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1 Introduction

This paper examines R & D race models viewing the problem of project investments by firms
in a search framework. Such an approach is appropriate when the outcome or performance
level of each project is uncertain.

The general context of the R & D problem considered may be roughly described as follows.
Each firm has a certain number of. possibly different, projects. The uncertainty associated
with each can be removed by paying a search or an exploration cost. Competing firms
invest in search, simultaneously. selecting one or more projects each time. The outcomes
produced from search can be carried over into the future. Reward is collected when all firms
terminate search. The reward structure is winner-take-all, i.e.. the firm which has produced
the highest outcome from the search it undertook, gets all of it; and the reward for other
firms (producing a lesser outcome) is zero. The objective for each firm is to maximize the
expected discounted reward net of the search cost it pays, by selecting an appropriate search
strategy to explore its set of projects.

Several R & D situations fit into (albeit in a highly simplified way) the above scenario.
Consider for example. the patent context. If the outcome of each project is a distinct product
with a certain quality index, and if the product with the highest quality appropriates all the
market surplus. then patenting a product may not be profitable (especially, if there is a cost
to get the patent) if it expects a competing firm to generate a higher quality product in the
near future. In this situation. the search problem described above is relevant for when to
seek a patent.

As an another example. consider several firms that are in a position to deliver a product or
service (for example, a communication service). Fach project is a substitutable technology.
and its search or developmental trial reveals its service value. The firm that generates the

highest service value is licensed to deliver the service. (or if more than one is licensed to



deliver the best technology. the post-adoption rents are high for the innovator). !

The framework and approach are different from the R & D studies that focus on effort
levels to finish first in a time race to get a fixed known prize(for example. the studies of
Loury (1979). Lee and Wilde (1980). Harris and Vickers {1933). Dixit (1987). and others).
[t is a race in terms of generating the highest reward from exploring projects with uncertain
benefits. The models fall into the class of R & D problems where information production is
involved (Allen (1991), Dasgupta (1990). Reinganaum (1933)).

The models analyzed in this paper seek to examine race under uncertainty in a search
framework. Investing in R & D projects are viewed as search decisions. Issues addressed
include project investments and search decisions in the race. race termination conditions
and completion times, conditions for parallel search activity, the influence of distributions
characterizing project uncertainty, the effect of continuing R & D opportunities (repeated
search). project selection order. and how race outcomes may differ from that of planner's
decisions. Models considered include finite and infinite horizon races.

In Section 2.0. a single stage game is analyzed with each firm having access to a single
R & D opportunity. The firms enter the game with their own initial technologies. The
equilibrium search decisions are characterized and it is shown that. in all cases. there is
project overinvestment in the race relative to the planner’s problem. It is also shown that
there exists a threshold level of initial technology lead bevond which no firm will invest in

R & D activity, in this single stage game.

'(To cite an example of this situation, in the telecommunication industry. at present, there are more than
fifty license holders to investigate alternative technologies for delivering personal communication services.
via pocketable phones and an appropriate network infrastructure. The Federal Communication Commission
is interested in the technology delivering the highest consumer surplus. There is a great deal of uncertainty
about which technology will actually provide the best surplus. The regulatory questions are not of interest
in this paper. Rather. the interest is in getting some insights into how firms respond in the presence of
projects with uncertain outcomes.)

’In many instances, one can equate time with reward. but more insights can be gained by keeping them
separate. Additionally, in most of the effort-time models. time as a function of efforts is assumed to be an
exponential random variable. No such specific assumption is made here.



In Section 2.1, repeated R & D activity is considered wherein each firm can invest in
a project per period (each project vielding after one period). Equilibrium strategies. race
termination condition. and completion times are analvzed for finite and infinite horizon
games (with identical distributions in each period for repeated search). During the course
of the race the lead (advantage in terms technology secured thus far) and the leading firm
may change from stage to stage. The race termination can be characterized in terms of
a threshold lead (which depends on the distributions. search cost, and the discount rate).
When the lead is larger than this threshold. the race ends. Additionally. there is project
overinvestment in the race. and the race takes longer than the planner’s search duration.
(Conditions under which parallel search and sequential search are undertaken in the race are
characterized.

When both firms have continuing prospects of innovation(extending or infinite hori-
zon). and if the search costs(per project) are low, then both search in parallel and stop
together(pure strategy Nash equilibrium). In this case of low costs, rents to each firm from
the race dissipate. Higher costs result in the lagging firm dropping out of the race (at a
certain lead) when it is still better for the leading firm to continue search and gain positive
returns. Thus, rival’s threat is continued and dissipating when costs are low: whereas if
costs are high and R & D prospects are good, a firm has positive returns once it gets past
its rival. (This model is different from Harris and Vickers(1985), who consider effort-time
race with intermediate stages and fixed termination points for either player. Among other
differences, the termination points are endogenous here). It is also shown that better dis-
covery environments lead to longer race times. Additionally, the invariance result of Sah
and Stiglitz(1986). race investments coinciding with that of planner, is shown to not hold
in repeated R & D environments: if the discount rate is high enough, the planner always

prefers sequential search, whereas there can be parallel search in the race.



In Section 3. race with firms having heterogeneous alternatives is considered. Given rival
firm’s behavior. each firm faces a systematic search problem. i.e.. search involving distinct
alternatives. For the (partial equilibrium) search problem of a firm. Weitzman's reservation
rule (1979) applies. if only one project at a time search is considered. This rule is not optimal.
in general. when time s discounted. In general, a parallel search strategy (allowing for each
firm to select one or more of its projects at a time) is optimal.' as shown in Vishwanath (1991).
Although parallel search problem is complex in general. when the distributions associated
with projects satisfy certain stochastic ordering conditions. the optimal search order can be
characterized in a simple manner. The approach taken here in analyzing the R & D race
considered is via the application of results in Vishwanath (1991). The stochastic ordering
conditions enable the analysis of risk choices of firms. (Bhattacharva and Mookherjee (1936),
consider. in their analysis of risk choices, a one stage game with each firm choosing only one
project from its set. Without cost considerations. as is the case in their model. the best
strategy for each firm is to do all projects simultaneously regardless of risk considerations.
The model addressed here incorporates cost considerations. and is dynamic. The ordering
conditions on the distributions given here are also slightly more general.) The (pure strategy)
equilibrium search order is shown to be predetermined. and race termination here is shown

to have a simple myopic characterization. Concluding remarks are in Section 4.

2 A Single Stage R & D Game

In this section, a single-stage R & D game involving two firms is considered, with each firm
having one R & D project. This example seeks to illustrate the nature of search decisions.
equilibrium outcomes. and how the research investment in the race may differ from that of
a social planner. It also illustrates some distributional effects on the outcomes (i.e.. how

the distributions associated with the projects influence equilibrium outcomes). In addition.



it 1s useful for the race completion time analvsis undertaken later. Some aspects of the
relationship of the model considered here to other models in the literature will also be
discussed.

Suppose that each firm has an initial technology, the reward (or the performance value)
from which is known. and an R & D opportunity, the reward from which is uncertain. Each
firm faces the decision of whether or not to invest in (or search) its project. Let y; > 0 denote
the initial reward for firm ¢/ = 1.2. That is. the two firms enter the game with these values. If
neither firm undertakes any further R & D effort. the firm with the higher of the two values
is the winner. The reward. then. for firm ¢ = 1.2 is y; if 4y > y;. J # ©: and equals zero if
yi < y;. (If the two are tied. assume both get an equal division: the assumption of division
matters little if the probability of ties is zero. as will be the case in the analvsis later.) To
begin with. suppose the reward distributions associated with the projects are identical and
independent. Let F(r) denote this distribution (assumed continuous throughout a bounded
support [0.8]). To explore each project, a (contractual) cost ¢ > 0 must be paid at the
beginning. Assume that the results of the exploration will be known after one period. and
tet 3 (0 < 3 < 1) represent the discount rate for a period. Single-stage means that all R &
[} activity takes place in one period (and it ceases after the first period).

Consider. first. the planner’s problem. From this viewpoint there are two projects, and
the initial reward before any search is undertaken is y = max(y;.y2). Then, the value® or
the expected discounted reward to the planner from searching & projects (k = 1, 2). denoted

Vi(y: k) is given by
b
Vilyi k) = —ke + 3F*(y)y +/ 2dF¥(z). for k= 1,2, (1)
Y

Note that if k projects are chosen, cost k¢ 1s incurred at the beginning. If the outcome from

3Both the planner and the firms are assumed risk neutral throughout the paper. Also. in all the models
analyzed here yield time of a project is assumed to be one period. for simplicity. More details of project
features. including pay-as-you-go or running costs, can be built in.



search (the distribution of the maximum of the rewards from k projects is F¥(z)) is no better
than the fallback, then the initial technology is implemented though after one period. The
third term on the right side of (1) accounts for better outcomes from search.

The value to the planner from optimal search is V,(y) = maxy V,(y: k). Thus search is
undertaken if y < V,(y); and is abandoned if y > V,(y).

To analyvze the planner’s search investments further. for & = 1.2, let R denote the

reservation reward. determined (uniquelyv) by:

y z Ry as y z Voly: k). (-

(8%

Let £ = max(K;. R;). Rewriting (1) as
b
Gy k) = —ke+ 3y + 3 [ 11— FHa)lde,
y

it is easy to see that the marginal returns from undertaking the second project (over and

above undertaking one) is
b
Vyi2) = V(s = =+ 3 [ Fla)[l ~ F(z)]dr. 3)
v

which is decreasing in y. (It is of some interest to observe that the marginal returns to search
need not decline with the number of projects; the returns represented by (3) may or may not
be less than V;(y:1) — y, which is the marginal returns to exploring the first project. This
1s due to the fact that search involves an opportunity cost from delaying the initial reward
when 3 < 1. whereas once the search decision is undertaken additional projects do not incur
such costs). Let y denote the initial reward such that V,(3:2) — V,(g;1) = 0.

The planner’s optimal search decision may now be characterized as follows:

(a) if Yy > H,. then (1)

search two projects if y < Hy;



and abandon search if y > R,.

(b)if 0 <y < Ry, then (:

Ot
~—

search two projects if y < j;
search one project if § <y < Ry;

and abandon search if y > R;.

In the first case. R = R,. and in the second. R = R,;. For case (b), note that for y > 7.
Vo(y:1) > Vo(y:2) by virtue of the property that (3) is decreasing in y, and V,(7: 1) > J unless
y = 15, Hence the reservation price (indifference between searching and not searching) for
this case is Ry, which is greater than R,.

Next. the equilibrium outcomes of the game are analyzed.

Let n (no search) and s (search) denote the actions of a firm. Let y = max(y,y2) be
the initial reward (lead) of the leading firm. If neither firm searches, then the payoff for
the leading firm, denoted by V*(y) equals y; and the payoff for the lagging firm denoted

VI (y) =0. If only the lagging firm searches, then the expected payoffs are:

Visly) = 3Fy,

and Vily) = —c+ 3 [ edFlz)= Aly) (6)

14

In this case. the lagging firm has nonzero benefits only if the outcome of its search is greater
than the lead y.

If only the leading firm searches, then

Valy) = 3F(y)y+ Aly) (

-1
—

andV! (y) = 0.

-1



Finally, if both search.

Vo —c—}—;i’/bIF(J:)dF(r):_\( 3
ss ] = 1y)' (b)

Y

and Vi(y) = 3Fyy+ Aily). (9)

In this case. the lagging firm has positive benefits only if the outcome (z) from its search
is greater than the lead, and the leading firm’s search outcome is less (probability F{z)).

(Mixed strategy pavoffs are determined in a similar way.) The game matrix is shown below:

Lag

S
T 8

Lead

5 3F(y)y +Aly), 0 IFy)y + Ai(y), Aly)

The lagging firm’s payoffs (first element in each entry) are decreasing in the lead y: and
those of the leading firm are increasing. In addition. search of one firm negatively affects the
payoff of the other. The sum of the payoffs in each entry equals the planner’s value {given
the same number of projects is undertaken as implied in the strategy pair).

To analyze Nash equilibrium outcomes, define y as the lead at which the lagging firm has
no incentive to search, i.e.,

Ay) = 0. {10)

and let k,(y) and k,(y) represent the investment levels (number of projects chosen) in equi-

librium and of the planner. respectively.

Theorem 1 [n the single-stage game described above. k,(y) > ky(y) for all y. Furthermore,

y > R. and neither firm searches or (n.n) is NE {ff y > 5. O

(0.7



Proof: First. consider the case when parallel research is beneficial to the planner. when search
is undertaken. i.e., case (a) when y > R,. It is shown that there exists a lead j > R; such
that for all y < y. the unique NE is (s.3): and for § < y < y only the lagging firm searches:

and for y > 7, (n.n) is NE. Since y < y implies
Voly:2) > Vol 1), (11)

we have 3F%(y)y+2N(y) > IF(y)y+A(y). whichin turn inilplieS Afy) > Aly)—A{y)y >0

since A(y) > Ni(y). Thus for y <7, Vi, (y) = A(y) > 0. Furthermore, from (11},
Vi (y) > Visy) + Aly) — 2aly) > Vo). (12)

for all y < y. Since given the lagging firm searches. the returns to leader search. given by

Ve(y) — VE(y). is decreasing in y, it follows from (12) that the lead y at which the leader

$3

W
ns

is indifferent between search and not search (V¥ = V¥ at y) is such that § > y. Moreover.
() = 3F()§(1 — F(7)] > 0, and hence V! (§) = A(y) > 0. Since A(y) is decreasing in
y. it follows that y < y. To sum up, y > R (since y > y > Ry, = R), and for all y < 7.
equilibrium involves both firms searching (note at y. not search weakly dominates search for
the leader). and hence k,(y) = 2: for § < y < y. only the lagger searches, and k,(y) = 1. and
for y > . k,(y) = 0 as neither search. In contrast, k,(y) = 2(0) for y < (>)R,. thus proving
the proposition for this case. See Figure 1.

Arguments are similar for the case when parallel search is not always beneficial to the
planner (case of (3)). See Figure 2. There exists j such that j < y < R, and both search
for y < g; for § <y < Ry there are two pure strategy equilibria (n,s) and (s,n). and the

mixed strategy 1s not Pareto superior: for By < y < y. only the lagging firm searches; and

neither search for y > y. O

Thus competitive R & D in this single stage gave leads to overinvestment. For termina-

tion of the R & D activity, threshold lead is higher for the game than that for the planner.

9



(The implication of this on completion times is analvzed in the next section.) Higher R &
D costs reduce both y and R (but the behavior of their difference is related to distributional
properties). If the distributions of the projects of the two firms are different. say. firm 1
has stochastically better discoveries than firm 2. then the game termination is characterized
by two thresholds. y; (which applies when firm 1 1s leading) and y, (firm 4 leading). with

§1 < 72 (both being greater than the planner’s threshold).

2.1 R & D Race as Repeated Search

In many instances. R & D activity is a process that evolves over time. In this section. some of
the issues addressed above are viewed in the context of a multi-stage game. This also enables
the analysis of race completion time, and how it is influenced by the various parameters.
First, a finite multi-stage game is considered: an infinitely repeated game is discussed later.

Suppose that each firm can invest in one R & D project in a period. For simplicity.
all projects are assumed to be independent having the same distribution F(z). and search
cost ¢ > 0 (as in previous section). (Heterogeneous projects, and parallel search strategy
for each firm wherein it can invest in more than one project in a period, is considered in a
later section.) Since search is with full recall of past observations and only the best observed
technology is adopted when race terminates, the state (if the horizon is infinite) at the
beginning of any period is (y,a), where y is the lead (maximum reward observed thus far)
and a € {1.2} denotes the leading firm. Suppose that search decisions are to be taken at
the beginning of the period. the moves are simultaneous (alternative assumptions analyzed
later), and that the results of the projects undertaken in a period become known at the
end of that period. The state transition function for this stochastic game, if both search in

period 1. is

Pri(yss = y.alllye =y.a)] = F*(y). and

10



Pr{lyesr 2 zoan)l(ye = yoap)] = F(z)[l — F(z)]. (13)

for r > y. and ay.az € {1.2}. Similarly. the transition function when only the leader or the
lagging firm searches can be determined.?

A strategy (or policy)® for firm i = 1.2.1s o, : [0.6] x {1.2} — {n.s}. where s {resp. n)
denotes the action search (resp. no search). The notation ¢¥(-) and &'(-) is used to denote
respectively the strategies of leading and lagging firms. whenever it is convenient to do so.
(Also whenever it is relevant for discussion, H; denotes the history up to the beginning of
period ¢. i.e.. set of all actions chosen from time 0 up to ¢ — 1. and the rewards observed
up to t.) Note that the race here is a nonstationary repeated game in the sense that the
lead and the leading firm may change from one period to another; each stage i1s not an exact
replica of another. Additionally, the reward structure here is different from the conventional
models in repeated game literature {(discounted sum of rewards in each period). as a firm
can collect the reward only when race terminates, that too only if it is fortunate to be the
winner.

Given any strategy combination. the returns to each firm can be determined via dvnamic
programming. Let (o¥(-},o!(-}) denote a Nash Equilibrium strategy. A state (y.a) is a race
termination state, with firm a winning the race, if ¢¥(y,a) = ¢.(y,a) = n. and at all future
times. (In a finite horizon version, the race terminates in state (y, a,t) at time ¢ if no search

1s the equilibrium choice for states (y,a, 7). 7 > t.)

Finite-horizon Race: Suppose the maximum duration of the race is T periods, where T is

finite and given. To analyze equilibrium. consider a lead y > 5. where 7 is as defined in

*In models of R & D projects where past stages of development provided information about future stages.
(such as in learning models, see Roberts and Weitzman (1981)). then the history of each firm is relevant.
Here the stages are taken independent for simplicity.

°Attention can be restricted to policies in this model (see, for example, Friedman (1990), Ch.5. pp.179-

180).

11



(10). Clearly. the returns to search in any period is negative for either firm regardless of the
strategy of the other. (At y =y, the returns for the lagging firm equals zero if leader does not
search: and the returns to the leader search is strictly negative.) Hence, race terminates in
period ¢, if the state (y.a,t) is such that y > y. (This can be formally shown from backward
induction strategy from the last period 7T'.)

Now. consider y < y. At such a lead y, the race does not terminate. since one of the
firms, at least the lagging firm if not both. has strictly positive returns to further search. To
see this. consider state (y.a.t) at some period ¢t < T. with y < y. Then a one-shot deviation
from termination by the lagging firm. i.e.. it invests in search at period ¢ and no more. has

the expected returns

—c+/b.rdF(J:) +/yIFT—t(I)dF(l~),

¥

since an outcome above y results in termination; and any outcome y < r < y results in a
change of leaders. and from period t + 1 onwards the other firm (which is now lagging) will
search. From (18), it follows that the above payoff is strictly positive. Thus, race proceeds
if y < j (unless, of course, it is the end of the horizon). The properties of the equilibrium in
the finite horizon game are similar to the one-stage game analvzed earlier (details omitted

here). The above observations are summarized below.

Theorem 2 In a race with a finite horizon of T' periods. the race terminates in any period
t < T. if and only if the lead y in the beginning of period t is such that y > §, where Y 1s
defined by (18). O

The probability of race termination in any period t < T, given race survived up to t,

equals 1 — F*(§) where k is the number of projects chosen in period t.

Infinite-horizon Race: Suppose, now. that at the end of any period both firms always have

one more project which they can choose to explore.

12
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Analyzing the equilibrium here. for y > y neither firm searches for the same reason as in

earlier cases. However, for y < y. the situation is somewhat different. Let y; be such that
A {gn) = 0.

where Ay is as defined in (9). Then y; < y. Furthermore. y; < y where y is defined in (4).
since the returns to search(in one stage) for the lagging firm is positive when the marginal
returns from the second project at y 1s zero for the planner. (Note at g;, (3) is equal to
3F(y)y — Vo(y: 1) < 0). Two cases are distinguished in the following. In the first, j; > R.
This case holds under condition (4), since = K, < y < y;. The second case is y; < R.
which may occur under condition (3). i.e.. when parallel search is not always preferred by
the planner for the one-stage game.

Suppose §; > K. In the region y; < y < y, no further search is subgame perfect, since
the leading firm has no incentive to search even if the other stops (note y; > R), and if
the lagging firm invests in search and becomes the leader the other firm will start search

nullifying all returns. To see this, define

(s.s) forally <

o = (0% (y,a),0'(y,a)) = { (n.n) forally>g.

This may be viewed as a path which prescribes search by both till the lead exceeds 7, when
both switch to no search. For any y € [§1, ], define the path u; as follows: if the state is
(y.a), then the leading firm (a) does not search and the lagging firm (# a) searches till it
becomes the leader. The pair o. = (po. 1) represents a simple strategy combination with
the interpretation that a deviation from pg when y > y, results in u; being applied; and any
deviation from current path ju; results in its restart®. (Note that this strategy combination is

defined over histories, H;, t > 0.} This construction is intended to show that race terminates

“See Friedman (1990. Ch.4) and Abreu (1988). In this problem. there is no need to specify paths for
deviations from gty when y < 7, as deviations result in either delayed or zero payoff. It is also not necessary
to have two separate punishment paths for the firms.

13



when y > ;. To establish this, observe that the leader's payoffs when g is progress. denoted
“¥(u1). equals zero form the definition of this path. Furthermore. any one stage deviation
by the leader when y; is in progress results in an expenditure of ¢. but no benefits accrue
since t; is restarted. Hence, leader has no incentive to deviate when w; is in progress.
Now. suppose pq is in progress and y > y;. Clearly the leader has no incentive to search
(y1 > R). In addition. the returns to one-period deviation for the lagging firm equals (note
race terminates if outcome is greater than y: and path u; 1s in effect if outcome is between
y and 7).

b ¥

—c+[ rdF(r) +/ M YdF(2) = 0.
¥ Y

which implies race terminates for y > y;. The race does not terminate at any y < z;, for the
following reason. If y < R. leader has incentive to search. If y > R. consider the returns to
search of the lagging firm. say, firm 2. If search produces an outcome greater than y,. race
terminates; an outcome between y and y; triggers firm 1. which now becomes lagging. to
search from the following period. In the latter case, by continuing search. firm 2 can assure
itself a positive payoff. Its overall payoff is given by

b

et [ rdF(e) 44 = Aj) > 0.

Y1
since v, which represents the returns to each firm when both search till race terminates
at §;. equals zero. Note that sum of the payoffs to both firms from uy equals zero”. The
above arguments establish that the strategy combination . with initial path yg is a subgame
perfect NE. and that the rents dissipate. These are summarized in the theorem below.

Now. considering the case y; < K. which can arise only when R = R; (condition (3)},

“If v denotes this sum, then
b
v=—2c4+3F% 5+ 3/ rdF3(z) = 0.
i1

since Ay(y) = 0.

14



if the lead y € [{y1. R]. then the leader by itself would like to invest in further search: and
given the leader searches. the lagging firm will not invest in search since for any termination
condition (above ;) its value from continuing search will be negative(since A(y) < 0). If
y > R. then both cease to search for the same reasons given earlier (i.e.. anv incentive to
search by the lagging firm is annulled by the retaliation from the other). Hence. a pure
strategy equilibrium for this case is: {s.3) for y < yy: (n.s) for j; < y < R: and (n.n)
for y > K. The lagging firm drops out of the race when lead is above y,. and the leader
continues if the lead is below R. In this case rents are positive since the value, v. for either
firm when y < y;. equals

R

v= —ct IF ) + 3/ RF(z)dF(z) + 3]}:IF(I)JF(I)

y1

_ 3/R(R~I)F($)(IF(I) -0 (14)

1= 3F%(5)]

In the above expression. note that if a firm becomes the leader with an outcome in the
region (7, ). then its further(sequential) search vields a return of R(from definition). A
firm producing an outcome zr above R becomes the winner if the rival’s outcome is less. The
second step is obtained by rearranging, and using A(y;) = 0.

The equilibrium derived above describes the behavior of a firm in the continued presence
of a rival. Although there are other equilibrium in which rents vanish(expected value from
this infinite horizon race is zero for both), this is an equilibrium consistent with incentives
in each period once entry is assumed (for example. a slightly lower search cost when lagging
will keep a firm in the race). Main conclusion from the above analysis is summarized below.
Let &,(y) denote the number of projects undertaken in the race in a period which begins

with lead y. At ¢ = 0. the initial lead is assumed to be such that both firms search.

Theorem 3 [n an infinite horizon race,



a) if 1 > R, then race terminates when the lead y > y, and both firms search in each
pertod whenever y < yy; in addition exrpected returns to the race is zero.

b) if i1 < R. both firms search in each period when lead y < yy: only the leader searches
f i1 <y < R:and the race terminates for y > R = Ry. The expected return of a firm at the
start of the race is given by (14).

If R & D costs per period is low(high) enough then y; will be greater(less) than R.
Rent dissipation in the race considered here is not due to post-race price competition ® as
there 1s only one winner. Rather. it arises due to continued prospects(existence of R & D
opportunities as well as low costs) of better innovation by a competing firm. This part of the
result 1s similar to vanishing of rents in multi-patent bidding models(see Dasgupta (1933))
wherein an incumbent monopolist and a new entrant bid for a process innovation.

That the returns to the race may be positive(part {b) in Theorem 3) is due to the fact
that rival’s threat disappears at a lead when it is still profitable for the leading firm to
continue search on its own.

In all cases there is project overinvestment in race in the sense that the number of projects
1n any period is no less than what a planner would choose (see Vishwanath (1991) for analysis
of single agent parallel search). In the special case when 3 = 1. planner would undertake
sequential search i.e., at most one project per period. whereas in the race there is parallel
research whenever y < y;.

As a variation of the above problem, consider a race with many firms. Suppose, in each
period. firms enter so long as their single stage returns are positive. Then, the number of

firms n in a period beginning with lead y satisfies ®

¢ — 3/bIFn_1(I)dF(I) — 0.

3That rent may dissipate due to post-innovation competition is one of the reasons for protection mecha-
nisms such as patents.
?Strictly speaking n is least integer such that the difference is still positive.
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In this scenario. the number of parallel projects would be decreasing over time(n being
a decreasing function of y), and the race would terminate when the lead is y.

The race termination points(y. y; and R in the various cases) decrease if cost ¢ increases.
and increase if J increases. The latter effect is also induced for improvements in the distribu-
tion F'(first order dominance, increase in upper tail risk - more about this in next section).
The influence of these parameters on race completion time is analyzed next.

Race Completion Time: To analyze the distributional effects on the completion time, consider
an increase in the mean (denoted m) with the shape remaining the same. If. F'(z: m) denotes
a distribution with mean m. then F(z;m) = F(z —m:0). Race termination at y is analvzed
below. The effect on the completion time, when race terminates at §; or R (as in theorem
3) is similar. The hazard rate of the race (probability of completion in a period, given race

has survived thus far) is given by
he = l—Fk(g;m), {13)

when & = 1 or 2 projects are undertaken. An increase in the mean, increases j but the
distribution also shifts to the right. Hence the overall effect on the hazard rate is not readily

obvious. I'rom the definition of y, and changing variables. we get

c=3 b (m + z)dF(z:0). (16)

y—m
Taking derivatives with respect to m yields. (the density is denoted by f(z:m)),

Oy = m)

1= Fly—m:0) =73 . flg —m:0). (17)

Furthermore.

— = —kFMY G —m:0)fly — m:O)d(y,— m).
dm m
Combining (17) and (18) vields, for & = 1.

Oh
h1+ga—n;:0;
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and for & = 2.
' - -1 k—1¢ - Ohy
holl + Fly —m:0)] 7 + bE5 Ny —m:0)y— = 0.

om

Hence. 0hy/dm < O for k = 1.2. Thus an upward shift in the mean decreases the hazard rate.
and consequently the race takes longer. Similar arguments also establish that the race takes
longer for termination at y; in the infinite horizon case (note that replacing ¢ by ¢/2, and
F by F?in (13) and (17). defines y; and the hazard rate for this case). and for termination
at R. Increase in cost c. or a decrease in 3. has the effect of increasing the hazard rate and
reducing the length of the race.

Erample: In the following, the case of binary project outcomes are considered and it
is shown that invariance of project investment (between race and planner’s choice, derived
by Sah and Stiglitz(1986)) is a special case. In particular. it holds for a stage game (with
additional assumptions) and is generally not the case with repeated search.

Suppose that each project has binary outcomes, 1 (denoting success with unit reward)
with probability p. and 0 (failure) with probability 1 — p. Considering a stage. the marginal

benefits from undertaking a second project equals (see (3))
—c+ JIp(l —p).

since the second project improves on the first only when the latter is unsuccessful. Hence.
in a single stage R & D with no repeated search, the planner prefers to invest in one project
if —c+ 3p >0, and two iff —c+ Jp(l ~ p) > 0. The reward structure for this binary case is
winner-take-all, but in case of a tie (both successful) the pavoff for each firm is zero due to
post-race Bertrand competition. Then, in a single stage game. the payoff (expected reward)
for each firm. when both search, equals —c + Jp(l — p) = A;. The equilibrium is (s, s) if
Ay > 0. There are two equilibrium, (n.s) and (s.n). if Ay < 0 and 3p > <.

Hence in the single stage game, there is invariance — investment in the game coincides

with that of the planner.
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Now. consider repeated R & D activity {say. infinite horizon) with race and planner’s
search terminating when a project is successful. In the race. two projects are invested in
each period if \; > 0. However. if R; denotes the value from planner’s search when : = 1.2
projects are undertaken in each period. then the invariance result holds if £, > R; when

Ay > 0. It is easily verified that (see (1) and (2})

By = [—c+ 3p)/[1 = 301 = p)l.

and

Ry = [=2c+ 3p(2 = p)l/[1 = 3(1 - p)’]

and as 3 — 1. Ry — 1 —2¢/[p(2 — p)l. and Ry — 1 — ¢/p. Hence, when 3 is large encugh,
planner prefers sequential search (regardless of sign of A ), whereas the race generates parallel
search 1f Ay > 0. The invariance result of Sah and Stiglitz (who only consider a stage game)

is not in general applicable for repeated R & D situations.

3 Heterogeneous Alternatives

In this section. we address some aspects of the race when firms have heterogeneous alter-
natives i.e.. the distributions of projects are different. While a complete characterization
of the equilibria can become complex in general. insights into the equilibrium project selec-
tion order and risk choices are obtained imposing stochastic ordering conditions on project
distributions. It is also shown that race termination has a simple myopic characterization.
Suppose each firm has access to a finite set of R & D projects. As before. exploration
of each project generates a random social surplus assumed to be revealed after one period.
and search cost ¢ > 0 for each project is incurred at the beginning of the period in which it
is explored. Let Fj;(r) denote the probability distribution {assumed independent. atomless

with support [0, b]) of social benefit associated with project j (1 < j < m;) of firm i = 1.2.
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Each firm explores its projects over time selecting some. possibly more than one in each
period. from its unexplored set as long as it is beneficial to do so. Furthermore. each firm
can recall its past observations. When firms stop any further research. the firm which has
generated the highest benefit is the winner. and as before. the reward structure is winner-
take-all. This process stops when firms individually have no incentive to search further.

It is assumed that all projects and their features and distributions are common knowledge.
Furthermore. at any stage. each firm knows the results of the other firm’s investigation thus
far and its remaining projects. That is. if. at a certain time. y; 1s the highest benefit secured
by firm i. and S; is its set of unexplored projects at that time. then the common information
state is (yy.y2; 51. S2). Since a lagging firm (lower y;) must produce from any further search a
value higher than the leading firm (higher y;), for any possibility of positive eventual reward,
it is enough to write the state as (y,m:51.5;) where m € {1.2} denotes the label of leading
firm which has collected y.

A search strategy for a firm specifies a set of projects that are explored in any given
information state. If o; denotes a pure strategy for firm :. then o,(y.m:5:.5;) C 5;.. (If o,

is empty. no search is undertaken in this state.) Given a strategy pair (oy, 0;). let
V¥(y.m: Sy, Sz|lo1,02) and Viy.m: 51, Saley. o3) (19)

respectively represent the values, expected disconnected reward, from continuing search for
the leading and the lagging firms, given information state (y.m:5;.5;). Each strategy pair
induces a set of stopping states or termination points of the R & D game, defined by the

relations:

y = V¥(y.m:5.5]01.02) (20)

0 > Viy.m: Sy Saloy. o). (21)

Let Iy = (yo. mo; S1. S3) be the initial state. where S; denotes the complete set of projects

o
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possessed by firm ¢ = 1.2, A strategy pair (0].0;) 1s a Nash equilibrium if the returns to
continuation of search for firm 1 following o7 is no less than the returns to search for any
other strategy . given firm 2 follows ¢3. The same holds for firm 2 as well.

To characterize equilibrium order of project selection. the following stochastic ordering-
conditions are imposed.
(A-1) Projects 1 through my of firm & = 1.2 are such that for each y (0 < y < b). and
1<i<m, -1

b
1= Fipa(z)de (:

8]
SN
—

b
/ (1= Fole)de >

—

(A-2) For 1 <:<my.and | <) < my. yF,(y) is convex in y.
Assumption (A-1) is a form of second order stochastic dominance. (See Mever (1937).) In
particular, for each firm, if project i is better than project (z + 1) either in the sense of first
order stochastic dominance (i.e.. Fi;(x) < Fiy11(z)) or a mean preserving spread (project i
is riskier). then (22) is satisfied 1°,

With the above restrictions. the equilibrium search order is unique, although the actual
number of projects chosen may differ depending on the state. This is shown via the following

lemma (proved in Vishwanath (1991)), related to single agent (partial equilibrium) search.

Lemma 1 Given independent search opportunity distributions Gy.---.G,., all with same
search cost. if Gy is better than Gy in the sense of (A-1), then the best parallel search (with

recall) order is (1,2,---r). O

The intuition for the above lemma follows from the "option’ effect. If project : or i + 1
is searched in parallel or simultaneously with other projects, then in one period i improves.
or has better marginal returns, on other projects more than i + 1. as is evident from (A-1).

This myopic selection is the best for any parallel search strategy.

If projects are ordered via first order dominance, then A-2 is not required. This assumption en-
ables derivation of stronger results when projects differ in their riskiness(See also Bhattacharya and
Mookherjee(1986))
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Theorem 4 Given restrictions (A), the equilibrium project selection order for firm i is

(1.2, .m;). O

Proof : Consider any state (y,m:5).53). Suppose firm 1 is leading . i.e., m = 1. Consider
any strategy o, of firm 2. and suppose that o, prescribes selection of projects from S; whose
composite distribution (i.e.. distribution of maximum of their outcomes) is G{z). Consider
two projects @ and y in 5. such that ¢ is better than j in the sense of (A-1). Then. in a
period beginning with this state. the outcomes of search for firm 1 from selecting project 7
are: if rival’s outcome is better than y and that of firm 1 is less than y, then firm 1 loses
leadership: if both draw less than y. then the state is retained: and conditional on outcome
r. leadership is retained if the rival's outcome is less. Since. z(G(z) is increasing, the value

from search of project ¢ is
b
—c+ 3/ max[yG(y). 2G(z)]dFyi(x)
0

Since the integrand is convex increasing (by virtue of (A-2)), it follows that the above one
period returns is higher for project ¢ than for j. The argument is similar when firm 1 picks
more than one project. It remains to show this selection order is better even when future
evolution is considered, the details of which are similar in nature to proof of lemma 1 (Vish-
wanath (1991)). The idea is as follows. Fix an order for firm 2. Consider an order for firm
1 which violates the one specified in proposition 1. Then in some period j is selected and in
the next period ¢ is picked, for some i and j > i. Then a strategy which interchanges the
order of selection of 7 and j holding all other selections the same. vields a better value. This
implies. for any strategy of the other firm, the best order for a firm is the one specified in

proposition. The case when firm 1 is lagging is also similar. O

Further characterization of equilibrium is in general hard. In the following, attention is

focussed on the symmetric case of both firms having the same set of projects { F}, Fy, - - -. EF.}.

W]



and race termination is analyzed. It is assumed that F; is better than Fj;, is the sense of
(A-1). Since the equilibrium order 1s as in Theorem 4. the information state can now be
written as {y.m:ni.ny) where n;. ¢ = 1.2 denotes the label of the remaining project first in
the selection order. That is. in this state the remaining projects for firm ¢ are n; through m.
Let y{m:ny, ny) denote the race termination threshold.
Define yo(m:ni.n;) as the termination lead for a one stage game starting in state

(~.m:ny, nq). That is. j satisfies

b
c:/ zdF, (), (23)

Yo

if firm @ is lagging.

Theorem 5 If both firms have the same set of projects {Fy, Fa, -+, Fy,} with F; better than

Fit1 in the sense of (4-1). then
Yolminy, ny) = j(ming. ny)
forme{1.2}, and 1 < ny,ny <m. O

Proof: First. if y < yo in any state. then for at least one of the firms it is better to continue
for at least one more stage, which implies no termination and hence y < .

To show y > yo implies y > 7, consider a state (y.m;ny, na) at the beginning of some
period {. Without loss of generality. let m = 1. so that firm 2 is lagging. Two separate cases
are identified: 1) ny > ny, leader has more projects remaining, and ii) n, < ny, lagging firm
has more remaining projects.

Consider the first case. Here. if y > yo(m:n,.n3). then the lagging firm drops out of
the race. This can be proved via induction as follows: first. it is true for (ny.ns) = (0.1)
or (1.0) or (1.1) from the single stage game results {section2); second. assuming it is true

from period 7 4 1 onwards, it is also true in period 7. since the condition of fewer remaining
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projects is carried over from 7 to 7 + | with leader not searching in pertod 7. Thus with
ny > ny and y > yo(m:ni.nz) at the beginning of period t. lagging firm does not search.
The leading firm also does not search beginning period t because of the following reasons:
first. yy determined from n; is the same in period t and ¢t + 1: second. for this reason search
will terminate from ¢t + 1 onwards: and hence. given leader search does not continue bevond
t + 1. its returns in ¢ to search is less than y.

Now suppose n, < n; at the beginning of period t. and y > jo(m:in;.nz). Assume
theorem holds from period ¢t + 1 onwards. If search continues in period ¢, then conditions
at the beginning of period ¢t + 1 are: 1) lead is no less than y, and ii) the lagging firm’s
first project n; in its order is such that n; > ny. These two hold regardless of outcomes in
period ¢. Since the distributions satisfv (A-1), the one stage termination leads in f and ¢ + 1
satisfy yo(t + 1) < yo(t). Hence. race does not continue from ¢t + 1 onwards (from induction
hypothesis that Theorem holds from ¢ + 1 onwards, or in other words it holds for states
with fewer than n; projects remaining). Thus, the race continuation value equals the value
from the one stage game occurring in period {. But neither will search in period t. since
y > Jolm:iny,ny). Hence. race terminates at the beginning of period ¢. This completes the

proof. O

Let 17*(.) and V/(-) denote the values to the leading and lagging firms. respectively. Let
agiy.mimy.mg) = ki, for ¢+ = 1,2, That is, equilibrium choices of firms in the first period
are the first &y and k; projects. (Note that &; = 0 indicates no search is undertaken in the
first period. Thus, V¥ and V! represents the values at a given state. whether or not search
is undertaken.) Let G,;, = Hf':l Fij{z) for ¢ = 1.2. which represents the distribution of
the maximum of the research outcomes. for each firm. in the first period. The equilibrium

values to the firms may now be written as follows using dyvnamic programming. Given firm



| leading initially, if both firms draw an outcome from search less than y, firm 1 continues to
be the leader retaining y, and in the event one or the other draw greater than y, a new lead
is established. In any event. the state of remaining projects moves to (m; — ky.my — ky).

Hence.

V¥y. Limyomg) =
—kie+ IV y Limy — kiomy — b)) Gy (W) Gaw, (4) +

b
3] V(. Ly — kyomy — ka)Go, () +
Yy

]
/ V2 2imy — kyama — k2)dGo, (2)]dGh g (2) (24)
For the lagging firm.
h
Viy, Limy,my) = —kae + 3] V¥ 2imy — kyymy — k2) G, (2)+
Yy
b
/ V(2 1imy — kyomg — ky)dGy g ()]G, (2) (23)

The above equations apply for game continuation, i.e., when & and k, are not both zero. If

k; =0.for : = 1.2. then
V¥(y,Limy,ma) =y and V'(y.limy.my) =0 (26)
It can be shown (via an induction argument) that
V¥(y.miny.ny) + Vi ming.ng)

< Voly.ming.ong).

that is. in all states. the sum of the values of the two firms is no greater than the planner’s
value from optimal parallel search. In addition. at the planner’s margin (at indifference
between search and no search) the lagging firm in the race has incentive to undertake further

search (if it has at least one more project. and n is finite). as in Section 2.
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To get on insight into race investment and termination when each firm adopts a parallel
search strategy, suppose all projects have the same distribution ¥, = F. Consider first a
one-stage game. for this illustration. if the leading firm selects & projects. and the lagger

selects ko projects. then (conditional on &, and k) the values are

b
Vollylky ky) = —kic+ 3F*‘1+*‘2(y)y+3/ e FR(r)dF*(2) (27)
Yy
= 3FRTR 0y Ak 4k — Lo y) (23)
where.
b
Akiy) = —c+] cF*2)dF(z). (29)
Yy

For the lagging firm.

Valylkrs k) = ko A(ks + ky — 1iy) (30)

Let &1 (y) and ky(y) represent the choices corresponding to equilibrium values Vy¥ and 17 of
the one stage game, beginning with lead y. Taking derivatives in (28)~(30). vields A} < 0
and &5 < 0. That is, the number of projects chosen by individual firms decreases as the lead
increases. In general, there are many equilibria (even pure strategy) in the one-stage game.

The value for the social planner, conditional on the choice of & projects is

VP(ylk) = 3F*(y) + kA(k = 1iy). (31)

Let k(y) represent the planner’s optimal choice of k. Using (28)-(31), it is easy to check that

at the planner’s margin, the lagging firm’s marginal value is nonnegative. Hence, for all y

k() + kaly) 2 kly). (32)

implying project overinvestment in the race.
Considerations similar to those in Section 2.1 apply in extending the above results to

repeated situations. For a neck-to-neck race (£1{y) = ka(y). at each stage), all the results
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derived in Section 2.1 hold. In this case of parallel search by each firm. the race will com-
plete sooner (than the race when each firm follows a sequential search strategy). Further
examination of equilibrium (issues including identifying other equilibria, how the project
investments of leading and lagging firms may differ. possibilities of supporting coordination

outcomes etc) are issues for further study.

4 Concluding Remarks

In this paper. R & D race with uncertainty is addressed viewing project investment deci-
sions in a search framework. Equilibrium search strategies. race termination condition. race
completion times. project selection order. and other issues are analyzed in single stage and
repeated game models using concepts and results from parallel search (Vishwanath (1991)).

In general. there is project overinvestment in the race relative to the planner’s level,
and the race takes longer. Equilibrium strategies are analvzed to determine the conditions
under which there is parallel search activity in the race. Among several other results de-
rived. it is shown that improvement in the prospects of better discoveries lead to longer race
times: the invariance (race and planner’s investments coinciding) does not hold in general
in repeated situations: equilibrium project selection order (with each firm adopting parallel
search strategy) is predetermined when project distributions satisfy certain stochastic order-
ing conditions. A result of interest when both firms have continuing R & D opportunities
(infinite horizon race) is that the returns to each firm from the race may vanish if costs per
project are low(firms facing identical environments). This is due to the fact that race is
prolonged. Both firms search till a draw above termination does them apart (one a winner.
the other a loser). However. if costs are not too low and prospects are good. the returns to
the race is positive (the rival gets off the contest at a lead when the leader is still running).

In addition to investigating other equilibrium properties. the models can be extended in



several useful directions. One is the study of spillover effects. Suppose the firm producing
the best technology y at termination gets ay and the loser gets (1 —a)y. If a is close to unity.
the properties of the race will be qualitatively similar to results in previous sections. although
the termination thresholds and completion times are reduced. If & > 1/2. the race becomes
a waiting game. At @ = 1/2. race and planner’s decisions coincide (with condition (4): under
condition (3). decisions are the same if firms can also agree to share costs). Underinvestment
could result if spillovers are significant. A precise analysis is a topic for further study.

Another direction is to introduce correlation of projects across firms and positive exter-
nalitv. Such an analysis may result in useful insights into the study of incentives for stan-
dardization. (Note that. for analytical tractability. retaining the independence of projects
within each firm i.e.. bandit assumption, simplifies a great deal, and may serve as a good
starting point). Supporting cooperative outcomes and coordination is yet another topic for
further studv.

The implications of the race structure and outcomes on issues related to growth (see
Jovanovic and Rob {1990)) is a topic for future research. Search framework has been quite
useful in empirical studies in other areas; models like those studied here may prove useful in
empirical R & D studies also.

Finally. the R & D models in this paper are studied by applying the results and concepts
of parallel search (Vishwanath (1991)). The history of R & D itself is replete with instances

of parallel research. This provides added motivation for further study of parallel search.
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