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Abstract

In this paper we study the relationship between wealth, income distribution
and growth in a game-theoretic context in which property rights are not
completely enforcable. We consider equilibrium paths of accumulation which yield
players utilities that are at least as high as those that they could obtain by
appropriating higher consumption at the present and suffering retaliation later
on. We focus on those subgame perfect equilibria which are constrained Pareto-
efficient (second best). In this set of equilibria we study how the level of
wealth affects growth. In particular we consider cases which produce classical
traps (with standard concave technologies): growth may not be possible from low
levels of wealth because of incentive constraints while policies (sometimes even
first-best policies) that lead to growth are sustainable as equilibria from high
levels of wealth. We also study cases which we classify as the "Mancur Olson"
type: first best policies are used at low levels of wealth along these
constrained Pareto efficient equilibria, but first best policies are not
sustainable at higher levels of wealth where growth slows down.

We also consider the unequal weighting of players to trace the subgame
perfect equiliria on the constrained Pareto frontier. We explore the relation
between sustainable growth rates and the level of inequality in the distribution

of income,



"It is consequent also to the same condition, that there be no property,
no dominion, no mine and thine distinct; but only that to be every man’s,
that he can get; and for so long as he can keep it."

Hobbes, Leviathan.

1. Introduction.

In this paper we explore the relation between wealth, growth and income
distribution when property rights are not fully defined or are not completely
enforcable. We have in mind a situation where organized groups have the power
to assure for themselves a share of the income by direct appropriation, by
manipulating the political system or by rent-seeking behavior to effectuate
favorable transfers and regulations. Depending on the context these groups may
represent, among others, organized labor, industrial groups and occupational
assoclations, the military, the bureaucracy and ethnic or racial groups. The
redistributive power of such groups necessarily imparts an element of joint
ownership to the resources of society and may reduce the incentives to accumulate
wealth.! We propose to study these issues in the context of a game-thecretic
model.

We study a dynamic game in which each player independently chooses a
consumption level and the residual output, if any, becomes the capital or the
productive resource in the following period. Stationary equilibria in such games
have been studied by Lancaster [1973], Levhari and Mirman [1980], Majumdar and
Sundaram [1991]}, and many others. (See also Tornell and Velasco [1990].) We
consider equilibrium paths of accumulation in which players receive utilities

that are at least as high as those that they could obtain by appreopriating higher

! The role of the enforcement of property rights by the state to internalize
social gains and promote growth has been discussed by D. North [1981], [1991] in
a historical context. The effects of rent-seeking behavior by organized groups
on the economic efficiency of mature economies has been studied by M. 0lson
[L982]. See also G. Becker [1983] and W. Brock and §. Magee [1978],
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immediate consumption levels and suffering some retaliation later on. (For a
related framework of analysis, see Marcet and Marimon [1990]; see also Chari and
Kehoe [1990].) We focus, however, on those subgame-perfect equilibria which are
second-best, that is on those particular equilibria among all that are subgame-
perfect which lie on the constrained Pareto frontier. Within this set we analyze
the offects of wealth (or the stock of capital) on growth and on steady state
income levels. In particular we also consider examples which produce classical

"growth traps" with standard concave production technologies.?

Even though
first-best policies lead to growth, along second-best equilibria growth may not
be possible from low levels of wealth because of incentive constraints: the
accumulation of wealth by one player can lead to appropriation and to high
consumption levels by other players, and therefore may not be sustainable as an
equilibrium strategy. This possibility of negative or low growth outcomes from
low levels of wealth may be applicable to some of the stagnant or contracting
cconomies in Latin America and in Africa that have been plagued by political
instability and that have often experienced capital flight (see Tornell and
Velasco [1990]). Baumol, Blackman, and Wolff ({1989], see chapter 5) provide
some empirical support for the wealth dependence of growth rates; it is the more
affluent of countries that are able to join what they call a "convergence club",
with the poorer LDC's being left behind. The sample of all countries shows no
convergence in growth rates.

Another possibility is for incentive constraints to bind at high wealth

levels and not at low ones. Capital may be too precious at low levels and

players may follow first-best policies of accumulation. Inefficiency may set in

2 For a modern version of a standard classical trap based on non-concave,
"threshold” technologies, see Azariadis and Drazen [1990].
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at higher levels of wealth and first-best policies may have to be abandoned as
the incentives for appropriation grow and redistributive pressures increase. The
possibility that inefficiencies are associated with stable and wealthy economies
in which organized groups have had the time to mature and to exert redistributive
pressures has been suggested by Mancur Olson [1982]. We 1illustrate this
possibility in section 5 below.

Our brief discussion so far has made little mention of income distribution.
Indeed the possibilities mentioned above can occur and social conflict can arise,
even under complete equality. The desire to secure a higher share of output is
not restrained by an equal distribution of income. As our examples and analysis
demonstrate, redistributive pressures and incentive constraints can result in
less than efficient accumulation policies, even when incomes are equally
distributed. However, unequal allocations may further 1increase the
inefficiencies because those who are worse-off have a higher incentive to
appropriate output and to exert redistributive pressures. Maintaining an unequal
distribution of Income may then further slow down growth by further reducing the
incentives for accumulation. Some empirical documentation of the negative
influence of income inequality on growth has recently been given by Persson and
Tabellini [1991]. (See also Alesina and Rodrik [1991]).) In section 6 we study
this question and provide a parametric example that illustrates the effect of
inequality on growth. Figure & illustrates the range of possibilities.

In much of our analysis the "second-best" problem is formulated as a
dynamic programming problem. The nature of the incentive constraints that depend
on the optimal value, however, causes some non-trivial difficultics. Value
functions are no longer necessarily concave or even continuous, and the usual

contraction mapping theorem does not go through. From an economic point of view,



if growth is possible only from stocks above a critical level because of
incentive constraints, then it is optimal to decumulate the stocks to a lower
steady state (maybe to zero) when the initial stocks are below that critical
level. This "growth trap" can create a discontinuity in the value function. Ve
work out an example of a value function with a discontinuity in section 4.2.

The paper is organized as follows. The next section sets up the problem
and provides existence results in a general framework. Section 3 works out a
simple and illustrative second best problem where incentive constraints retard
growth but accumulation rates do not depend on wealth. Numerical examples
illustrate how growth is influenced by the incentive constraints along the
symmetric (egalitarian) equilibrium. Section 4.1 provides some general
conditions under which a political "growth trap" occurs without having to
explicitly compute the "second best". Again a numerical example is provided.
Section 4.2 computes an explicit example of a growth trap with a discontinuous
value function. Section 5 illustrates the "Mancur Olson" case, that is the case
where first best policies are optimal at low stock levels but cannot be sustained
at high stock levels. Section 6 illustrates, with a parametric example, the
effect on growth of introducing an unequal distribution of income in the presence
of incentive constraints. Section 7 discusses renegotiation proof equilibria for
the cases studied in section 6. Section 8 contains final remarks. We should
note that in sections 3 and 4.1 we study cases where incentive constraints result
in permanently lower growth rates. In the subsequent sections we analyze cases
where incentive constraints produce asymptotically lower levels of income, rather
than permanently lower growth rates.

Our further and continuing research explores the effects of introducing

sanctions against "defecting" from second-best policies, and of asymmetric



appropriation and defection abilities across players. We also note that our
analysis applies to the case of a firm where workers set the wage to capture a
share of the output and capitalists decide the level of investment, as in

Lancaster [1973]. (See also Benhabib and Ferri {1987].)

2. The Second Best Problem.

We consider two players characterized by two concave and strictly

increasing utility functions U, i =1, 2 and a common discount factor g€ (0,1).

k, represents the capital stock at time t. The production function f(k,) is
concave, increasing and f(0) = . The feasible paths of the consumption
. 1 2 1 2

sequences must satisfy f(k,) - ¢ - ¢ < kyyy, and ¢, ¢ = 0, £t =0, 1,
In our game, histories at time t are sequences of consumption pairs
1 2 12 . - . .
h, = (cl,cl,._,ct,ct) and strategies are maps from histories to consumptions.
For a given initial stock k, the second best value is defined by
v (K) = sup Y05 AlagUi(e)) + ayUp(e])] (2.1)
sb = Sup o BrlagU (e + azUy (e, :
t

. 12
where the supremum is taken over the sequences (c¢.,c;),,, of subgame perfect

equilibrium outcomes and a,, a, = 0.
The purpose of this section is to prove that the second best is achieved
over a smaller set of SPE. We start with a few definitions.

To avoid ambiguities, we describe in detail how the allocation of

consumption is regulated. In the following it will be useful to distinguish



between attempted consumption and consumption (the first is the consumption a
player is trying to get, the second is what the allocation rule gives him). For
a given capital stock k and two attempted consumptions ¢, and c,, the allocated

consumption is

C

. if ¢ +c,sf(k) or c, = £(k)/2

1=

A (e, c,, k) f(k)-c, if cy+e, 2 £(k) and ¢, 2 f(k)/22¢,

f(k)/2 if c, ¢, = f(k)/2 .

11
and similarly for a,. Note that if c, = f(k)/2, then
a,(cy, cy, k) = min { c;, £(k)-¢, ).

This allocation rule seems natural, although our subsequent analysis can

be carried out under alternative rules that may be appealing as well.

Remark. Note that the utility function of both players is strictly increasing
in consumption. This in particular implies that the following pair of strategies

is an equilibrium, independently of the capital stock k:

¢y = ¢, = £(K)

Note in fact that the allocation rule gives A;(cy, k, cp) = A,(cy, k, cq) = £(k)/2
to both players. 1If c, = f(k), for any choice of «c¢; the capital stock in the
next period is zero. So by reducing c¢; the first player can only reduce his
payoff.

The fast consumption strategy is the stationary strategy defined by:

c, (k) = £(k).

As noted above, it is clear that the pair (El, Ez) is a SPE, since the



utility functions of the players are strictly increasing.

The value of this equilibrium to player i is given by:

v, (k) =Y 0 84U, (ci(k)), i=1,2
t

where kg = k, k, = £(k, ;) - c*(kyq) - c®(k,y), t=1. Of course if £(0) = 0, the
above summation reduces to U, (£f(k)/2).

A trigger strategy pair 1s described by an agreed consumption path

(cg,cf)t>0 and the threat of a shift to a fast consumption equilibrium after the

first defection is detected.

The individual rationality constraint on an outcome path is the condition:

Y85 U(e)) = v, (k).

t

Clearly, in a SPE, the equilibrium outcome o¢f the equilibrium of any subgame
satisfies this inequality.

Consider now a trigger strategy equilibrium. For any capital stock k and
equilibrium consumption ¢ of the other player the value of defection is the

value for a player of deviating optimally, that is:

vk, ¢) /

Max | sup U (A (k,c,c’)) + 38U (e (k) v, (k)
¢'=0 t=1

where



k, = £(k) - ¢y - Ak c,c/), k= f(k) -ci(k) -c,(k), t=1.

Note that this optimization problem can be expressed without the maximization
operator in defining V? by simply adding the constraint Vf(k,c) 2:%(k). We
denote by ciD(k, ¢) the optimal deviation. In the games we consider such optimal

consumption exists and is unique, so no ambiguity is possible there.

The feollowing lemma is clear. We state and prove it for completeness.

Lemma 2.1. Let (cé,cf)tzo be the outcome of a SPE, £ say. Then the trigger

strategy pair with this agreed consumption path is an SPE, {’ say.

h

Proof. For any history h,, we denote v;(h. ) the wvalue to the i*" player of

the equilibrium in ¢ starting with h,. We only need to consider equilibrium

. . 11 1 2 . .
histories h, ; = <C1’C2>""Ct4'ct4>' Let k., be the capital stock. We claim

2

that ¢, is an optimal choice for player 2 next period, in {'. The best

. . c b 1 PR : .
alternative choice is c¢,(k ,c ) = ¢, In the equilibrium & such a choice would

give him a payoff of U,(c?) plus the equilibrium value of the subgame starting

1 A . . e . .
at (ht,ct,cD). In the egquilibrium of this subgame, the individual rationalirty

constraint is satisfied, so

U, () +Bvy (b, ol , o) = Uy(e®) + v, (hy, ef, c®) 2 U, (eP) + v, (£(k,) -¢; -e®) = vy (K., ¢,)



and our claim follows. =

1t follows that the supremum in the definition of second best is the same
as the supremum over trigger strategy equilibria.

This reduction allows us also to prove that the second best value is in
fact achieved. We turn to this now. Let &, a, = 0 be weights attached to the

players. From what we have seen, the second best is the solution of the problem

V(0 = S S () + aUy(e) ] (2.2)
{leg e)nd 0

subject to f(kt)Afcé —cf

v
-

v
<
o
—
o
O
[
S~
[
t
—
[
i,
It
—
]

D otei 3 i '
Egﬁ Uj(ct+i> i Vi
t

In the following we shall refer to this as the second best problem.
We assume now that the production function f and the discount factor 3

satisfy:

lim f'(k)g<1.
o B (40)
Then we have
Lemma 2.2
1. A solution to the second best problem exists.
2. The function v, is uppersemicontinuous.



Proof. For every capital stock k the set of admissible paths is the set

2

L)t2& such that (1) and (2) above are satisfied. In a

1
of sequences {(k , ¢, ¢

properly chosen weighted space this set is compact (because it is a closed subset

of an order interval). Now existence follows immediately from the continuity of

the function {(cé,cf)t2J ~ E:ﬁt[alUl(cé) + aZUZ(cf)].

For the second statement, note that the correspondence defining the set of
admissible paths has a closed graph, and since the image space is compact, it is

also uppersemicontinuous. Now apply the Maximum Theorem. =

3._A Simple Example of Second Best Eguilibrium with no Wealth Dependence.

We will start by exploring a simple case of a second best equilibrium in
detail to illustrate how growth rates may differ between first and secord best
equilibria. This first example is simple because growth rates on equilibrium
paths will turn out to be independent of the levels of wealth, that is of the
capital stock. More interesting and complex cases will be studied later.

Each of the two identical players in this example have utility functions

given by

U, =Zﬁt l1 (Cti)l;z (3.1)

where 0 < g <1 and 0 < e < 1. Production is linear, and is given by

* With some caution it is possible to extend the analysis to the cases where
¢ is less than or equal to zero.
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v = ak + bk (3.2)

where k>0 is the capital stock, and a, b and £ are non-negative constants.

We will consider in this example symmetric equilibria (setting a; = a, = 1
for the problem given by (2.2) above), where both players get equal consumption
levels. In section 6 we discuss the implications of the unequal weighting of the
players, and therefore of unequal consumption allocations, on the growth rates
along second-best equilibria.

In the symmetric case, the total utility of each player along the first-

best equilibrium can be described by a dynamic program:

. 1 1o -
v(k) = Max e T+ Bv(y - 2¢)
0<e<? [T-¢ (3.3)
2
where y = ak + bf. The solution to the program is given by the consumption
function:
& =Min(Ay + 9, y/2) (3.4)
where*

“ A sufficient interiority condition for ¢ = iy +n < y/2 for all k > 0 is

easily computed to be fBa > 1. This condition will be satisfied in all our
examples below.

11



i:%(l—ﬁ?a < )20 (3.5)
po 2ty (3.6)
a-1

and where we have imposed the restrictions a > 1, 8%/ < 1 to avoid
negative consumption levels and to assure a well-defined value function. For anyi = 0
such that ¢ = Ay + n = y/2 along the equilibrium path, with n = (Ab4)/(a-1), the

value function is given by®

1-¢
vik) = s[y + bl ] (3.7)

where

s(A) = (L/(1-e))ate
1 - pgla(l-2a))"°

(3.8)

We note for further use that s 1is derived here for arbitrary X = 0, not only

for the first-best A. We will use this fact in deriving the second-best value

function later on.

> We can also express v(k) as

vik) = ((1-e)(1-p(a(l-2X))"9)) Ay + AbL/(a-1))1°
< ((1-e)(1-ga(l-20) N /)t e
since v(k) above is defined for ¢ = Xy + Abf/(a-1) = y/2 and ¢ = 0.

12



When a player defects against first-best play by his opponent, he must
chocse his consumption in the current period taking into account that trigger

strategies will be enacted subsequently. Optimal defection value is therefore

given by
vP(k,c(k)) =
l1-¢
- 1 1-¢ 1 1 N -
Max
- I R —[a((1-X)y-n-¢p) + bh]
O<ep=(l-My-n | 1-¢ 1-¢]f2 (3.9)
2 l-¢
. |8 Y
1-8(|1-€¢]|2

where ¢(k) = Ay =7 < y/2.

This wvalue reflects the trigpger strategy equilibrium for which following a
defection, all output is consumed in equal shares by the two players. 1In the
period after defection takes place, all capital is exhausted and subsequently the
only output produced each period is bif.

In general, the optimal defection policy for consumption is given by

ok Ay o) = Min|M | (L-ny + | 2ZE A 2E L a oy g | GA10)

a a-1

. . ) , Ab.2
whenever the other player’'s consumption policy is Ay +n <v/2, forn = and

a-

13



-1

pa

any A and where M = 5

l/¢
] E] + 1 < 1. (Gf course when the other player
a

chooses X = i, he is following the first-best strategy.) If, in addition, ¢ is

interior, that is if M[(1-my +« |21 oa]Ph < aonyy - 222
a

, the walue of
a-1 a-1

optimal defection becomes

((a-1)/a) -2

vP(k, (1L-\)y + 1) =8, |V + L — (b2/(a-1)) (3.11)

s

ﬁz
+l___ﬁ

where s, = (L-2)19(1-e) (M ¢ + S((1-M)a/2) "¢} = (1-2)1"7(L-e)7M™°.  We note

that vP(k; ¢) is the value of optimal defection against a player with consumption
policy ¢ = Ay + n < y/2, for an arbitrary A, which can of course be the first-best
policy if c(k) = iy +n<y/2.

For first best policies that constitute an equilibrium, the values that
they generate for each player must dominate the values of defection at each point
on the equilibrium path, that is v(k) > vP{k, ¢(k)) for all k on the equilibrium

path. As we illustrate in later examples however v(k) and vP(k) can intersect,
so that first-best outcomes can be enforced from some k's, but not others. This

“state" or "wealth" dependence of equilibria was explored in Benhabib and Radner

14



{1987].
In this first example of second best equilibria we eliminate the state
dependence by simplifying the production function. Setting b = 0, which implies

n =0, yields

vP(k, ) = M7 (1-A)1 (ak)t " = sy(N) (ak) e (3.12)
J(k) = s{ak)? ¢ (3.13)

E(k) = dy = S (1-p a0y < 3/2 (3.14)

c? = M(1-M)y =Xy < (1-N)y (3.15)

Both v(k) and vP(k, ¢(k)) start at the origin but do not intersect if s = s;.

Clearly 1if s(i) > %ﬁi), the second best equilibrium is also the first-best at

every k.
A symmetric second-best equilibrium (the non-symmetric case will be
discussed later in section 6) with incentive compatibility constraints will be

given by the solution to the following problem:

v (k) = Maxy (L-e) el c v v, (ak - 2¢)
O<c=L
2

subject to v_ (k) = vP(k,c) . Alternatively, if ¢ is a Lagrange multiplier, the

problem can be defined as

15



v, (k) = Max _ (1-€) e’ + v (ak-2c) + o(v, (k) - vP(k,c))

O<e<? (3.16)
2

We now characterize the solution to (3.16):

Proposition 3.1. Let U(e) = (l-€) *el™® and y = ak where 0 < ¢ < 1,
2 - %(]_—ﬁl“atl’f”g) > 0. Then the symmetric second-best consumption
policy is given by

(a) ¢, =iy if s3> s,(R) (3.17a)

() o, =Ay if  s(d) <s,(0) (3.17b)

3 : M 1
where XA, = Min{) |A e [A,z], s(A) =5, (N} =3, =z-= < Z and

1+M 2
-1
/¢
Moo e |22 12 <1
2 a

Proof: See appendix A L.

5 We note that when A, is determined from s(A.) = sp(A,), we also obtain A,
< 1/2 which is required to hold in the analysis above. Furthermore we have

A, < z = M(1+M) * which implies X, =< M(1l-X,) = X,.

16



Figure 1 below illustrates the second-best solution. The solution is to
find X, which equates the wvalue for each player of following the consumption
policy ¢, = A,y with the value of defecting from it. This requires equating s,
= s(i;) = sp(A). In other words, consumption rates must be increased and
accumulation slowed down up to the point where defection is no longer attractive.

vP in Figure 1 is the value of defecting against a player following first best

strategiles.

ey /\D
vV, vV 'Vsb

~D

V A~

vV
Vsb
k1-8
Figure 1

The following numerical wvalues 1illustrate the effects of incentive
compatibility constraints on economic growth along the symmetric equilibrium for

the proposition above. We set a = 3.3, b = 0, g = 0.325" (implausibly high

’ Note that fa > 1 so that ¢ = iy + n < y/2 for all k = 0, as pointed out
in the previous footnote.

17



discounting of course) and ¢ = .5. For these values VP (k, ¢(k)) > v(k) for all
k > 0, where v(k) corresponds to the first-best values with policies ¢ = iy. We
compute A = 0.326, A, = 0.349. These magnitudes imply that if the first best
could be sustained, the capital stock would perpetually grow (since we have an
(a-k) technology) at 15%. On the second-best path however the economy grows at
-0.0015%, that is it contracts. Of course parameters were chosen to make this
stark point. Other parameter values would allow positive growth along the second
best equilibrium, but at a slower rate then the first best. Of course in some
cases the first-best may be enforcable as an equilibrium from all stocks so that
incentive constraints will not bind. Finally, we note that for the parameters
above, it is easy to check that o = 0.6032, and that y - 2cgu(k) =2 0 and y -
c(k) - cp(k) = O for all k =0, as assumed in the computations.

In the above example the second-best equilibrium is sustained by a grim
trigger strategy, that is a trigger strategy where players exhaust the stock if
a defection occurs. We can also compute the best symmetric equilibrium that is
sustained by a weaker trigger strategy, that is a strategy where players revert

to an interior stationary Markov equilibrium if a defection occurs. Such an

equilibrium solves for player 1 the problem given by

VHk) = Max (1-e)e] © + pvy(ak - ¢y - c,(k))

€y

where in the symmetric case the solution satisfies ¢ (k) = c,(k), and c,(k) is
also a best response for the second player. This problem 1is easily solved, with
c.(k) = Ayak, where Ay > 0 solves (1 - 2x)" = ga’*(1 - Ay for £ =1, 2. It is
easy to show that Ay > X

Now we can compute the best sustainable symmetric equilibrium with trigger

strategies where players revert to the above stationary Markov equilibrium after

18



a defection. On such an equilibrium, using the parameters above, each player
consumes XA(ak) with g = 0.435. This yields a contraction rate of about 43%,
much higher than the contraction rate for the second-best equilibrium under grim
triggers. This is not surprising since the "grimmer" the trigger strategy, the
closer the best enforceable equilibrium will be to the first-best. The point is
that even along symmetric second-best equilibria sustained by grim strategies,
growth may not be possible. Of course it is easy to construct examples where
positive growth occurs, at different rates, for first-best and second-best
equilibria, as well as for equilibria obtained by trigger strategies that are
weaker than grim strategies. In section 7 we will also consider strategies

associated with renegotiation proof equilibria.

4. Wealth Dependent Growth

4.1 General Conditions for a Growth Trap

When b > 0 in equation (3.2) of the previous section, it is in general not
possible to find a constant ), to equate v(k) and vP(k, ¢). In particular for
X = i, v(k) and vP(k, &) may intersect at some k. If v(k) = vP(k, ¢) for X = A
and k = k, first-best policies will be sustainable as equilibria for k = k. From
initial conditions below k where v(k) < vk, c(k)), it may be possible to
construct "switching" equilibria (which are not necessarily second-best), along
which growth occurs at a rate slower than first-best rates until k is reached,
and first best policies are followed once k is attained. This was demonstrated
in Benhabib and Radner [1987}. 1In this section we will derive conditions under
which the second-best growth rates will be wealth dependent: in particular we

will find conditions under which first-best growth rates are sustainable from

high stocks while growth is not at all possible from low stocks because of
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incentive compatibility comstraints. The intuition for the result is simple:
relative to first best levels, consumption rates must be increased and
accumulation slowed down to prevent defection. When stocks are low, consumption
must be increased so much to prevent defection that growth is no longer possible.
Examples will follow.

The general proposition below will allow us to show how growth rates are

affected by wealth levels.

Proposition 4.1.1. Let ¢ be the least ¢ such that U(C) + Bv(f(k) - 22) =

vP(k, ¢). Assume that
(i) for some k, v(k) < vP(k, ¢(k))
(i1) f(k) - 2¢ = k.

Then f(k) - 2c¢c,(k) < k.

Proof. assume that f(k) - 2c,(k) > k. Then clearly c (k) < ¢. But then

Pk, e (k) = v (k) (4.1.1)
< U(e, (k)) + BV(E(k) - 2c4(K)) (4.1.2)
< vP((k), c (k) (4.1.3)

(4.1.1) holds by the definition of the second-best. (4.1.2) holds since Vv > v,.
(4.1.3) holds by the fact that U(c’) + pv(f(k) - 2¢') < vP(k, ¢') for every c €

(¢(k), cy; this interval is non-empty because of assumptions (i) and (ii).
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Therefore we have a contradiction, which concludes the proof. We note that if
a ¢ as defined at the beginning of the proposition deoes not exist, condition (ii)

can be taken to be trivially satisfied. |

We can now construct an example to apply the proposition above. We assign
new parameter values to the example in the previous section as follows: a =
1.875, b = 0.2, 8 = .55,% e = .45. With these values, for k > 1 we have v(k)
> vP(k, c(k)), while for k = .9, ¥(k) < vP(k, é(k)). It is easily shown that
for k > 0.001, the first-best strategies lead to growth at the rate of about 7%.
Thus for k = 1 the 7% growth rate can be sustained as a first-best equilibrium.
However, for k in [0.1, 0.4] conditions of the above proposition apply. For k
= 0.4 (=0.1) ¢ defined in the proposition is given by 0.19111 (0.10112) and y -

2c - k < 0. Therefore the second-best equilibrium cannot generate growth for
ke [0.1, 0.4]. Of course as in the previous example, we can check that for k
= 0.1 we have vy - 2¢c(k) > 0 and y - c (k) -cp(k) > 0,

The above example and proposition allow us to starkly establish how growth
rates can depend on wealth because incentive constraints can be strongly binding
at some wealth levels and weakly binding at others. In fact, for our example,
incentive constraints are not binding at all for k > 1 but binding strongly
enough to deter positive growth for k € [0.1, 0.4]. The proposition above
allowed us to construct the example without explicitly calculating the second-
best equilibrium, which in general is quite difficult to compute. Nevertheless,
in the next sub-section we provide a fully characterized example of a a second-

best equilibrium for which growth is possible from high levels of wealth but not

 Once again Ba > 1 so that ¢ - iy + 1 < y/2 for all k > 0, as pointed out
in footnote 4.
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from low levels of wealth and for which the value function is discontinuous.

4.2 A Numerical Example of a Growth Trap Equilibrium with a Discontinuous Value
Function.

This example derives explicitly a second-best policy for which growth
towards a high steady state occurs from large stocks but not from low stocks.
First best policies which are not incentive compatible always lead to the high
steady state. The value function for this example is discontinuous although
technology and preferences are convex and continuous. In fact the first best
policies lead to a unique positive steady state, As in the previous section, the
players have identical preferences and are equally weighted,

We consider

Ak k=<1

FOO = Ja v Bk-1) k21, §<1 (4.2.1)

with A = 5/2 and 8 = 1/2;

c ife=xl
Ule) = {1 +blc-1) if c>

Since A > 1 > BS, k 1 is a steady state capital stock for the optimal

growth problem with ¢ = 3/4 as the steady state state consumption.

We assume b is small:

Bﬁ<b<%<l.

The first-best policies, the associated value function and the value of

optimal defection are derived in appendix A2.1.
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In the following proposition we compute the second best value and to policy
function for values of k < 1. The second best value will be piecewise linear.

To lighten the notation, we let

k0=1’k1=% k2=_§.§,k3=%;§’ ,,—%,1%:0,
RO SR - BT LR
4 16 32 16 4
b0=%,bl=—2_la,bzz—%,baz—%,bh_o
Then we have
Proposition &4.2.1. The second best value function is given by
Vep(k) =ak +b,  for ke [k ,,k)
v,, is continuous and concave on [k, Kky]; v, (ky-) < v (ky+) =v_ (k) and
Ve, 1s convex and continuous on [0, Kki].
The second best policy is
c (k) = c¢c(k) = 5/4 k - 1/2 k e [k, k]
- 2/3 k € [k, ki]
= -25/4 k + 19/3 k € [ka, k;]
= cop(k, cgp(k)) =1 k e [k, k]
- cplk, cy(k)) = (AK)/2 ke [0, k]

The path of capital stock for the second best eguilibriwn outcome is:

if k € [k, k], 1 £ 2 then the capital stock converges to the steady
state in i+l periods,

if k e (k,, kg (k € {0, k,! respectively), then the capital stock
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converges to zero in two (respectively one) period.

Proof: See Appendix AZ.2.

Figure 2a shows the value function and figure 2b shows the consumption function

described in the above proposition. The figures are not drawn toc scale.

Remark. The second best consumption policy is the same as the first-best
policy for k > k;. Then for k € [k;, ky;] it is the minimum consumption which
makes second best value equal to the value of defection. Consumptiocn 1is
decreasing over the range where the incentive compatibility constraint is
binding, and then increasing when the second best solution is the first best.
Overall, the second best consumption is non-monotonic, even in the region where
we have steady growth. Note that over [ks, k;) the first-best consumption is
lower than the second-best. As k increases the incentive constraint becomes less
binding and second-best consumption decreases with k along the equilibrium. The
intermediate phase ({k,, k;1) has the lowest consumption above k,. Finally

observe that the consumption policy is continuous except at kj.

Remark: The reason for the discontinuity of the consumption policy and the
value function may be understood as follows. As k decreases, higher levels of
consumption are needed in order to make the value of second best and the value
of defecting from it egual to each other. To higher levels of consumption
corresponds a reduction in the continuation value and a reduction in the post-
defection value. The rate at which these two second-period values change is the

critical factor. The rate for the defection value is constant at 5/8; the rate
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Figure 2a

Csh

Figure 2b
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for the second-best continuation wvalue is changing with k, because the second
best value is concave. The difference between these two rates is 1 - a(ak-2¢)
+ 5/8. When Ak-2c is less than k; this difference changes sign (and becomes
negative), so no increase in consumption can equate the second best and the value

of defection, and at the same time allow the capital stock not to decline.

5. The "Mancur QOlson" {ase.

In the previous sections we showed how incentive constraints could result
in equilibria for which growth occurs from high stocks but not from low stocks.
In the following example the opposite is true. When stocks are low and their
marginal product is high, defection is not attractive. Players follow first best
policies to accumulate precious stocks. As stocks get larger defection becomes
more attractive and accumulation has to slow down. First best policies are
abandoned and the economy stays short of the first best steady state. In the
spirit of the work of Mancur Olson [1982] (stretching it a bit) inefficiency
emerges at high rather than low levels of wealth.

Let the production function be

(k) =k* , ae (0,1); (5.1)

and utility function

U(e) = ¢ (5.2)

The optimal solution has a steady state given by

26



1

k* = (af) *7

and the optimal policy is, as usual, i.e.,

SR I

(5.3)

(5.4)

o
IA
~
Rl Rl

-
%
-

if

and

1
sy - B

Consider now a given level of capital steck k and consumption ¢, of one

of the players. Then the value of defection for the other player 1is

vP(k,c) = max ¢/ + Z(k*-c-c’)”

/>0 2 (5.5)
The optimal defection consumption is clearly in the interval [0, k%-c4). In
particular
2
0 if (k*-c)* ' > o
%(ksc) = af (5.6)
k¥ —¢c - v otherwise
with v = [O‘_f] and (5.7)
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g(k“—c)“ if (k*-e)*ls 2

vP(k, o) = af (-8

k* —¢c + ¢ otherwise

where

—4>0 (5.8")

ol

Note that if the net stock left by the other player, k* - ¢, is too low
then the optimal defection is to consume nothing.
Before we proceed we define the set of incentive compatible steady states;

formally, these are the values of k such that

) -k, gn |y, £k -k (5.9)
2(1 - B) ’ 2

holds. These are therefore the values of k such that the value for each player
of keeping k as a steady state dominates the value of defecting from this pair
of k and consumption. This set will be useful in determining the second best
value and policy.

For any value of «, B the set of values of k which satisfy the above

inequality is the interval

(5.10)

=
1A
o~
IA
=

which may be empty. This follows from the fact that the inequality is equivalent

to fAk® - (2-8)k - 2¢(l-8) = 0 whose left hand side is concave.
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Proposition 5.1. Let £, U, k", ¢, k, E be defined as in (5.1), (5.2), (5.3),

(5.8"), (5.10); then on the interval [max { Kk, K/ ), k] we have:
(a) if ¥ <k, then vy(k) = v(k), cy(k) = &(k)

(b)  if k < k", then v(k) = (K* + k)/2 + ¢, cu(k) = (K - k) /2.

If k< Elm, vw(ilm) > VD(i““, Cw(ilm)). Then for an interval [k, i”“]

v =S g ey (k) =0

Proof: See Appendix A3.

In the next table we report values of k", E, E““, for different values of
@ and B. The value k is not shown because in each case k < i”“. Both cases
where E < k" and kK" < i appear. In the first, we know that the second best
policy over [i“a, i] is to consume as much as needed to go to k in one step.
However, on [k, i”“] the second best consumption is the same as the first best
consumption, which is zero. The second best accumulation path then stops at E,
while the first best grows to k'. For higher k, second-best consumption is
higher than the first best. Therefore on [kq, E”“], when stocks are low, players

follow first-best strategies but stop doing so above k*.  Note that d =

vo (KY%) - WP (KM*, ey (kM®)). Therefore d > 0 implies k < KI/*.

K<k | K>k a 3 K" k e d
v 975 97 1074 10906 6257 | 00013499
Y 19142 .92 11329 1542 1294 00211
Y .80 .65 L0380 L0251 0099 L0026
v .70 .65 L0724 L0820 .0280 L0132
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Figure 3 below illustrates the case where k < k¥*, where v and v are,

respectively, the values of the left and right hand sides of equation (5.9).

Figure 3

6. Growth and Inequality.

So far we have studied the symmetric cases when utilities and incomes of
the players are equal in equilibrium. In this section we study unequal income
distribution or asymmetric equilibria in the presence of incentive constraints.
In particular we are interested in the effects of inequality on accumulation.

Tn the next few Propositions we illustrate the possibilities for a particular
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example. Figure 4 at the end of this section summarizes our results and the
range of possibilties for the production and time preference parameters.

We consider the case where

U (c) = ¢ i=1, 2

ak k=<1l
£ (k) ={a + b(k-1) k=1 .

We always assume af > 1 > bf, where § is the discount factor. As in the sections
above, we will solve the second-best problem given by (2.2) (or (2.1)). 1In this
case however, to characterize the set of constrained Pareto-Optima we will allow
the weights a; and a, to differ between the players.

We shall consider the two cases a; = a, > 0 and oy > a, = 0. Tt 1s easy to
imagine that in equilibrium the player with the higher weight will have a higher
consumption: so the case a, # o, is in fact a model of inegquality in income

distribution.

Since af > 1, the symmetric consumption policy for the first best is

-1 el 0 ifks
a

c(k) =

w

Consider first the case where af < 1. Whether a; = a, or not, the second best

equilibrium pair of consumption policies is given by

e (k) = cy(k) = c{k) =.§E
2

This follows immediately from the fact that vy < v, and that the pair of

consumptions is an equilibrium pair. But the interesting case is, of course,
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ag > 1. We begin the analysis of this case by computing the defection value.

£(k)

Recall that vP = max wy(k,c), —5— [ where
w(k,c) =  max o v Py - - e
D ] = —
¢! < flk) -c 2

Denote by c¢,(k, ¢) the solution to this problem. The first order condition which

characterizes ¢, (k, c¢) is

0e 1 - gf’(f(k) Ce ey

which gives the defection value and policy as follows.

Case 1: aff > 2:

(o ifF(k) —c<1
Culks €) '{f(k) e 1 if f(k) -c=1
and.
max 1 2B ey - oy, T8 if £(k) - c <1
vP(k, ¢} =1 2 2
max | £(k) -c—l+f£, gﬁ if £(k) - c =1
L 7T
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Case 2: aff < 2:

c,(k,c) = f(k) - ¢

vP(k,c) =max | (k) - c, fi%il

It turns out that in the case of equal income distribution the efficient

solution is an equilibrium for a larger set of the parameter values.

Proposition 6.1: Let oy = a, = 1/2 and af > 2 - B. Then the symmetric first

best pair of consumption policies is an equilibrium pair, that 1is: c:b(k) =

c:b(k) = ¢{k), and v,(k) = v, (k) = v(k)/2, for every k = 0.

Proof: See Appendix A4.1.

When there 1is inequality in income distribution, and af > 2, the
consumption of the second player is reduced until he is indifferent between the
equilibrium and defection. In particular, for low values of the capital stock
his consumption is forced down to zero. At the same time the difference in value
is higher: the ratio v,(k)/vy(k) tends to infinity as k tends to zero. These are

the main results of the following propositioen.

Proposition 6.2. Let

1. a, > a; 20,

2. aff > 2.

33



Then the functions below define a second best pair of equilibrium consumption and

value
v, (k)

v, (k)

v, (k)

where

v, (k)
v, (k)

v, (k)

Proof:

Proposition 6.3.

functions for the first and second player respectively.

b a ag-1

b

= —_(k~-1) + = + ¢, (k) = —(k-1) + M +aff -1 if k=1

2 2 18 2 2
=_‘Z_k+af‘; cl(k)=fzik+3£-1 iff<k=l
-sk+c, forke [P 67 c (k) = (a—_;)k ifO<k=<§g
S, = It a—l. + E, ﬁnaﬁ_l, and

B 2 1-8
- P L2 e (k) = k-1« BAZA ippe
2 2 2 2

:%k cz(k)=%k-%ﬂ iff<k<l

=§k e, (k) =0 ifoO<k<3g

See Appendix A4 2.

The following proposition takes care of the egalitarian case.

Let

1. o = a,,

2. 1l < a5 <2

_6_

Then the only second best equilibrium pair of strategies 1s the pair
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c, (k) = c, (k) = = if k=<1, S if k=1
with values
v (k) = vy(k) = ‘%k if k<1, b_2k+a‘b if k21

Proof: See Appendix A4.3.

Proposition 6.4: Let

1. oy >a, 20,
2. af < 2.

Then the only second best equilibrium pair of consumption policies is given by

ak bk a-b

(k) = c,(k) =c(k) =125 if k<1, BN, if k=1
! g 2 2 2

and
v, (k) = v, (k) = v(k) = :“z_k if k<1, b_zk T I

Proof: See Appendix A4.4.

We summarize the results of this section with the following figure:
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Figure 4

If (a, B) € T, then the first best solution and the second best policies, for
both cases of a; = a, and a; » a, give convergence to zero.

In S, I, G the first best solution grows to the steady state. In I, growth
to the steady state under the second best solution is possible if a; = «,, but
not otherwise. 1In S the second best solution, for both cases a; = a, and a, =
a, converges to zero. In G all solutions converge to the steady state.

If we think of the pairs (a, f) as possible economies, characterized by
technology and a discount factor, then the set I are those economies where growth
is not an equilibrium if there is inequality in income distribution; and the set
S are those economies where growth is not an equilibrium even with equal income
distribution because of incentive constraints or the presence of "soccial
conflict".

Although we expect the spirit of these results to continue to hold with
non-linear utility, the regions above may not be as starkly delineated in that

case.,
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7. Renegotiation Proof Equilibria.

A possible criticism of the equilibria (indeed, of the equilibrium concept)
analyzed in the previous sections points out that the continuation values after
defection are not on the Pareto frontier of the subgame perfect equilibria. 1In
other words, the punishment of defection is too severe to be realistic.

In this last part we examine the equilibria of the previous sections from

the point of view of this criticism. We introduce the following definition:

Definition A Renegotiation Proof Subgame Perfect Equilibrium (RPE) is a pair of
SPE strategies such that the continuation value of the equilibrium on any subgame
is on the constrained (second best) Pareto frontier, that is on the Pareto

frontier of the subgame perfect equilibria.

Our main purpose is to prove that the outcomes of the equilibria in section
6 are outcomes of RPE. We start with a preliminary discussion. The pair of
consumption functions (c;, ¢;) defined in the statement of proposition 6.2 gives
a pair of Markov policies. On the basis of these two policies we now define a

pair of strategies:

Strategy 1: The player follows c, until, if ever, he deviates from c;; after that
the player follows strategy 2. (Note that under strategy 1, the player does not

respond to deviations of the opposing player.)

Strategy 2: The player follows c, until, if ever, the opposite player defects
from c;; after that he uses strategy 1. (Note that under strategy 2, we adopt the

convention that a player will choose c, even if he observes a deviation by
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himself in a previous period.)

We can now prove the following:

Proposition 7.1 Let af > 2. The pair of strategies defined above gives a RPE.

Proof Let the player 1 follow, say, strategy 1 and player 2 follow strategy
2. After any deviation of either player the continuation pair of values is on
the constrained (second best) Pareto frontier corresponding to the value of the
stock after the deviation. This is clear from the statement of proposition 6.2.
We have to prove that the pair of strategies 1 and 2 is a SPE.

Consider first player 2. We claim that the solution of the dynamic

programming problem that maximizes his utility with the law of motion given by

. 2
k= £k - eg(ky) - of

has a stationary optimal policy given by the function ¢,, and value function v,,
which are given in proposition 6.2. This claim is easily checked.

In the case of player 1, we have to check that the inequality

max ¢’ + Bv,(£(k) - c,(k) -c’) = v (k)

C/

holds for any k = 0; and this is also easily checked, by a consideration of the

various separate cases. ]

e have seen that the equilibria with unequal distribution of income are
RPE outcomes. We now turn to the case of equal distribution: our aim is to prove

that the outcomes of the equilibria described in proposition 6.1 are RPE
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We first define a pair of strategies as follows: each player follows the
Markov policy ¢ (given in proposition 6.1) until, if ever, either of the one of
the two players deviates. After, say, the deviation of player 2, player 1 and
7 will switch, respectively, to the strategies 1 and 2 described before
proposition 7.1 above.

We can now prove the following:

Proposition 7.2 The pair of strategies just described gives a RPE, with

outcomes equal to the ones of the trigger equilibria of proposition 6.1.

Proof In this case it is enough to check directly that the inequality
max ¢’ + v (f(k) - ¢(k) -c’) =< V¥(k)

C/

holds for any k. This is easily checked directly. |
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8. Final Remarks.

Our basic model can be modified in a number of ways to bring it closer to
reality. The amount that each player can consume when he chooses to defect may
be bounded, with the bounds possibly differing across players. This not only
introduces an asymmetry between the players but can reduce the wvalue of
defection. A more complicated modification would allow players to control, at
some cost, the upper bound of the consumption of their opponent. This would
introduce a second policy variable for each player. Alternmatively, players may
institute a mechanism to impose sanctions that are costly to the defectors, but
which require resources to establish and to maintain.

The disincentives for accumulation that arises from strategic behaviocr in
our model leads to overcomsumption by players. An alternative that is in the
same spirit would permit players to divert resources to another productive
activity that is safe from appropriation, but which provides a lower return
(Switzerland). This modification would allow us to directly model capital
flight, as in Tornell and Velasco [1990], but would require us to keep track of
both the private assets and the capital stock whose output is subject to

appropriation.
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Appendix Al: Proof of Proposition 3.1.

The first-order condition for (3.16) is given by (assuming interiority)

el = 28v (ak-2¢c ) - ovl(k, c,y) (A1.1)

where VCD(k, cep) is the derivative of vP(k, ¢) with respect to c. Let VkD(k, c)
denote the derivative of v°(k, ¢) and Vka(k) the derivative of wv_ (k) with

respect to k. We obtain

wP(k) = apv](ak-2¢c,) + ov (k) - ovi(k,c ) . (A1.2)

Let ¢y, = A,y so that cp = Ay with Ap = (1-X,)M. Then using

vi(k,c) = - % ; (ak-c,-c) | = -av)(k, c) (AL1.3)

and (Al.1) in (Al.2), updating and substituting cg, = A,y reduces (Al.3) to

-€ ﬁal_c e ,Ba a 1- ~ —E B ., o lBa a ) ) -€
s [1—0] 0{?][5(( As /\D))] (1 2)‘5) 1 4 7[5 (1 Ag AD)]

which is independent of k. VWe solve for A, from the constraint v_ (k) = VP (k,
c.,) when v(k) < vP(k, ¢(k)) since otherwise the second-best is identical to
first best. If ¢, = Ay, then v (k) = s()\s)yl_E where s(X,) = ((l-s)'l)\slff)/(L
ﬁ(a(l—st))l_‘). Since vP(k, Cep) = SD(AS)yl'E, we need to consider the X_ which

solves s()X,) = sy(X,) = (L-e) H(L-a ) M.
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We note the following. By construction we are considering s(i) < sp(X)

since v(k) < vP(k, ¢(k)). It can be shown by computation that s(\) attains a

ds (M) <0 for x > i, ds ()

dA dA

maximum at A = X\ with

>0 for X < i. Since sy{\)

is decreasing in A for X > i, s(Ag) = sD(AS) for A, > i. We now show that X\,

(X, ] exists.

1+M

M ] it is enough to show that s M s M

To show that X € [i, D
1+M 1+M 1+M

1A

We consider sp(A) - s(A):

sp(A) - s(A) = MT(1-2) ¢ - At (l-Bla(l-22)) ")t < 0

if
M (1l-B(a(l-22)1 91 -0t -at¢ <0
or
MT(L-aT - M (Bat (1-3a e 205 STt <0
If A = , this inequality becomes
1+M
13 . l-¢
o M fgal e 1o - | M <0
1+M (1L+M)? 1+M
or
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((L+M)2 )M (1+M) P - M 9Bat " (L-M)1 ¢ - MP S (1+M) | < O .

This inequality will hold if

(1L+M)17€(1-M) - Bat~f(1-M)1"¢ <0

or
(1+M)1"¢ - Bat " “(1-M) <0
-1
e 1/
l1-¢ l1-¢
But M = [I + al“[%] implies 1 + M = {2 + al'f{%] M
1/¢€
1-¢
and (1 - M) = al‘f[%] M. Therefore the above inequality becomes
1-¢
i/¢€ -1
l-¢ 1-¢
l-¢ 1 1-¢ i-¢ 1-¢ 1 -€
2 + | Ba — M - Ba Ba — M™ <0
2 2
oY
l-¢
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This will hold (for 0 = ¢ = 1) since

1-¢

1-¢
2+ I.Bal‘E [&]
and 2 < 2
l-¢
1
1+ Bal ¢ |=
2
We can now obtain ¢ from (3.19). This yields v, (k) = s()\s)(ak)l_C which
is strictly concave in k. This concludes the proof. |
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Appendix A2.1: Computation of the value of the first-best program and the value
of defection for section 4.2.

For technology given by (4.2.1) and utility (4.2.2), the first best optimal

policy is given by:

len}
[y
=h
=
A

Hh
=
i
H
=
Hh
=
v
U.lIMUW]I\J

The value of the first-best optimal program has a more complicated form.

We only
need an explicit solution for values of k = 2/5, which is given by
£, 1 if ok f(k) < 3
. 2 4
v(k) =
0 |7 Jp2] 1 ok £ > 3
2 4 2
v is easily computed as:
glE -1, B GEM L _yEG0 T 3 e BRI oy o £l <)
2 1-4 2 2 4 2
Therefore,
R RACORLN I IO for £(k) <3 .
2 4 2 4
U_fﬁi)_'}+3:1,bﬂk)_'lfl+f’_=lmb3+f(k>b for £(k) > 3.
9 4 2 4 4 2 2
Define net output as y = f(k) - c. In the cases that we will be

considering, the value of defection from a net output y, left after the

consumption of the other player, is given by
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max |U(c) + gU EIZ:El
=0

Differentiating with respect to ¢ we find the derivative of this expression to

be positive, except for vy - ¢ < 4/5, when it is b f.%? < 0.

Therefore, for y = f£(k) - ¢,

)
v - £(k) -c if %sf(k)~cs1
) . 2 9
e (,e) =] 1 if 1<f(k) -c<1+ 222
25
gy o2 ra) —ce- B i fK) o= 2.
L 5 5 5

The defection consumption is never larger than 1 when the net output is
smaller than 9/5.% In this case the precise value of b is not relevant (as long
as 1t is strictly positive).

Let us consider now the value of defection from the optimal program. We

only need this for values of k = 2/5 and this is the only case we consider here.

The net output here is Ak+1.
We first consider the case of k £ 1. The net output here is
A%;I = | ak - Ai;l . Since Ak L >1 for k > 2/5, the consumption for an

° Wheny = 9/5, cptk, ¢) =9/5 - 4/5 = 1.
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optimal defection is cy(k, c(k)) =1 for k e {2/5, 1], and so

VOlk, E(k)) = [ _ A_ﬁ]+ Ay - Dy, 1L
4 4 32 16

Now note that for large values of k the value of the optimal solution is larger
than the value of defection from the optimal policy. In fact we have:

14

v(k) = vP(k,c(k)) for k= O,
15

with a strict inequallity except at k;, = 1471511

We need briefly to check that vP(k, ¢(k)) < v(k) for every k = 1. Here

10 Note that

gk - AL ey caae - ARl oAl T8 per ks,
2 2z 4 5
E-_%+l
ak - PRl py lam 2 AKfLS 20 L1 for fskel
2 2 5
So when ¢y = 1,

ro |
| —|
=g
—
>
g I
s
|
—
L —
|
| —

vP(k,e(k)) =U(L) + pu [

:[1ﬁ§]+£@Ak.
; 4

11 ye compute cp(k, c(k)) for k = 1. Since

USRI y:f(k)_f“{)*]:f(k)+l’
2 5 ;
1 if f“‘)z*l [1,_21]
cy(k,c(k)) = ;- 4 f(k) 3 ¢ F(k) + 1 9
B 2 10 2 Y
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c(k) = 5332_:_3, so the net output if EIEE_LJZ_ At k = 1, this is larger than

2 2

one, so the following is a complete description of the optimal defection

policy:12
1 £ f(kz)"le[l,g] ie., Zek<ctn 10}
ek, £(K)) = ’ > B
fa) o3 e FOOL 09y e, k>l e S
7 10 2 5 10-B

Note that for large k (i.e., k = 1 + 1/(10-B)), cp(k, c(k)) < c(k), so we only
need to prove vk, &(k)) < v(k) for ke [ 1, 1+(1/10-B)]. We already proved

that claim on [4/5, 1]. Here cp(k, c(k)) = 1, and so

Pk, (k) = [1 g A_ﬁ] C By - L 2 rao,
4 4 6 16

while v(k) = +_%f(k). Since vP(l,&(1l)) <v(l), and

=l

v’ =.%f”(k) > i?_f/(k) =v®(+,&(+))’ . Thus we have proved our claim. A similar

argument also holds for k > 1 + (10-8) 71 .

12 ye can compute the value of k at which ¢, changes as follows:

F(k) +
fr A1 9 f(k)=1_3>é.
2 5 5 2
Therefore
AaBk -1 =2 o Bk-1) - Akt 1.
5 10 Be10
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Appendix A2.2: Proof of Proposition 4.2.1. The proof will consist of a
verification that the function v, satisfies the Bellman equation, subject to the

incentive compatibility constraints, i.e., prove that

v, (k) = mgx, {U(c) + Py, (£(k) - 2¢) l c: v (k) = vP(k,c) } for every k.

We begin anyway with a description of the derivative of v, . We already
know that for k = k, the value of the optimal solution is larger than the value
of defecting from the optimal pelicy. This gives the second best value and
policy for the interval [k;, kg]. The remaining part of the wvalue function is
derived by a simple iteration.

Consider now any k < k,. We use the fact (which we shall prove later) that
the second best consumption is the lowest consumption the incentive compatibility
constraint allows.

If we let k’ be the next periocd capital stock, and a second best policy is

adopted, we have

Ak -k’ 1 5 1
v (k) :_2_+E(a0k’ + by) 3 = 5 by = 7
/
VD(k,CSb(k) =1 + é Ak +k -1
4 2

Since the incentive compatibility constraint is binding, we can determine k' by
equating v, (k) with vD(k, c.,(k)). We obtain:

W 15 k . 8b-6 } k/(k,ao,bo).
26 -16a 13-8a

Substituting in the expression for v (k)
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1 b, ag-1 8by-6
v (k) - A LI P B R B
7 T2 26-16a, 7 T2 13-8a,

Iterating the above procedure we derive the values of a;, b;, k; as in the
statement of the proposition.

A clarification of this point: a mechanical application of the iteration
scheme of the third step gives a critical k,” > kj. In fact it 1is an
equilibrium, starting at k;, to consume the capital stock down to ki, and then
grow to the steady state, k. Further iterations produce a path with a
complicated dynamic sequence, non-monotonic, of capital stocks.

This is still an equilibrium outcome: by construction, the value of
following this path is at least as large as the value of defecting from it. It
is not, however, a second best outcome.

We now turn to the case k < k;. Here a direct computation shows that the

constrained problem

(k) - vP(k, ¢}

sh

vy (K) = max TU((c) +.%\gb(Ak—-2c) +ou(v
c

has solution
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2k if ke [0,k

~lw

Vsb(k) =

25 1
k-2 if ke [k,'k
16 4 el
po= 174

5 )

Tk if ke [0,k,)

Csb(k> = &
1 if ke [k, k]

ik, cp(k)) = vep(k).
Of course, since on [0, k;) the vy function defined above is mnot concave,
the first order condition on the Lagrangean are only necessary. But a direct

check shows that the equation

v (k) = max { U(c) + }Agb(Ak - 2¢) | c: vy (k)= vP(k,e) .
2

is indeed satisfied.

The function v, defined in the statement of the proposition is concave on
the interval [k;, ko], because is continuous and the derivative is defined except
at k; k;, k; and decreasing. We can now prove our claim that the second best
consumption is the lowest consumption which is incentive compatible. In fact the

differentiation of

S P /
Ak R py (kD)

with respect to k' gives —w% + %ﬂéb(k/) > 0 for every k' € [k, ky], since v (k')
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= 5/4 for every such k'; so, conditional on cheoosing a next period k' in the
interval [k;, ky], the best choice is the highest incentive compatible k'.

We also note that when computing the defection pelicy and value the net
output left by the consumption of a player who is following the equilibrium
described in the proposition is less than 2. So the defection consumption is
never larger than 1.

We now proceed with the verification that the function v, in the statement
of the proposition satisfies the Bellman equation, under the incentive
compatibility constraint. We consider two cases.

Case_1: k > kj.

Let k' denote the next peried capital stock, and

/ it
vk, Ak;k') =U Akzi\ + Bv (k') . Ve have just seen that

_1/ ./ 1.7
A=K Ak | b Ak-k

» . '

v, (k) = max |v(k,

To prove our claim it is now enough to show that no k' € [Ak - 2, k;] exists such

that:

Ak -k’ > P Ak +k/

(%)

Since the net output =1 and

, we have ¢ |k,
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1 s .
3 + .Zk + k' if k' e [k,, ky)
%k’ if ke [0,k

Now one directly checks that (¥*) does not hold on k' € [Ak -2, k,]. If k' € [k,,

/ /
ki1, v [k, Akz_k ]—VD k, Akz_k >0 implies 15k - 16 > 0, or k > 1. 1If k'’ ¢

(ak - 2, k,], the same inequality holds. Finally if k' = Ak - 2, then v(k, 1)

~ 5/4 k < v (k).

Case 2: k < kj.

Again we know that the best choice of next period capital, under the condition

k' < k;, is the one stated in the proposition. We claim that no k' =z k; exists

such that (%) above holds. First, from the fact that k = k, we derive
/ .
Ak;k >2, so ¢ |k, Ak2k ] =1, and

/
v , Ak -k = 3 + Ek + ik/
2 8 32 16

again. Writing v, (k) = a(k)k + b(k), we have
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k! N _ /
V{“Akk]:_Sk+a(k) 1k’+b<k)

Now the difference

/ /
Ak -k’ ol ak-k/ | - 13, [ 8Calk)-1) -5 4, 4b(K') -3
vk, - Pk, 37 16 2

2 2 )
Iy _ N _
ISy | Ba) -5 |, ab(k!) -3
32 | 16 ] 2
< omax 15, | 8atk) -5 | bk -3
k'zk, 32 ° 16 ? 2
8(a(k,) 1) -5 4b (k,) -3
< Eka N (a(k,) -1) - (ky)
32 16 ) 2

(since 8(a(k) - 1) - 5 >(<) 0 if k >(<) k)

C%w Ak3—k2} . E‘a' Ak3~k2]
2 2

= Vp(ky) - vp(ky, e (ky))

=0

as claimed.
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appendix A3: Proof of Proposition 5.1.

For an initial k, consider the value of going to some steady state k', in
one step. TFor this policy to give an equilibrium pair two inequalities have to

be satisfied

K* K/ K -k’ K* _ K/
. P > k¥ _

> v ¢ (A3.1)
2 1-6 2 2
O L I T
— = =k’ - +
5T 7 S (83.2)

The inequality (A3.2) requires k' to be in the interval [k, E]. A computation
shows that (A3.1) is equivalent to (A3.2), and independent of k. It follows
immediately that if k" < k then the first best policy is an equilibrium, and we
have proved our first statement.

We now turn to the case k < k". TIf we differentiate the left hand side of
(A3.1) with respect to k' one finds that this function is increasing on [k, i}:
this suggests that the second best policy is to choose the highest incentive
compatible steady state. We now prove this.

We consider the Lagrangean associated with the second best maximization

problem, under the constraint

v (k) = vPk, e (k)
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vk = max Lo+ By (£(k) - 2 + p(k)+ (v, (k) - vP(k,c)) } (A3.3)

We claim that the choice of v, c, as in the statement of the proposition, and

u(k) = ﬁai"“1 - 1 solve the concave problem (A3.3) for k € [ max { k, ilm ), E],
1 - p2vl (F(k)-2¢) - pv’(k,c) =0 (A3.4)

and
Vi (k) = AV (F(K) ~2e) £/ (k) + p(v), (k) - v (k,c)) =0 (A3.5)

Substituting (A3.4) into (A3.5), and using the fact that v,°(k, ¢) = f'(k),

\%D(k, ¢) = -1, we obtain
/
Lk = 8 (A3.6)
2
Notice that the mulitplier u does not enter into (A3.6). Therefore v (k) =
(f(k)/2) + D where D is a constant,
From the boundary condition
m<£) _ k) -k (A3.7)
2(1-8)
we cobtain D = fﬁi&il:k . (A3.8)
2(1-8)
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The value of c (k) is found by equating

v (k) = vP(k, ¢y (K)) (A3.9)

i.e., f(k)/2 +D = f(k) - cgp(k) + ¢ which gives c (k) = f(k)/2 - D+ ¢. Since

lﬁﬁ (f(kg -k) = E + ¢, from (A3.8) we derive D = E/Z + ¢, and so

£(k) -k

cop(k) = — Vep (k) = £

w0 o=vP(k, oy (k) (A3.10)

+

0ol oA

Finally from (A3.4) we derive 1 + u - 25v;b(ﬂ) —~ 0. and since k' > i, we

alsc have

g o=afk* o130 (A3.11)

It is clear that the values of v, cg, v?, p defined in (A3.10), (A3.11),
satisfy the equations (A3.3), (A3.4), (A3.5), (A3.7).
Notice finally that the inequalities (A43.1) and (A3.2) hold in the case kg

€ (i, K"y, k = k. So the second best policy is cgy:

Rl =

c (k) = *__E~:_ for k= max { k .k ].

The last statement of the proposition follows from the fact that inequality

59



holds by assumption as a strict inequality for k = k}’*  and therefore holds for
an interval below k!/*. It is easy to show that this equilibrium policy 1is

second best, |
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Appendix A4.1: Proof of Proposition 6.1.

Consider first the case where af < 2. If k> 1/a, then ¢(k) = fzfi%;;l,

S0

vP(k, ¢(k)) = max f(k; +]_, fif) = f(k; +]‘, and so

(a+)f -2 _ 4

T(k) - vP(k,c(k)) =
v(k) - vi(k,c(k)) W

., because ag > 2 - B. If k < 1l/a, then c(k)

af-1

~ 0, so vP(k, ¢(k)) = ak; but v is concave (in fact, v(k) = (ap)i 2k + gt 2277
2 2(1-8)

for k € [a*7}, a']) and non-negative. Since v(k) > ak at k = 1/a and at k = 0,

¥(k) = ak for k € [0, 1/a]. So our claim is proved if af < 2.
We now consider the case vwhere af =2 2. If k¥ = 1/a, then
Pl ey = B LAl a b - vk, e = (af - DA - T - 1) > 0,
- azﬁ .
as claimed. If k =< 1l/a, then vP(k, c(k)) = ._E_k, and now an argument similar
to the previous case satisifies vik) = vPik, (k). n
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Appendix A4 .2: Proof of Proposition 6.2.

The proof consists of verifying that the consumption stated

proposition satisfy the constrained maximization problem

v (k) = ~max @ Cq + Ty + By, (f(k) -c; -¢y)
subject to vi(k) = ¢; + By (£(k) - ¢ - cp) = VVi(k, c)
v,y(k) = c, + Bv,(£(k) - ¢ - ¢) = vPo(k, e;)

v (k) = opvy(k) + ayvy(k).

in

the

In turn this is proved by verifying that these consumption rates satisfy the

first order conditions in

vp(k) = max ajcy + azc, + B, (£(k) - cy- cy)

+ 0,

c, + v (£(k) -c; - ¢;y) - le(k,cz) )

:

¥ a [cl BV (E(R) - ey - cy) - 3(22 ]

+ o, |ey, ¢ BU(E(K) - ey - cp) - Wy (K, cy) )
+ oy [cz v B (E(k) - ¢y - ¢y) - f_<21f_) ]

!

with o, =2 0, ¢, 2 0, and vi(k) = ¢; + vi(£(k) - ¢; - c,}, 1 =1, 2.

1

In particular, we have for every value of k, o, = o, = 0; az' >0, g, > 0.

It is important to note that the twe values v, and v,, and therefore v, are
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concave functions but not differentiable. The supergradients of v, and v, are

denoted by v, , v, . Let Wp, e, denote the derivative of w, with respect to c,.

The first order conditiens, if ¢, = ¢, = 0, are given by

@, - By + 0p(-Bvy -y ) oy (<)) 5 0 (AL 1)
a, - By + o,(-Bvy + 1) + 0, (-pv, + 1) 50 (A4.2)
Notice that they immediately imply a; - gp+w, . = a; + o, + g, .

We prove in the following that for k € [B, 1], the functions v; and c¢; in

the proposition satisfy the conditions above. With the value

c, (k) :.;k + %? -1 and 8 <= k = 1, we have wﬁ(k,c) =ak ~c; -1+ ;; ; also
f(k) = ak.
The first order conditions now give

g, = a - a; > 0

so that the equality v,(k) = fif)

must hold for every k € [fB, 1]. At the

(claimed) equilibrium values c,(k) and c,(k) we have F(k) -ci(k) - cy(k)y =1, for

ke (8, 1], so that vi' (£(k) - cy(K) - (k) = v,' € |2,

a
2’ 2

We now claim that the two first order conditions (A4.1) and (A4.2) are
satisfied. Setting a; = a; -a, in (A4.1), we have that (A4.1) 1s equivalent to

a, (1 - B26) + o,(L - g4y =0, 8 € v{, o, =2 0, which holds for every pair
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The analysis for other values of k is similar.
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Appendix A4.3: Proof of Proposition 6.3.

In particular ag < 2, so vP(k,¢) = max | £(k) - ¢, _f_(zk_) ; We consider

first the case k < 1. Differentiation of the Lagrangean with respect to k gives
v' (k) = af ' (k), and by symmetry we derive vl’(k) = Vz'(k) = a/?. The first order
conditions in this case give o + 0, = a + 0, , or 0, =0, . 1f o, > 0, we are
done, because v,(k) = f£(k)/2. Note that at least one of the constraints must be
binding, since the efficient solution is not an equilibrium and we may assume o,
= o0, > 0. From the equality v,(k) = £(k) - c,(k) = f(k) - c,(k) we conclude
cl'(k) = cz’(k) - v, a constant, so c¢;(k) = c(k) =~k +w, 1 =1, 2; also v(k) =

vi(k) = (a/2)k + q. Now the condition c(k) + Bv(f(k) - 2c(k)) = v(k) gives v

= a/2, q-= -wz —ﬁaﬂ' Also v(k) = f(k) - c(k) implies g = -w. Note from the

fact that f(k) - c(k) > f(zk) , it follows that w < 0,
We now have -w aﬂ—ﬁl > -w, or, if w= 0O, af = 2 - B, a contradiction with

the hypothesis of the proposition.

We now turn to the case where k = 1; again we may assume

f(k) - c(k) > We first claim f(k) - 2c(k) < 1; otherwise c(k) < c(k), so

f(k)
-

Vik, c(k)) > vP(k, é(k)) = v(k) = v, (k), a contradiction. But if f(k) - 2c(k)

65



< 1, then using the previous part we have v(k) = c(k) + gv(f(k) - 2¢(k)) = c(k)
+ B(a/2)f(k) - Bac(k). Also vk, c(k)) = f(k) - c(k), and therefore v(k) -

V(k, c(k)) = (af - 2)(£(k) - 2c(k)) < 0, unless f(k) - 2c(k) = 0. |
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Appendix A4 4: Proof of Proposition 6.4.

Since af < 2, VD(k, c) = max | £(k) - ¢, _f% . The first order conditions

applied to the Lagrangean are a, + 01, = a, + 02' and therefore az’ > al' > 0.
This immediately implies wv,(k) = f(k)/2; since vy(k) = f(k) - cy(k),

c,(ky = f(k)/2, which implies the result. ]
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