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Abstract

We study the asymptotic stability of infinite horizon concave programming problems.
Turnpike theorems for this class of models generaly have to assume a low level of discount-
ing. By generalizing our precedent work we provide a one-parameter family of verifiable
conditions that guarantee convergence of the optimal paths to a stationary state. We call
this property #-acyclicity. In the one-dimensional case we show that supermodularity im-
plies our property but not viceversa. In the multidimensional case supermodularity has no
relevant implications for the asymptotic behavior of optimal paths. We apply 6-acyclicity
to a pair of models which study firms’ dynamic behavior as based on adjustment costs.
The first is the familiar model of competitive equilibrium in an industry in the presence of
adjustment costs. In the second case firms act strategically and we study the dynamic evo-
lution implied by the closed-loop Nash equilibria. In both instances our criteria apply and
allow us to obtain stability results that are much more general than those already existing
in the literature.






1 Introduction

Turnpike theorems for infinite horizon concave programming problems typically depend
on the level of discounting (see e.g. Cass and Shell (1976), McKenzie (1976), Rockafellar
(1976), Scheinkman (1976), and McKenzie (1986) for an overview). They have the form:
for given preferences and technology there exists a (low enough) degree of impatience such
that all optimal trajectories are attracted to a unique stationary state. Indeed the level
of discounting must be crucial for the general validity of the Turnpike property: we have
shown in Boldrin and Montrucchio (1986) that any kind of dynamic behavior is optimal if
the level of discounting can be appropriately chosen.

To obtain stability theorems which are independent of the discount factor additional
properties (over and above concavity) must be added to the model. This is the case of
Brock and Scheinkman (1976) (global positive definiteness of the “Q-matrix”), Araujo
and Scheinkman (1977) (dominant diagonality of the infinite “Euler matrix”), Scheinkman
(1978) (separability of the Hamiltonian between state and co-state variables) and Magill
and Scheinkman (1979) (symmetry of the off-diagonal block of the Hessian matrix).

In Boldrin and Montrucchio (1988) we have provided our contribution to this line of
research. We have shown that by writing the optimal growth model as a dynamic program-
ming problem a natural binary relation is defined over the set of feasible states. A pair
of capital stock vectors = and y satisfy this relation if, when starting at z, one obtains a
higher value by moving to y than by staying at «. When such a binary relation is acyclic
only “simple” (in a sense properly defined below) optimal trajectories are possible.

The purpose of the present work is two-fold. We generalize our previous result by
introducing a one parameter family of conditions of which the old one was just a special
case. In so doing we also provide new characterizations of the class of dynamic programming
problems that are acyclic. Secondly, to show that our conditions are not vacuous, we
apply them to the “costs of adjustment” model of the firm and obtain new stability results
which are substantially more powerful than existing ones. In particular, by adopting the
technique of Lucas and Prescott (1971), we provide stability conditions for the intertemporal
competitive equilibrium of the whole industry when all prices are endogenously determined.
Next we look at a game theoretical version of the same model. Using an equivalence result
due to Dechert ( 1978, 1988) we study the artificial optimal control problem whose solution

are closed-loop equilibria of the dynamic game. Once again our criteria can be applied to



show that also these trajectories converge to a stationary point.

The property of acyclicity is partially related to that of supermodularity of the short run
return function. Models with supermodular payoffs have recently attracted a wide attention
for their applicability to a variety of economic and game theoretical issues (Topkis (1978,
1979) Vives (1990), Milgrom and Shannon (1991)). We discuss this relation in Section
3 and show that in the one dimensional case the set of supermodular payoff functions
is strictly contained in the set of those that are acyclic. We also point out that while the
supermodularity property deliveres powerful comparative statics results it is not very useful
in a dynamic context. This is simply because only in the one dimensional case monotonicity
of a map z.y; = f(z;) implies convergence of the sequence {z;}{2, to a fixed point of f.
In other words: the fact that the optimal policy is monotone when the payoff function is
supermodular will not guarantee that optimal paths are convergent.

The rest of the paper is organized in the following way. Section 2 contains a description
of the abstract model and the statement and proof of the main theorems. In Section 3
the class of programming problems that satisfy our conditions is characterized. Section 4
studies the application to the costs of adjustment model. Section 5 concludes the paper.

The most tedious proofs are relegated in the Appendix.



2 Intertemporal Optimization and Dynamic Stability

2.1 The Basic Theorem

The class of intertemporal optimization problems we want to study is described by problem
(P) and assumptions (A1)-(A3).

[e o]

W(x) = max Z V(zs, Teq1)6"

t=0

s.t0 : T¢41 € ['(zy) (P)
zg =z, given in X.

(A1) X C R™is convex and compact.

(A2) T :X — X is a continuous, compact-valued correspondence with convex graph, and

z€Tl(z)forall z € X.

A3) V :D — R is a continuous, concave function defined on D = {(z,y) € R*™;z € X
( y

and y € I'(z)}. V(z,-) is strictly concave for every z € X.

We gather here some well-known properties of (P) that are useful for our purposes
(see Stokey, Lucas and Prescott (1989) and Boldrin-Montrucchio (1992) for details). The
function W : X — R is the value function associated to (P). It is (strictly) concave and

continuous and it satisfies the relation:
W(z) = max{V(z,y) + 6W(y) : y € I'(z)} (1)
Define as 7 : X — X the continuous map solving Eq. (1), i.e.:
W(z) = V(z,7(2)) + §W(r(2)). (2)

We call 7 the (optimal) policy function of (P). Using the Bellman Optimality Principle
one can show that {z:}$2, is a feasible sequence realizing the maximum for (P) if and
only if it satisfies: z44; = 7(z;), £o = z. The dynamic properties of 7 will depend, ceteris
paribus, on the magnitude of §. More formally: for given X, T and V the map § — 75 from
the interval [0,1) into the space C°(X; X) is continuous (in the uniform topology). The
dynamical system described on X by the iterates of 7 may therefore have very different

features at different values of 6. In particular, for suitable choices of V, periodic and even




chaotic trajectories can be produced by 7 at certain magnitudes of § (compare Boldrin-
Montrucchio (1986) and Boldrin-Montrucchio (1992) for details).

This is quite disturbing and, in many economic applications, also counterintuitive. One
is therefore interested in finding conditions under which, independently of the discount
factor, “complicated dynamics” cannot be solutions to (P). Boldrin-Montrucchio (1988)
contains one such condition. It is based on the idea of obtaining “simple” dynamical systems

as solutions to (P). To be precise we need a few definitions.

Definition 1. Let f : X — X be a continuous function inducing the dynamical system
zi41 = f(z:). The non-wandering set )( f) associated to f is defined as:

Q(f) = {z € X:V neighborhood B of z and T > 0, 3 t > T such that f{(B)N B # §}.
Here f! denotes the t* iterate of f, i.e., f{(z) = f(f*"(z)), fo(z) = z.

As the asymptotic behavior of the dynamical system z:y; = f(z) is described by Q(f)
it is clear that the latter can, in general, be very complex. It includes all the steady states,
the periodic orbits, the strange attractors, etc. (see Boldrin and Montrucchio (1992), and

references therein). Simple dynamics therefore requires a simple non-wandering set:

Definition 2. A dynamical system f: X — X is simple if Q(f) = Fix(f), where Fix(f) =
{z€ X :z=f(2)}

Quite obviously simple dynamical systems have strong stability properties:
a) when Fix(f) is a discrete set, every optimal trajectory converges to a fixed point;
b) when Fix(f) = {z*}, z* is a global attractor for the dynamical system f;

¢) when Fix(f) = {z*} and z* is locally stable then z* is globally asymptotically stable.

Definition 3. To every binary relation R C X X X we associate its transitive completion
R* C X x X as follows: for any pair (z,y) in X X X we say yR*z if there exists a finite
sequence (z1,...,zxN) of points belonging to X with z; Rz, z;;1Rz; (i =1,...,N —1) and
yRzn. Then R is acyclic if and only if R* is antisymemtric, i.e., if yR*z implies zR*y.

In Boldrin-Montrucchio (1988) we proved the following theorems.

Theorem 1. Let f: X — X be a continuous map on the compact space X and R a binary
relation over X. Assume that f and R satisfy the conditions:

(i) f(z)Rz for all z € X such that f(z) # z;

(ii) R is open (as a subset of X X X') and acyclic.



Then: Q(f) = Fix(f).

Theorem 2. Let 7 : X — X solve (P). Then 7 is simple for every é € [0,1) if V satisfies:

N N
ZV(J::,:Q) > ZV(Jzt,:cH_l) (%)

for any finite sequence {z1,...,zn} of points in X ( zxy41 = z1 is understood in (x)).

2.2 Generalizations

We will now seek a generalization of Theorem 2. A crucial first step is to define a one-

parameter family of binary relations Ry C X x X, with § a number in the unit interval.

Definition 4. Let U: X x X — R be continuous, with U(z, ) strictly quasi-concave and

X as in (Al). For a given number # € [0, 1) define the binary relation Ry over X as:
yRoz iff U(z,(1-8)z +6y) < U(z,y)
for z,y in X.

The relation Ry is open as a set in X x X because U is continuous. Notice that 7(z)R,z
whenever 7(z) # z, where 7(z) = Arg max {U(z,y) : y € I'(z)}. We should notice here that
a binary relation such as the one we use is naturally induced by any well posed maximization
problem and our methodology may therefore be applied to models other than (P). In the

following we will convene to call f-acyclic any U that induces a relation Ry which is acyclic.

Proposition 1. Under the hypotheses of Definition 4, § > ¢’ implies Ry C Rg. Therefore

if the relation Ry is acyclic for some 8 = 8, then it is acyclic for all > .

Proof. Let (z,y) € Ry. Then: U(z,(1 — 8)z + 0y) < U(z,y). For z and y fixed
consider the function A : [0,1) — R defined as A\(0) = U(z,(1—8)z 4+ 0y). Then (z,y) € Ry
is equivalent to A(8) < A(1). The (strict) quasi-concavity of U(z,:) guarantees that A is
quasi-concave and therefore: 8’ < 6 implies: A(1) > A(8) > A(6'),i.e.,U(z,(1-6)z+0'y) <
U(z,y) and so (z,y) € Ry. Q.E.D.

Proposition 2. If U is §-acyclic for some 8 € [0,1) then, for any function ¢ : X — R, the
new function V(z,y) = U(z,y) + ¥(z) is also -acyclic.

Proof. Obvious. Q.E.D.



Because of our concern with the asymptotic behavior of solutions to infinite horizon
programing problem we are interested in the particular case in which the function U(z,y)

is defined as:
U(z,y) = V(z,y) + 6W(y) (3)

where V and W are as in problem (P) above. In other words we want to study the acyclicity

of the relation:
yRez iff {V(z,(1-8)z+0y)+éW((1-0)z+0y)}<V(z,y)+W(y) (4)

for 6 taking values in [0,1).
This is quite difficult as one would need to know a lot about W, which is not the case
most of the times. This provides the motivation for the study of a notion of acyclicity which

is stronger than the one introduced in Definition 4. We have:

Definition 5. Let V(z,y) be as in (A3). We say that it is additively f-acyclic if the
function U(z,y) = V(z,y) + éW(y) is f-acyclic for any concave W(-).

Once again if V is additively f-acyclic for some 8 € [0,1), then the policy function 7
will be simple (in the sense of Theorem 1) for all § € [0,1). A generalization of Theorem 2

can now be proved.

Theorem 3. Let V be as in (A3) and 7 as defined in Eq. (2). If for any N and for any

sequence of distinct points {zy,...,zn} in X one has:

2

ZV .’l?g, .'131 +0z1+1 Z .’E,,.'E,.{.] (**)

for some 6 € [0,1), (with znx4; = z1), then V is additively 6-acyclic and 7 is simple.

Proof. We will proceed by contradiction. Let (%) be satisfied for some 0 < 6 < 1
and assume that Ry as defined in (4) is not acyclic for some concave W. This means
that there exists a sequence of points {zy,...,zx} such that ;41 Rez;, i = 1,..., N (with

ZN41 = 7). In other words, for the given 6 and chosen W one has:
V(.’E,‘, (1 - 9).’E,‘ + 9.’E,’+1) + 5W((1 - 9).’E,’ + 9.’E,‘+1) < V(.’E,',.’E,‘+1) + 5W(.’E,‘+1)

fori=1,..., N. Summing over i:

N

Z[v 20, (1 = )i + 02041) + 6W((1 = O)z; + 0zi41)] < 3 [V(@i,igr) + 6W(zigr)] (5)
i=1



As W was assumed concave, we have:

N N N
ZW 1—0)z; + 0z;4,) > (1 - O)ZW(:c,-) + 9ZW(:¢,-+1) = ZW(Q?,’)

The latter implies that Eq. (5) may be rewritten as:

N
ZV ZL',, zt+ezl+l < ZV ZL',,ZL',+1
i=1

which contradicts the hypothesis (xx). Q.E.D.

Theorem 2 is obtained as a special case of Theorem 3 by setting § = 0. Properties
analogous to those given in Proposition 1, Corollary and Proposition 2 also hold when V

is additively #-acyclic. They are illustrated next.

Proposition 3. If the function V, defined as in (A3), satisfies condition (xx) for some
6 = 6, then it is additively 6-acyclic for all 1 > 8 > 6.

Proof. The same argument used in the proof to Proposition 1 may be applied to the
function X : [0,1) — R defined as: A(8) = SN, V(zi,(1 — 0)z; + 02i41), for every given
sequence {zy,...,zn}. Q.E.D.

Proposition 4. If the function V, defined as in (A3), satisfies condition (*%) for some
6 € [0,1) then for any function ¥ : X — R and any concave function ¢ : X — R, the new
function V(z,y) = V(z,y) + ¥(z) + ¢(y) also satisfies condition (¥)

Proof. One needs only to replicate the proof to Theorem 3. Q.E.D.



3 Characterization

3.1 The One-Dimensional Case

The case in which the state-space is one-dimensional is particularly simple to analyze and
allows one to derive sharper results. Roughly speaking, the sharp characterization we are
able to obtain may be seen as another implication of a famous theorem of Sarkovskij (1964)
on the ordering of cycles of a map of the real line into itself. For our purposes Sarkovskij’s
theorem may be summarized in the following way. If f : R — R is continuous and has
some cycles, then it must have cycles of order two. Alternatively: if f has no cycles of order

two then it has no cycles whatsoever. The latter, together with Theorem 3, leads to:

Proposition 5. In problem (P) let dim(X) = 1. If V satisfies:
V(z, (1= 8)z + 8y) + V (5, (1 - O)y + 62) > V(2,9) + V(y,2)

for some 6 € [0,1) and all z,y in X,z # y, then V is additively 6-acyclic.

Proof. Asitisshown in Theorem 3 of Boldrin-Montrucchio (1988), Sarkovskij’s theorem

reduces the whole problem to ruling out cycles of period two, which is what the above

condition does. Q.E.D.

It was pointed out in the introduction that certain similarities exist between those
maximization problems that are acyclic and those that are supermodular. This relation is

particularly straightforward in the one dimensional case.

Definition 6. Consider two pairs of points (z1,z;) and (y1,y2), With z; > z; and y2 > u1.
A function V(z,y) defined over X x X is called:

o supermodularif V(z1,y1) + V(z2,92) > V(z1,y2) + V(22,%1), and

o submodular if V(z1,y1)+ V(z2,%2) < V(z1,92) + V(z2, 1)

A function which is either super- or sub- modular will be called unimodular. We should
stress that Definition 6 is not restricted to the case in which dim(X) is equal to one. The
same is true for Proposition 6. The notion of super- (sub-) modularity may be derived
from that of sub- (super-) additivity for a function defined on a lattice L, when L = R",
(see Marshall and Olkin (1979) for more details). The policy functions solving unimodular

optimization problems have very neat monotonicity properties.




Proposition 6. Let V : D — R be unimodular over D = X x X. Then:
e if V is supermodular the poliy function 7(z) is non-decreasing; and

e if V is submodular the policy function 7(z) is non-increasing.

Proof. One should note, first of all, that V(z,y) unimodular implies U(z,y) =
V(z,y)+ 6W(y) is also unimodular. Let us consider the supermodular case only, the other
one being completely symmetric. Set z; < z2 and assume, by absurd, that 7(z1) > 7(z2).
Set yo = 7(z1) > y1 = 7(z2). Supermodularity gives: U(zy,7(z2)) + U(z,7(z1)) >
U(z1,7(z1)) + U(z2,7(z2)). Strict concavity of V and the optimality principle together
with the latter inequality gives:

U(z1,7(21)) + U(z2,7(22)) > U(z1,7(22)) + U(22,7(21)) 2

2 U(z1,7(21)) + U(z2,7(22)),

a contradiction. Q.E.D.

The case D C X x X can be handled in the same way under mild additional restrictions,
i.e. V unimodular over D and either 7(z) interior to I'(z) for all z € X, or I an “increasing”
correspondence with “free disposal”. For a more extensive discussion of the implications
for 7 of the unimodularity of V' see Boldrin and Montrucchio (1992, Ch. 7).

We can now characterize the relation between supermodularity and acyclicity in the

one-dimensional case.

Proposition 7. Consider problem (P) with dim(X) = 1. In this case if V is supermodular
it is additively 0-acyclic.

Proof. We need only to show that the condition of Proposition 5 is satisfied for 8 = 0.
Let z and y be two points in X with, say, £ < y. In the definition of supermodularity set:
Ty = y1 = ¢ and zp = y = y. This gives: V(z,z) + V(y,y) > V(z,y) + V(y,z) which is
the desired inequality. Q.E.D.

The opposite is clearly not true as shown below in Example 1. This also proves that

the set of acyclic functions is larger than the set of supermodular ones.

Example 1. Consider V(z,y) = az + by — 1/24z% — y? — zy — 1/2Bzy? defined over
(0,1} x [0,1]. For the following set of parameters V satisfies assumption (A3): A > 1/2,B >
—2 and (24 — 1) > B(B + 2). This function also satisfies Va(z,y)(y —z) < Va(y,z)(y — )



for all z and y in X, which is the one-dimensional version of the sufficient condition for
acyclicity proved in Proposition 8 below. Furthermore, when B > 0 V(z,y) is submodular

whereas for B < 0 it is neither sub— nor supermodular.

3.2 The Multi-dimensional Case

Characterizing acyclic return functions is much more difficult in this case as nothing as
powerful as the Sarkovskij theorem exists in dimension larger than one. Furthermore here
the relation with supermodularity does not provide useful insights. Indeed this should be
obvious. Supermodularity only guarantees that the policy function z,4, = 7(z;) is a non—
decreasing one, i.e. that z < yimplies 7(z) # 7(y). In dimension one this is enough to rule
out cycles of period two (and therefore all other cycles) but it becomes an almost irrelevant
property in higher dimensions.

Nevertheless some progresses can still be made under fairly general conditions.

Proposition 8. Assume V is C! and that hypotheses (A1) — (A3) are satisfied. If for all
sequences (21,...,zxn) and for all finite N:

N

E(V2(ri,l‘i+1) (zit1 — -Ti)) <e< 0

1=1
then V is additively 8-acyclic for some 8 € [0,1). The former (with ¢ = 0) is also a necessary

condition for additive f-acyclicity.

Proof. Set ¢(8) = SN, V(z;,(1 — 6)z; + 0z,4,). Then ¢ is strictly concave on [0,1]
because V(z,-) is concave by assumption. To prove necessity notice that ¢(8) > ¢(1),
because V is 8-acyclic. Hence ¢'(1) < 0, that is to say:

N
$'(1) = Z:(V2(-Ti,17i+l) (Tiy1 — -Ti)) <0

Conversely, suppose that the latter is satisfied as a strict inequality for any finite sequence

(z1,...,2n). Given that V(z,-) is strictly concave and differentiable, we have
V(zt,ze41) S V(ze,07041 + (1 = 0)zy) + (1 - 0)Va(zy, 02440 + (1 = 8)21) - (2141 — 74)

Summing up over t:

N N
Ev(ztazt-H) < EV(zt,Oztﬂ +(1-8)z)+ M

t=1 t=1

10



where

N
M=(1- 0)(2 Va(ze, 02441 + (1 — 0)zy)- (Te41 — zt)) <0,

t=1

for # close enough to one. Hence:

N N
Z V(zt,th) S Z V(zt,eth + (1 - 0)11)
t=1

t=1

as desired. Q.E.D.

When the short-run return function satisfies a strong concavity assumption, a small
variation on the above line of proof can also provide an estimate of the magnitude of the
parameter §. In our terminology a function f : X — R is concave-§ if there exists § > 0

such that g(z) = f(z) + 8/2]| z ||* is convex over X.

Proposition 9. Assume V is of class C! and V(z,-) is concave—p for all z € X. If there
exists 0 < < B3 such that:

N N
Y (Va(zi, @igr), (zig — 20)) <= || zigr — i |2
=1 i=1

holds for all (z1,...,zn), then V is additively #-acyclic for some 8 near 1.

Proof. See Appendix.

11



4 Some Economic Applications

4.1 The Cost-of-Adjustments Model of the Firm

Stripped down to its bare essentials, the economic environment is the following.! A repre-
sentative firm is considered which produces a single output by means of a vector of inputs
and a time invariant technology. The critical feature of the model comes from the assump-
tion that inputs are quasi-fixed: a variation in their utilized quantities will entail positive
costs for the firm over and above the payment of the pure market prices. These “adjust-
ment costs” depend on the magnitude of the change. Denote the vector of inputs at time
t=0,1,2,... with z; € R}.

All the (n + 1) spot markets in which the output and inputs trade are perfectly com-
petitive. The firm is infinitely lived and it perfectly foresees the sequences of prices {p:}2,
and {q:}{2,, p: € Ry, ¢: € R}, t =0,1,... that will clear the markets.

The technology is described by a concave production function f(z;) and a cost-of-
adjustment function g(z;,z¢y;) which are both time-invariant and have values expressed in
units of output: g(z¢,z¢41) is then the output foregone in period ¢ in order to adjust the
inputs level from z; to z;4; for the next period. Because quasi-fixed factors depreciate, we
denote with ¥ the n x n diagonal matrix with elements 0 < 0; < 1,7 = 1,...,n representing
the rates of depreciation for each coordinate of z. Finally, we denote with I; € R} the gross
purchases of factors during period ¢. The firm’s total cash-flow in any period can then be

written as:
G(zt,$t+1,Pt,Qt) = pt[f(zt) - 9($t,$t+1)] —q -1y

The assumption of perfect capital-markets closes the model: for given sequences of prices

({p:},{q:}) a profit-maximizing firm will follow the objective:

max ZG(ztazt+lvpt7Qi)6t

{xf}zoio t=0
s.to:zy > 0allt, 7o € R}
To get things going we assume that the price sequences {p;} and {g;} are constant

over time and use the output as the numeraire: p, = 1 and ¢ = g€ R} allt = 0,1,....

In subsection 4.2 we show how this hypothesis can be removed, and the central stability

'We refer the reader to, e.g. Brock and Scheinkman (1978), Gould (1968), Lucas (1967), Mortensen
(1973), Treadway (1971) for details.

12



results retained, by using a technique introduced first in Lucas-Prescott (1971). Our second
assumption constrains the input vectors within a compact and convex set X C R}. This,
again, is of no harm to the generality of the argument, (see Brock-Scheinkman (1978, pp.
5-8) for details).

Finally we impose some additional structure on the costs of adjustment, by assuming
that g(z,z:4+1) is convex and satisfies: g(z¢,2:41) = g(zt41 — 2¢). This is the so-called case
of internal costs (see Lucas (1967) and Mortensen (1973)).

The dynamic programming problem of the firm now is:
max Y _[f(2:) — 9(ze41 — 2¢) = ¢+ (ze41 = (I = T)z,))6*

s.to: z, € X all t,zg given.

Proposition 10. The short-run return function:

V(z,y)= f(z)-9(y-2)-q-(y— (I - Z)z)

is additively #-acyclic for all 1 > 6 > 0.

Proof. Let {z,,...,zn} be any feasible sequence. We need to show that:

~Ng(0) > =Y g(zeq1 — 1)

holds, with zn4, = z1. This follows from concavity of —g, i.e.:

N
1
_g(O):_g lN Zg zt+1—$tl 2 Z.’L‘H.]—.’L‘t

t=1 t=1

Q.ED

We have already proved that in the case of internal adjustment-costs the optimal in-
vestment policy of the firm is a simple dynamical system at every level of the interest
rate.

A second type of adjustment-cost function is studied in the literature, e.g. Brock-
Scheinkman (1978) and Gould (1968). It assumes a convex cost function g(z,y) = ¢g(y —
(I = X)z). In this case the equilibrium price for the quasi-fixed factors will be an increasing
function of the amount demanded by the single firm: ¢ is not taken parametrically any
more, and the linear term ¢ - (y — (I — £)z) will be incorporated in g. This seems hard to

reconcile with the hypothesis of perfect competition: why should the choice of an individual
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firm affect market prices? The story behind these so called ezternal costs should rely, we
believe, on the existence of some market imperfection or on strategic behavior on the part
of the firms, a case we examine later on in section 4.4 . Taking this caveat as understood

we can consider the new ob jective:
max z[f(l't) —g(zip - (I - E)xt)]ét
t=0

s.to:z; € X all t, z¢ given

Once again strict concavity guarantees the existence of a policy function describing the
optimal program: z,4; = 7(z;). Unfortunately the simple result of the previous paragraph
cannot be replicated here, as the presence of the element (I —X) prevents the same argument
from carrying through. Nevertheless there are still two significant cases in which we can

establish a stability result for the model with external costs of adjustment.

Proposition 11. Assume that: ¥ = o[ holds for some scalar o € {0, 1], where I isthenx n
identity matrix. Then the policy function 7 is simple. The same is true even if convexity

of g is replaced by quasi-convexity, as long as 7 exists.
Proof. See Appendix.
Our second case is:
Proposition 12. Assume that for every vector z = (21,...,2,) the cost function satisfies
g(z) = XT_,9i(z), with g; convex for all ¢ = 1,...,n. Then the policy function is simple.
Proof. See Appendix.
Under the rationale for external costs we have given above, it should be clear that

assuming this kind of separability in the cost function amounts to assuming that the cross-

elasticities across the different input’s markets are negligible.

4.2 The Industry Competitive Equilibrium

Consider now the competitive equilibrium over time of an industry composed by a fixed
number M of different firms, producing the same kind of output. Retain the previous
notation and denote with fj,gj, 5, y50 = [fi(zj:) — g;(zje41 — 2j4)] the fundamentals of a

generic firm j = 1,..., M. Note that the input vector z;; has coordinates x?t,i =1,...,n.
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We also need the additional notation:

M
i i iy i i _
Ijt—zjt+1_(1—0j)z]’:, I:—EI]',, i=1,...,n.
j=1

M
— . _ 1 n 1 n
Y= E yjt, and 2¢_[:c“,...,:c“,...,:cj,,...,th]EZ.
i=1

where Z is a convex and compact subset of R™. The equilibrium prices for output and

inputs are determined as:
pr=d(y), ¢ <0,6>0; and ¢ = Hy(I}), H! >0, H;>0,i=1,...,n

where ¢ is the inverse demand function for output and the H; are the inverse supply
functions of the n inputs.

Only the internal-cost case will be worked out in full detail: the case of external-costs
does not present additional complication, other than those already discussed at the end of

section 4.1. Each firm solves:
00
max E{pt[fj(l'jt) — 9i(zjerr — Z50)] = g (T — (1 - Ej)i’jt)}fst (6)
t=0
s.to: zj; € Xj, zjo € X; given.
The definition of competitive equilibrium is the usual one.

Definition 7. A set of sequences {z1;,...,Zamt}ieo and {p, ¢ }52, with zj; € X all j and

all t,p € Ryy,q € R} all tis a competitive equilibrium for this industry if:
(1) {zje}2 solves (6) for the given {p;,q:}ioo all j=1,...,M;
M
(#)  pe= (D yje) all t;
J=1

M
(iti)) ¢ =H(D> IL)altandali=1,...n.
J=1

The programming problem (6) is not time invariant because of the exogenous terms p,
and ¢;. However it is a routine exercise to derive an autonomous dynamic programming
problem which has the competitive equilibrium sequence as its solution. To accomplish this

we need a few more definitions. Set:

Ye M
F(zt,2e41 — 2t) = A ¢(L)dL, with y: = > _[fi(z;i) — g;(zjes1 — zj¢)]
=1
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) n o
H(zipr — (I = £)2,) = Zj/o Hi(L)d(L).

where ¥ is the (n X M) X (n X M) matrix having the M matrices ¥; along its diagonal.
Notice that FF: ZxXx Z — R and H : Z x Z — R, are well defined and continuous. It is also
straightforward to verify that the function F' defined above is concave over Z x Z while H
is convex over Z X Z.

We may now consider the following problem:

max Z[F(z,,th —2) = H(zi41 — (I — £)2,))6" (7)
t=0

s.to: 2 € Z all t, 2 given in Z.

The reader should notice that, even if we have assumed only internal adjustment costs,
endogenizing the input-prices created an external-costs problem for the whole industry. This
is only natural, as the Pareto optimal solution cannot disregard the effect of the individual
firms’ demand on market prices. Moreover such “external costs” would arise in any case,
even if no (internal or external) adjustment costs had been assumed at the firm level.

We would like to prove that the return function V' (2, 2041) = F(zt, 2041 — 2t) — H(z¢41—
(I - £)z,) is additively 8-acyclic. The function H does not present any obstacle different
from those we already addressed in the previous subsection. The case for F' is somewhat
more complicated. In fact F' is of the type h[f(z) — ¢g(y — z)] where h is concave and
increasing: this is not enough to make F(z,y — z) -acyclic even if f(z) — g(y — z) were
such. Indeed the problem would not have arised if we had specified the return function of
the firm j as:

pefi(2jt) = 9;(2je41 = Z51)

This, indeed, appears to be the standard way in which the firm’s problem has been formal-
ized in most of the literature (e.g. Dechert (1988), Mortensen (1973), Scheinkman (1978)).
In this case the function F' has the simple form F(z,2') = E]Ail fi(z;) + E]Ail 9;(y; — z;)
which is obviously acyclic. Nevertheless, there are some disturbing problems with the eco-
nomic interpretation of the cost function g in this case. In fact, the value g(y — z) should
now be expressed in units of the numeraire and there is nothing in the underlying economic
problem that guarantees a convex and time invariant g. Finally, the very same notion of
“internal costs” as “lost output” becomes much less intuitively appealing in this case.

A possible and somewhat more palatable alternative, used in Hayashi (1982) and Uzawa

1969), is to interpret the costs of adjustment as ”lost inputs”, define g; as a function from
p J p , 5
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X; x X; into R} and write the return function of a generic firm as:
pefi(z5) = ¢0 - 95(y; — (I = Ej)z;)

This leads to a “social maximum” problem of the type F(z,2') = J-Ail filz;)+ Gz -
(I — £)z) which can be handled as we did in section 4.1 for the external costs case.

A third solution (which we follow in the rest of this paper) is to set the price of output
equal to one in each period. This is the same as assuming that the demand function for such
output is linear?. Notice, though, that the supply functions for inputs remain unrestricted.

When we set p, = 1 all ¢, the function F(z¢, zi41 — 2¢) simplifies to:

M Uy (250)-95(zye01=21)]
F(ztazt-{-l_zt):/ pm TR

M

dL =Y [fi(z0) — 9;(zjern — z50)]  (8)
7=1

In this case we can prove:

Proposition 13. The concave function F' : Z x Z — R defined in Eq. (8), satisfies

condition (**) of Theorem 3 for 6 > 0.

Proof. See Appendix.

Proposition 14. The concave function H : Z x Z — R satisfies condition (**) of Theorem
3 with 6 > 0, when one of the following occurs:

1) £,=%all j=1,...,M (depreciation matrices are the same across firms);

2) for each H; = fOI: H;(L)dL there exist M functions h; : X; — R such that H;(I}) can
be written as: H;(I}) = Eﬁl h;([jt) foralli=1,...,n.

Proof. See Appendix
We have therefore proved that under the maintained hypotheses, the Competitive Equi-

librium sequence {(z,pt,qt)}i2o generated by the solution to (8) will exhibit a simple dy-

namic behavior.

4.3 Capital Accumulation Games

This class of dynamic games has been recently studied by Dockner and Takahashi (1988),
Fershtman and Muller (1984, 1986) and Flaherty (1980) among others. We refer the reader

to these papers for detailed discussions of the model’s structure.

*We owe this observation to Hugo Hopenhayn

17



The physical environment is completely similar to the one we used in the industry
equilibrium example. The distinct feature is the assumption that firms act strategically
instead of competitively. One is therefore interested in the dynamic properties of the Nash
equilibria associated to a set of initial conditions (z}, ... ,zé, . ,.7:6").

Retain the notation and assumptions used in Section 4.2 and consider the case of external

adjustment costs. Without loss of generality the jth firm’s optimization problem can be

written as: - o
max 2 622 (i) (230 = (o0 = (= B0} ©)
= =1
sto:x;, € X; Vt; zjo given, {zi1}i2o given forall i # j.
The definition of equilibrium for this game is simple:

Definition 8. A Nash Equilibrium for the dynamic game described in (9) is a set of

sequences {z7},}i2, for j = 1,..., M such that

00 M
S 0(3 Atei) (w30 - 0i(E5ens — (1~ 530250} 2

t=0 1=1
00 M
>3- 6{6(3 21+ Si@0) i(es0) 93 = (= Z)as)}
t=0 i#j
for all feasible {z;;}2,, and forall i = 1,..., M.
We will now exploit a technique developed in Dechert (1988) to transform the game
described in (9) into a control problem of the type (P). The latter will easily seen to be

acyclic. In order to accomplish this we need one strong extra assumption, i.e. that the

aggregated demand function is once again linear,

M M
¢<Z fj(zjﬂ) =P - ij(zﬁ), with P > 0
j=1

i=1

The return function for the artificial control problem is then:
M J
V(z, 241) = Z{[P =Y filmi)lfi(zse) = gi(zjee — (T = Ej)zjt)} (10)
1=1 =1

where z, € Z is as defined in Section 4.2. It is a matter of fairly straightforward algebra
to verify that if a sequence {z}{2, = {Z1,...,Zm:}20} is a solution to the Dynamic
Programming problem induced by (10), then it is also a (closed-loop) Nash Equilibrium for
the game described in (9), (see Dechert (1988) for the details). Among the other things
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this implies the existence of M continuous maps 1; : Z — X; for 1 = 1,..., M such that the

individual firms’ equilibrium strategies satisfy:
Tit41 :T,‘(Zt), 1= 13---3M (ll)

As an immediate consequence of the results obtained in sections 4.1 and 4.2 we can

conclude:

Proposition 15. Under the assumptions of either Proposition 11 or Proposition 12, the

dynamical system (11), representing the closed-loop Nash equilibria of (9), is a simple one.
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5 Conclusion

In this paper we have introduced and characterized a new condition for the dynamic stability
of the solutions to infinite horizon optimal control problems. This condition substantially
generalizes the one we had previously proposed in Boldrin and Montrucchio (1988), and it
allows for a fairly elegant characterization of the class of dynamic programming problems
satisfying it.

We have tested our approach by considering the dynamic theory of the firm, under both
competitive and oligopolistic market conditions. In both cases we have been able to deliver
strong stability results which followed as immediate application of our abstract condition.
A brief comparison with the relevant literature should make it clear also in what sense our
technique improves upon all the previous ones.

From the standpoint of economic applications the most affine article is Scheinkman
(1978) where the continuous-time version of the internal-costs model is considered. He
shows that every optimal path either converges to the boundary of the feasible set or to
a unique, interior steady state. His basic argument is different from ours and cannot be
applied to the external-costs model. He exploits the fact that in his model the Hamiltonian
is separable in the state and co-state variables. Differentiability is also used. Further, he
provides a solution to the industry-competitive equilibrium problem along the same lines
we have used here, but he keeps input prices exogenous and fixed over time.

To the best of our knowledge Brock-Scheinkman (1978) is the only other global analysis
of the discrete-time version of this problem. They take in explicit consideration only the
external-costs, but the internal-costs is also covered by their technique. They add differen-
tiability to our assumptions and obtain a global stability result for the interior solutions as
a consequence of the negative quasi-definitiveness of a certain Hessian matrix. The later is
satisfied, in general, for values of the discount factor close to one. Their theorem does not,
therefore, exclude different behaviors for smaller values of 6.

Again for the discrete-time problem, an interesting local analysis has recently been
carried on by Dasgupta (1985) (see also Dasgupta-McKenzie (1990)). While both articles
look at the same class of models we also consider, their main concern is the relation between
local stability and regularity of the optimal steady states. The ensuing results are therefore
not comparable to those obtained here.

As for the game-theoretical version of the firm’s problem the early study of Fershtman
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and Muller (1986) considered the continuous-time, one-dimensional version of the problem
and is therefore not comparable. The only work we are aware of and which analyzes a general
version of the discrete-time capital accumulation game is Dockner and Takahashi (1988).
They study only open-loop Nash equilibria and their Turnpike theorem is obtained by
applying the infinite-dimensional Dominant Diagonal condition of Araujo and Scheinkman
(1977) to the set of first order conditions of the individual players. While they need not
assume linearity of the aggregate demand function they must assume that the individual

profit functions satisfy a dominat diagonal condition.
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Appendix

Proof of Proposition 9. Concavity of V(z,y) in y implies:

V(zi,zip1) < V(zi,(1 = 0)z; +0z;501) + (1 = )Va(z;, (1 = 0)z; + O2i41) - (Tig1 — i)
and concavity-8 in y implies (see Boldrin and Montrucchio (1992, App. C)):
(1-0)Va(zi, (1= 0)2i+0zix1)- (ziy1— i) < Va(2i, zig1) - (Tip1 —zi) + B(1=0)" || zipr— i |[?

Using these two inequalities and summing up along the index 7, for ¢ = 1,..., N we have:

N N
d o V(xi,zigr) <D V(zi, (1 — 0)zi + 0zit1) +

i=1 1=1

N

N
+ (1= )Y (Val@iszisa) - (zia1 = 7)) + B0 = 0 Y [l 2is — =i |1

i=1
Our hypotheses imply that the sum of the last two terms on the right hand side is bounded

above by:
N
—(1=8)[n 1—9)/32 | zip1 — 2 ||

which is nonpositive for § > 1 — /. Q.E.D.

Proof of Proposition 11. We only need to show that (xx) is satisfied for some 6 € [0,1).
In fact, we can prove it for 6 = 0, i.e.:

N N

Zg(azi) < Zg(fiﬂ - (1 -o)zi)

=1 =1
holds for all sequences {z1,...,zx} and all o € [0,1]. For given sequence and o define the

convex combination:
oziy1 = (1 = o)ozi + olzipr — (1 - 0)z4]

fori=1,...,N.
Convexity of g implies: g(oz:y1) < (1 ~ 0)g(oz;) + og[zit1 — (1 — 0)z;]. Summing up
from ¢ =1 to ¢ = N and simplifying:

N

N
>_9(02:) < 3 _g(zipr - (1 - o(zd)

=1
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As for the quasi-convex case, quasi-convexity implies: g(oziy1) < Max[g(oz;),9(ziy1 —

(1-0)z;)]i=1,...,N. Hence there exists g € [0, 1] such that
g(0zi41) < (1 — p)gloz:) + pg(ziyr — (1 - o)zy)
t=1,...,N. Summing up and simplifying yields the desired inequality. Q.E.D.

Proof of Proposition 12. Depreciation factors can be different so ¥ = diag(o1,...,0n).
Let z1,...,zy be a sequence of feasible vectors in X, with coordinates (z},...,z?) for

t=1,...,N. Once again set:
gzl = (1= 05)a5z + ozl — (1 - 0;)2]]

for every vector i = 1,..., N and each coordinate j = 1,...,n.

Convexity of g; implies:
gi(ojzlyy) < (1 = 0;)g;(052]) + 0595(zlyy — (1 = 0;)27), Vi, V;
Summing along the index ¢ we get:
N ) N . N . )
>_giloiely) S (1= 0) Y gilosel) + 05D gi(alyy — (1 - 05)z)
=1 1=1 =1

for all j = 1,...,n. After simplification we get:

N N
Y gi(oizl) < izl — (1 - 05)ad)
=1 =1

all j =1,...,n. A second summation along the index j gives:
n N ] n N ) ]
D22 0s(o5el) <303 ai(alyy - (1-a))zd).
7=1l1i=1 1=11=1

Interchanging the order of summation and using the property of g given in the Proposition

we get:
N N
Zg(Ex;) < Zg($i+1 - (I -1%)z;)
=1 i=1

Once again the return function is additively #-acyclic and the result follows. Q.E.D.

Proof of Proposition 13. Let the sequence {z1,...,zx} be given. We want to show that:

N M N M
> {3 Ui = 9O} 2 YA Uiles) - g3(ase1 — 2]}

t=1 3=1 t=1 =1
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holds true for any such sequence. The latter reduces to:

M N
=Y INg;(0) = > gi(zjerr — z50)] 2 0
1=1 t=1
which is satisfied because g; is convex for all j. Q.E.D.

Proof of Proposition 14. When hypothesis 1) is realized H is the sum of n concave
functions:

PDRNCAREIIEZOEN . o
/ = *HALYL = Gi(#y, — (1 - ' D))
0

where 2} denotes the M-dimensional vector [z},,...,2%;,], for i = 1,...,n and I is the
M X M unitary diagonal matrix. Then G; belongs to the class of functions already considered
in Proposition 11, and condition (**) is satisfied. When hypothesis 2) is realized H is totally
separable and so each of the functions H; belongs to the class of functions considered in

Proposition 12 and (xx) applies once again. Q.E.D.
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