounded summation games.

It is easy to see that our (composition) norm dominates both the
variation and the summation norms. Indeed, an equivalent definition of the
composition norm is

M- sup{E:’i’_l |v(a;) - AV({Bf}§Q)| [ € (A, \ ufa B/)17.. is a partition of Q}.

Considering all the partitions of Q = %' into finitely many basic
elements {(&; \ ujh,ﬁf)}j one may focus on those for which k; =1, i.e.,
partitions of the form {(Ai \ Ai_1)}. For these

ky

|via;) - A, ({BJ}L) ] = [v(a) - vi(a,)|

and the supremum over sums of such expressions reduces to the variation norm.

On the other hand, one may consider only partitions of the form
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where {Bj)j is a partition of 1. 1In this case
V() - a, (B} = v - TKoq v(BD)]|

and the supremum over sums of such expressions is bounded between [[v|

sum and
3vilgun-

We therefore conclude that
vP ¢ BV n BS.

To see that the converse does not hold, consider the following

Example 4.2.4: Let 0 = N and & = 29,

Define

1 Iif |[A¢] s 1
v(a) =
0 otherwise.

It is easy to check that

||V”var = HV“sum = 1.

However, |v| is unbounded: for each k, consider Aj =0\ (1) for 1 =i =<k

and a partition of Q containing the basic element (ﬁ \ U§=1 Ai) Obviously,

vl = jv@ - a,apkopl = k- 1.

This example may suggest that a bounded A, is the crucial property of

games in VP, Yet we note that
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Remark 4.2.5: There are games v for which A, is bounded yet [v[| is not.

Proof: Consider the following example: O =N, & = 28 and define, for A C Q,

oo ifA=N
m(A) =40 ifA=20

max{n|{1,...,n} < A} otherwise.

Next, define

0 1f m(A) =0

v(a) = £(0) if m(A) = e
1 .
f(?ﬁﬁT) otherwise.

where f: [0,1] » [0,1] is some function with unbounded variation satisfying
£(0) = £(1) = O.

For A ¢ N, let
A" = (n}{l,...,n} C A}.
It is easy to check that, for all {Bi}§=1 c Z,

Av({Bi}§=1) = Av({Bi}§=1)'

Assuming, w.l.0.g., B; 2 Bé 2 ... 2 B&, and using Lemma 4.2.7 below,

18, (B = V(B = 1.
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Hence, 4, is bounded. Yet v ¢ BV and, perforce, v & Vo, [ |
We conclude this sub-section with two facts about the function 4, which,

in particular, will complete the proof of Remark 4.2.5.

Fact 4.2.6: For any T € =, (B;1%., ¢ =

1 ifdisks.t. Tc B

0 otherwise,

A, ({B;}5.) ={

Proof: Given T, (B assume w.l.o.g. that T € B; for i < j and T ¢ B; for

ili
i > j. Obviously, if j = 0, AuT({Bi}i) = 0. Assume, then, j > 0. In this

case

AuT({Bi}§=1) = Toic(t, .k GO ugcng o8y =
= Torc(t, ...,y DI upng g By =

Yalc(t, ..., jp-DITI* -1 .

Il

Fact 4.2.7: For all v € V and (B;)X_, ¢ =, if B, C B,_,, then

A,({B;}5.) = A, ({B;) 5D

Proof: By fact 4.2.6, it is easy to check that the conclusion holds for every
unanimity game v = u;.

For an arbitrary v, consider the finite sub-algebra of Z generated by
{Bi}§=1. On this sub—algebra v is a linear combination of finitely many

unanimity games. A, being linear in v, the claim is proved. |
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4.3 Proof of Theorem C

In order to show that poA ¢ vPe it suffices to show that for any

measures A1,.[.,Ak on Q, v = H§=1 Aj is in vPe  This proof is done by
construction.
Given A1,...,Ak, let Ay K be the product measure on Ok, i.e.,
- K
Ay k= Ay X Ay XLl X A on T

Let us define u on ¥ as follows: for every &€ ¥, let

(& = A k(g 0) € Qk|{w1,...,wk) e &)).

That is to say, for each ¥-measurable subset of coalitions &, we
consider all coalitions of size k or less in &, and the measure of & is
defined to be the A, | -measure of all k-tuples in ok consisting of members
of one of those coalitions.

We need to show that u is well-defined, that it is a measure and that
b= py-

We first note that

Lemma 4.3.1: For all A € 3, p(A) is well-defined and equals v(A).

Proof: First notice that

{(w1,...,wk) € Qk|{w1,...,wk) € A} =

= ((wy,...,0) € O¥lo; € A for 1 =i <k) = ak.

Hence, for all A € £', this set is A k—measurable and
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p(B) = A, (8% =K A ) = vy,

Next we have

Lemma 4.3.2: u is well-defined and o-additive.

Proof: Consider a basic element A \ U?=1 Bj‘

((wy, .. 00 € 05w, ...

((wy,...,0) € G¥[w; € A for all 1 < i < k) \

Cfor all 1 <1 < k) =

un {(wy,...,0) € Qk|wi € B]

j=1

K n K
A"\ U=y (Bj).
Notice that these sets are A, | -measurable in ak.
Furthermore, disjoint unions of basic elements are mapped to disjoint

unions of sets of the form above. Hence uy is well-defined on ¥. Its

o-additivity follows from that of A, | on ok, |

Noticing that A, k 1s nonnegative, we conclude that p is a measure on
¥. Together with the conclusion of Lemma 4.3.1 (and using the uniqueness

result in Theorem A), u = y, follows. This completes the proof of Theorem C.

A few remarks may be in order. First, notice that the definition of u
can be described as follows: first, consider only nonempty subsets with no

more than k elements:



By = (T C Q1 = |T| =k} = {({wy,...,0)]w; €0 for 1 < k}.
Next, map every such T € B, on all the |T|! |T|-tuples in alTl, Finally, for
each & € ¥ consider the Ay . -measure of the image of (& N B).

Note, however, that in general B, need not be a subset of Z.
Furthermore, even if {w) € % for all w € Q, the set B, need not be
¥-measurable. For instance, if G = [0,1]) and ¥ = B([0,1]), B, is not ¥-, nor
even U-measurable.

Yet, in the sense described above, we may say that By is "concentrated"
on B,. We therefore conclude that for v € poA, u, is "concentrated" only on
finite coalitions in Q. It is obvious, therefore, that polynomials in

measures are only a "small" subset of the spaces we are interested in.

4. 4 Proof of Theorem D

W.l.o.g. assume O = N, & = 2%, Let us first show that a measure u on ¥
induces a totally monotone and outer continuous game v. Total monotonicity
obviously follows from nonnegativity of u. To prove outer continuity, let

Ap 2 Apyq and A = Ny A . Consider the (countable) partition of Q given by

(BN AD) U (A, \ Ay, U LAl

By o-additivity,

V() = [v(D) = v(AD ] + Yooy [VAD = v(Ag) ] + V(A)

= v({Q) - limn* V(An) + v(A)

D0
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and the result follows. Next, we show that if v is totally monotone and outer
continuous, pu, 1is c—additive.

Let then be given such a game v. Define C; = N\ (i} and let ¥, be the

algebra generated by (C.} We first wish to show

1'121"

Lemma &4.4.1: p, is o-additive on ¥y

Proof: Let {(&;\ u§; B/)},,, be a ¥y—measurable partition of Q. We need to

prove that
Y. via) - AN = ).

Notice that each of {Ai,Bi}i j is the intersection of finitely many

Ci's, hence it is co-finite.

We will now enumerate the A;'s according to "layers," such that each A

in layer 2 is a subset of some Aj in layer (2 - 1), and Ai is subtracted from

the basic element corresponding to Aj'

First notice that there is exactly one i for which A; = Q. Assume

w.l.o.g. this is Ay and call {A1} "layer 1." Next consider the sets (B{}j.
Since B{ € 0, each of them has to appear as Aj for some j. Assume w.l.o.g.
these are A2’A3""’Ak1+l’ and let us refer to these as "layer 2." Continue

in this fashion, and notice that for every i,j, there is a k such that A, =

B{. (Note, however, that many pairs (i,j) may correspond to the same k.)

Next we claim that by this enumeration all the sets ({A;]};,;
exhausted. Indeed, if this were not the case, there is a set Aj; which is

contained in an infinite decreasing sequence of other Aj's. Yet, since they

are all different, such Aj cannot be co-finite.
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Let us therefore assume that our enumeration is {A,i}),,i where £ > 1,
1 =i <M, for each £, and {A,i}; is layer 1.

Let us further assume w.l.o.g. that for every £, i = j, Ajij = A N Ayj
is contained in A(!+1)r for some r. That is, that the intersection of every
two members of a certain layer, or a superset thereof, appears in the next
one. (This also means that the basic element corresponding to A,j(A,j) has an
empty intersection with Arij-) Note that, given the layer structure, one may
always introduce these intersections and redefine the layers accordingly, so
as to satisfy this condition, to which we refer as the "intersection
condition."

We now introduce

Mo x

PR x ky x5 —
Claim: For every L 2 1, uy; U (A \uily B = @\ ot A,

Loosely, what this equality means i1s that one may "get rid" of the
layers successively, and, instead of subtracting A,i and adding thelr basic

elements, we may ignore A,i and subtract the next layer sets directly.

Proof of Claim: The proof is, obviously, by induction on L. For the

induction step it suffices to show that, under our conditions,

(@ \ Uiy &) vl B\ Ui B = (@ Ui Uk BY)

To show the inclusion 2, assume that T € Qbut T & é{ for all i,j. Then

either T € (ﬁ \ U§=1 Ai), or else T C A; for some i < k. But then

TeZ;\ Ui, B/,

Conversely, suppose that a coalition T belongs to the LHS. If

T € (ﬁ \ U§:1 Ai), T ¢ Ay for all i < k and, since Bi C Ay, T ¢ Bi for all
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i,j. Next consider T such that T e (4; \ ufh Bf) for some i. We contend that

this may be true for at most one such index i. 1Indeed, if T € Ai 0 Aj’

TCcA N Aj = Ajy- But then the basic element corresponding to A; will have a
nonempty intersection with Aij’ in contradiction to our intersection
condition.

Hence, T ¢ Aj for j # i, and, perforce, T ¢ B? for j i and 1 < s < kj'

Since we also know that T ¢ Bf for 1 = s <k, Te (Q\ Uk ujh B7).

This concludes the proof of the claim.

In order to complete the proof of Lemma 4.4.1, let us consider the

expression

kll

Ef-l 27i1 (V(Ali) - AV({BQ‘;{}j.l))

By the claim and the additivity of u,, it equals

ML‘I

VIQ) = A ({A Ly} red)

Since v is totally monotone,

M, M .
A ({Ay dre) € VIURT ALy )

Denote A&, SHVEN Ao It suffices to show that v(A ) - 0 as L -=.

However, we know that

M, ~
{(Q N\ Uy 4,) Y,
is an increasing sequence of sets whose union is (. Focusing on singletons,

we conclude that

LN AD Y,y
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is also an increasing sequence whose union is Q. 1In other words, A ., C A_
and Nisy AL = @. By outer continuity of v, however, V(AL) - 0 and the lemma

is proved. |

We continue with the proof of Theorem D. We know that for a totally
monotone and outer continuous v, By is o—-additive on Wo. This implies that By
has a unique o-additive extension ﬁv to the o-algebra generated by {Cj)j,q-

We note that this o-algebra contains ¥ (hence, also ¥), since for every A € Z

A = Njac CL.
So we only need to show that gz, = u, on U,
Let v be the game (on Q) induced by 4,. Since g, is o-additive, v is

outer—continuous. But for every co—finite A,

V() = By(A) = py(A) = v(a).

Since both v and Vv are outer continuous, v = v, which also implies that
py = u, on all ¥,
Thus we have proved that v is totally monotone and outer continuous iff

py 1s a measure. The fact that the map v |+ u, is a bijection was already

proven in Theorem A. This concludes the proof of Theorem D.

4.5 Proof of Theorem E

Given v € VP? and f € F, assume w.l.0.g. that £ =2 0. Then

fn fdv = fa vi{w]f(w) =2 a})da

=[5 Js ur({w]£(w) = a))du,(T)]da.
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In order to use Fubini’s theorem, we need to show that the function
g: R, x 2’ - R defined by
gla,T) = ur(lw|f(w) =z a)) -

is B(R,) X &—measurable. In other words, the set

A= {(a,T|f(w) =2 @ for all w e T) =

= ((a,T)|a < inf T f(w))

has to be B(R,) X U—measurable.

Notice that for every a € R,

{(T|f(w) =2 a for all w e T} = S
where

S = {w]f(w) 2 a}) € T,

and measurability of A follows by a standard construction. Thus we have

Jo fav = [ [§ ur({w]f(w) 2 a))da du,(T) =

= o [inferf(w)]du, (T). u

5. Remarks

5.1 Updating Non-Additive Probabilities

The map v |- u, suggests a procedure for updating a non-additive

probability v: map v onto an additive 4, (on ¥), update the latter and
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project the updated g, into V. It is simple to check that one obtains

v(Bla) = v(B n A)/v(A).

(While using the dual games of {u;} as a basis would give rise to Dempster-

Shafer’s rule

v((BnA) uA®) -v(A®)
v(Q) - v(a®) '

v(BiA) =

5.2 Radon—-Nikodvm Theorem

The isomorphism between non—additive set functions on 1 and additive
ones on X' also suggests a "Radon-Nikodym" theorem for non-additive set
functions (interpreted as non-additive probabilities or as games). This was
also discussed (for the finite case) in Gilboa-Schmeidler (1992). Such a
theorem would take the following form: 1if v,w e VP and w is "absolutely
continuous™ w.r.t. v, then there exists a function g: £’ -+ R such that for all

f eF,

Jo faw =[5 [infiet £(w)]1g(T)dp (T).

For such a theorem to hold, one needs to have an appropriate definition
of "absolute continuity" of w w.r.t. v, which would imply the absolute
continuity of By W.T.E. K.

At present we are unaware of any reasonably-elegant conditions on v and

w that would guarantee this property.
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