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PRIVATE-BELIEFS EQUILIBRIUM
by

Ehud Kalai and Ebud Lehrer

Abstract

Al a private-beliefs equilibrium of an n-person infinitely repeated
game with discounting, each player maximizes his expected payoff relative to
some private, possibly false, belief regarding the strategies chosen by his
opponents. Moreover, the probabilitly distribution induced over the observed
play paths of the game according to his belief coincides with the one
actually played. Thus, any statistical updating can only reinforce the
beliefs. [t is shown that if the game is played with perfect monitoring,
then the joint behavior induced by a private-beliefs equilibrium coincides
with a behavior induced by a Nash equilibrium even when perturbations are

allowed.



1. Introduction

At a private-beliefs equilibrium of an infinitely repeated game, each
player has a belief, possibly a false one, regarding the strategies chosen
by his opponents. His own strategy is a best response to his belief.
Moreover, the probability distribution, induced on the play paths of the
game, by his own strategy and his belief coincides with the distribution
induced by the real strategies chosen by the players. Thus, his belief and
the real strategies are realization equivalent and any statistical learning
can only reinforce his belief.

While this notion of equilibrium is significantly weaker than the one
of Nash equilibrium, where the belief must coincide with the true strategies
of the opponents, we show that the actual behavior induced by any
private-beliefs equilibrium must coincide with a behavior induced by some
Nash equilibrium, even when we allow perturbations ol both.

Despite being weaker than Nash equilibrium, private-beliefs equilibrium
stiil captures an important aspect of stability. A player can learn nothing
about the correctness of conjectures that relate to histories that have zero
probability of being reached. On the other hand, on positive probability
histories, statistical learning can serve only to reinforce his private
beliefs, even if opportunities for learning are very readily available.
Suppose, as an extreme example, that the infinite game with a given
private-beliefs equilibrium is played repeatedly. As more sequences of
realized infinite play paths are made available to a player, his confidence
in his pussibly false beliefs will only increase. This is due to the fact

that, on the positive probability histories, his beliefs are statistically
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correct, while zero probability histories, where he may be wrong, will never
be reached.

Indeed, the emergence of private-beliefs equilibrium and a related
notion of self enforcing equilibrium were recently discovered in two
different models of learning. Fudenberg and Levine (1990) studied steady
state learning in an overlapping generations model where players were
randomly matched to play a fixed finite extensive form game. They showed
that, as the life length of the players becomes longer, the average strategy
played converges to self confirming equilibrium of the extensive form game.
Kalai and Lehrer (1990a) studied an n-person infinitely repeated game with
discounting. They showed that if the players optimally respond to initial
private beliefs about opponents' strategies, they must converge with time to
play according to an e-perturbed private-beliefs equilibrium with
arbitrarily small €.

Learning, as discussed above, for example, does not lead to a full
equilibrium but only converges to one. This is due to the fact that
Bayesian updating in general can only jead to approximately correct
posterior probabilities of future events (see, for example, Blackwell and
Dubins, 1962, and Kalai and Lehrer, 1990b). Thus, we can only hope to
obtain equilibria with approximately correct private beliefs. For this
reason private-beliefs equilibria and their perturbed versions are the
subject of this paper. Because these are new conceptis, one would like to
know the type of behaviors they induce. The main message of this paper--
that they induce the same behaviors as their Nash counterparts--is
surprising and not trivial. This fact, however, relies on the perfect

monitoring property of the games considered here., and the fact that players



know their own payoff matrices.

While the notion of private-beliefs equilibrium is only def ined here
for the simple model of infinitely repeated games, it seems to be applicable
to other models of learning, be it strategic, scientific, or others. One
may think of them as a type of informationally local maxima (possibly by
choice) which the players assume to be global and would never learn the
truth. With this interpretation, the social impliications of playing them
seem important.

A well-known example, where a loss of welfare is associated with a
private-beliefs equilibrium, is the multi-armed bandit game. There, a
single player with pessimistic beliefs about the payoffs of alternative
activities uses repeatedly the activity whose payoff is actually the lowest.
Nevertheless, acting optimally under his highly false prior beliefs, he
concludes that experimenting is wasteful, and continues to use the inferior
activity. This phenomenon contradicts ocur main result which states that
acting optimally under private beliefs must coincide with a behavior of a
real payoff maximizer. The difference lies in the fact that, unlike an
assumption in our model, the multi-armed bandit player does not know his own
payoff matrix.

From a game theoretic viewpoint, private-beliefs equilibria are
interesting because of weaker informational requirements they impose on the
players. They allow for any private beliefs about opponents' strategies and
do not require the use of any common prior probability distributions on the
players' payoff matrices, their strategies, or other such parameters. The
only stability they impose is with regard to statistical learning of

opponents' strategies. We find it interesting that, despite this
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significant relaxation, they end up yielding the same behaviors as Nash

equilibria.

2. The Repeated Game

First, we briefly review the standard model of n-player discounted

repeated game with perfect monitoring. An n-person stage game is described

by a set of action combination I = X?*]

Ei with Zi denoting a finite action

set of player i. Functions uj: I - R describe the stage game payoffs of the
players.

The set of histories of length t, H is defined to be the set of all t

t ’

t

tuples of elements of £, i.e., L . There is a singleton set H_ containing

0

the "empty history"” and H = Uth is the set of all finite length histories.
An infinite play path is an element of £°. We assume that each player

has a discount parameter Aj, 0 < Aj < 1, by which he evaluates the payoff

received along play paths. Thus, if z = (z],zz....) is a play path, we

define
t-1 t
u (z) = (1 -2 Loy ug(z).

A (behavior) strategy of player i is a function fj: H - A(Ei) with
A(Zi) denoting the set of probability distributions on Ei' Thus, in the
definition of a strategy, we are implicitly assuming that the game is played
with perfect monitoring.

A strategy vector f = (f

,f ...,fn) is a vector consisting of

1’72

individual strategies. Such a strategy vector induces a probability

distribution over the play paths of the game, vielding expected utilities



described as follows.

With every history h we associate a cylinder set c(h) consisting of all
the piay paths going through h, i.e., having h as a prefix. We will use h
to denote the history and also to denote the event c{h) when we think of the
space of play paths. The o-algebra defined over the set of all play paths
is defined to be the smallest one to contain all the cylinder sets, c(h).
Following this standard probability formulation it suffices to assign
probabilities to all the cylinder sets in order to obtain a probability
distribution over the set of all play paths. We follow this procedure in
defining a probability distribution He on the set of play paths for every
strategy vector f.

We define Mo of the empty history to be one and proceed inductively.
For a history h and an action combination a, we define yf(ha) =
yf(h) Hi fj(h)(aj). Thus, the probability of the history consisting of h
followed by the action combination a is the probability of h times the
product of the conditional probabilities of each player taking his action a,
given the history h.

Now we complete the definition of the repeated game by defining

individual payoffs for each strategy vector f,

Ui(f) = Eui(z) = [ ui(z)d#f(z).

Equivalently, one can define the expected stage payoffs and take the

discounted sum of these.



3. Description of the Main Result

As usual., we say that a strategy Ii is a best response fto gii if

_ < 5 :
Ui(gl""'hi""'gn) Ui(g]""'fj""'gn) < 0 for every strategy hi' 1t

the right side 0 is replaced by € we say that fj is an e€-best response to

g ;-

Definition 1: A private-beliefs equilibrium (PB eq.) is a strategy vector g

with a beliefs matrix (g;) satisfying for each player i:

1<i,j<n
(0) g, =g

(1) £ is best response to gii; and

(2) Ky = #gi-

The idea is that the i-th row, gi‘ represents the belief of player i
about the strategy vector that is played. Condition {(0) is required since
we assume that every player knows his own strategy. Condition (1) expresses
the usual utility maximization assumption where gii is the (n - 1) vector
consisting of all the entries of gi excluding the i-th. Condition {2) states
that g plays like gj. It expresses the idea that any statistical study will
serve to only strengthen player i's belief that gj is being played.

Obviously, in the above definitien, if we let gj = g for all i we have

a Nash equilibrium as a special case.

It is important to note that, while player i's belief about j's
strategy is described here by a single behavior strategy, g;, it is not a
serious restriction. By a well-known theorem of Kuhn (1953) (see also
Aumann, 1964, and Selten, 1975), a mixed strategy of player j, i.e., a
probability distribution over his strategies, can be replaced by a single

realization equivalent behavior one. Thus, a belief of player i given by a
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probability distribution over j's strategies can be replaced by an
equivalent belief consisting of a single behavior strategy.
We wish to allow for perturbations in the accuracy of the beliefs of

such an equilibrium.

Definition 2: Let € > 0 and let g and ﬁ be two probability measures defined

on the same space. We say that ug is g-close to ﬁ if there is a measurable
set Q satisfying:
(i) #(Q) and ﬁ(Q) are greater than 1 - ¢€; and

(ii) for every measurable set A € Q

(1 -~ €)(A) € u(A) € (1 + e)u(A)

Notice that this notion of e-closeness is strong since it imposes a tough

restriction even on small probability events.

Definition 3: Let f and g be two joint strategies, and let € > 0. We say

that f plays €-like g if He is e-close to yg.

The above notion of playing e-like is strong due to the strength of the
measures closeness notion. It guarantees that even for very long histories,
ones that have small probability of being reached, f and g will assign close
probabilities, with ratio close to one. Iin other words, such f,g are very
likely to play almost the same throughout an infinite game {(additional

discussion of this point is given in Sections § and 6).
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Definition 4: An n-vector of strategies, g, is a private-beliefs g

equilibrium (PB g-eq) if there is a matrix of n-vector of strategies

i g : . -
(gj)lsi,an such that for every player 1i:

i
{0) g, = &;;
(1) g is a best response to gfj; and

(2) g plays e-like gl.

Our main result is:

Theorem 1: For every € > O there is M > 0 s.t. for all m &£ m if g is a
private -heliefs M-equilibrium then there exists f, s.t.
(i) g plays e-like f, and

(ii) £ is g-Nash equilibrium.

Theorem 1 states that behaviors induced by private-beliefs equilibria
are the same as behaviors induced by Nash equilibria. The theorem also
holds when perturbations are allowed and then it has further implications,
Recall that €-Nash equilibrium requires that each player chooses a strategy
that is €-optimal against the precise strategies used by his opponent, i.e.,
his payoff should be within € of the optimally possible against theirs. On
the other hand, the e-perturbed private-beliefs equilibrium requires precise
optimization but against beliefs that are almost accurate. Relating these
two notions of perturbations, as done in Theorem 1, turns out to be

nontrivial.



4. Proof of the Main Result

We assume that g is PB Treq, where M is to be determined later. Thus,
there exists (gj)i,j satisfying the conditions of Definition 4. We show
that if M is small enough then there exists an €-Nash equilibrium f s.t. g
plays €-like it. The strategy f will be defined by using all (g§). In
constructing fi we describe the individual strategy of player i. However,
part (2) of Definition 4 is expressed in terms of histories consisting of
joint actions. Thus, we need a lemma that connects between the closeness
notion of the aggregate ("plays iike") and some closeness notion of the
individuals' actions.

In the following lemma we confine ourselves to finitely repeated games
of length s + 1. Any vector of n individual strategies, f, in the

infinitely repeated game induces a joint strategy in the finitely repeated

game. Moreover, the notion "play €-like” extends naturally to finite games.

Lemma 1: 1In a finitely repeated game of length s + 1, for every é > 0 there
is > 0 s.t. if k plays m-like k'(k and k' are joint strategies) with

7N < v, then there exists a set Q of play paths (of the finitely repeated
game), s.t.

(i) yk(Q) and #k‘(Q) are greater than 1 - &;

(ii) after every history h satisfying c(h) N Q # g and for every
player i, the probability according to both k and k', to play
an action a, that satisfies lki(h)(ai)/ki(h)(ai) - 1] £ 4 is
greater than or equal to 1 - §; and

(iii) for every h satisfying c(h) NQ # @ !#k(h)/yk,(h) - 1] £ 4.
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Proof: Otherwise there exists & > 0 s.t. for every 7m > 0 there are kn and

kﬁ for which the lemma does not hold and k_n play M-1like kh.

By letting M tend to zero along a sequence and by taking a converging

subsequence of the corresponding k k' one gets two limits k and k'. These

nom

limits do not satisfy the conclusion of the lemma with é. However, the
strategy k plays 0-like k'. Thus, k and k' are realization equivalents.
This means that kj(h) is identical to ki(h) for any history reached
(according to either one) with positive probability. Hence, k and k'

satisfy the conclusion of the lemma with é = 0, which is a

contradiction. //

If an action a; € Ei satisfies the inequality stated in (ii) we say

that ay is (k,k',h)-é-good. 1If a, € Ei is (g,gJ,h)vd-good for all j, we say

that a; is h-é-good. Due to the discounting of future rewards there exists
a time s after which all the payoffs cannot account for more than €/3 of
player i's total payoff, i = 1,...,n. Denote by |h| the length of the
history h (i.e., h € Ht implies that |h| = t), and let § be a small number
to be determined later.

By Lemma 1 applied to s, just described, and to 48, there is M > 0 so
that if g plays M-like gj then there is a set QJ of play paths {in the
finite repeated game of length s + 1) for which {i), {ii), and (iii) of the
lemma are satisfied with g replacing k and gj replacing k'. Since g is PB
Yeq the hypothesis is automatically satisfied for all j.

Taking an intersection of all Ql’s one obtains a set @ of play paths

whose probability (w.r.t. g) is at least 1 - né. The factor n appears due
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to the number of different selections of a player j above. The probability
w.r.t. to g, of all the h-8-good actions is at least 1 - {(n - 1)é. The
factor {n - 1) appears because when dealing with the piayer i we looked at
J

all g5 j#i.
Before proceeding with the construction of f we need the following

lemma.

Lemma 2: In a finitely repeated game of length s + 1, for every ¥ > 0 there
is 6 > 0 s.t. for any strategy vector g, if Q is a set of play paths whose
probability w.r.t. g is 2 1 - né with § < d then there is a set Q' € Q s.t.
(i) the probability of Q' (w.r.t. g) is at least 1 - ¥;
(ii) for every h satisfying c(h) N Q' # @ and i there is a subset
of plaver i's actions Ai(h) o Zj s.t. the probability of
Aj(h) according to gi(h) is at least 1 - 7%; and

(iii) if c(h) N Q' # @ and |h| < s then the continuation ha

satisfies c(ha) N Q' # @ for all a € X Aj(h)'

Proof: By a continuity argument similar to the one employed in the proof of

Lemma 1. The details are omitted. //

Using Lemma 2 for ¥ > O to be determined and Q = Q we find a set Q' of
play paths (in the finitely repeated game of length s + 1) having the
properties specified as in the lemma. Together with the other h-good
actions of other players, ai cannot form a continuation of h which is
disjoint to Q'. Recall that Q' € Q. Thus, at any h satisfying c{h) N Q" #

¢ the probability of the actions in Zi that are h-d-good is at Jeast
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1 - (n - 1)&. To sum up, the probability of an action ai € Ei‘ w.r.t.
gi(h), to be in Ai(h) and Lo be h-§-good is at least 1 - ¥ - (M - 1)4.
The strategy f will be defined first on histories reached (by f itself)
with positive probability. Therefore, it should be done inductively. The
histories h, |hf € s, reached with positive probability (later we will refer

to those as positive histories), will be histories whose corresponding

cylinder sets intersect Q' (not every h intersecting Q' will be a positive
one).

Suppose that h, thl £ s, is a positive history. The mixed action fi(h)
wiil be defined according to the following procedure. Delete from the
support of gi(h) all the actions that are not in Ai(h) or not h-&-good. The
remainder has probability {(w.r.t. g) at least 1 - ¥ - (n - 1)d. Normalize
the probability of all the remaining actions. 1f, on the other hand, h is a
positive history (i.e., reached with positive probability according to f)
and |h! > s, then define fi(h) = gi(h), In other words, fi differs from g4
only on positive histories h of length less than or equal to s.

So far, we have defined f on histories reached with positive
probability. In case h is not a positive history, then consider the
shortest prefix of h, h, which has a zero probability and distinguishes two
cases. (i) If the last action vector of h corresponds to a deviation of

only one player, say, j, from a positive history, f(h) is defined as gJ(h).

J
i

In other words, once j deviates, all other players follow his belief g
forever. (ii) If h does not correspond to a one-player deviation, define
f(h) arbitrarily. Since Nash equilibrium deals solely with unilateral

deviations from positive histories, multi-player deviations will not matter.

To see that g plays €-like f, notice the following. f coincides with g
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on positive histories of length greater than s. Thus, it suffices to show
that g plays €-like f in the s-truncated repeated game. The set Q' of play
paths has probability (w.r.t. g) of at least 1 - 7. At any positive history
the probability of the actions in the support of fi(h) were obtained by
dividing by at most (1 - ¥ - {(n - 1)d) the corresponding probability
assigned by gi(h). Thus, the probability of the union of the histories h
intersecting Q' that are positive is at least (i - Y - (n - 1)6)nS times the
probability of Q'. In other words, on a set of histories with length less
than or equal to s, whose union's probability is at least (1 ~ ¥)(1 - ¥ - (n
- l)d)nS the ratio of the probabilities (assigned by f and by g) is closed
to 1 up to (1/(1 - ¥ - (n —i)d)ns) -1, If % and & are small then g plays

e-like f. By taking ¥, & even smaller, we may assume that g plays €/10-1ike

It remains to show that f is an e-Nash eguilibrium. It suffices to show
that by deviating to any pure strategy k player 1, for example, can gain no
more than €.

If all the histories in the support of u are positive histories,
(k.f_))
then

(7) U (k. f_ ) € e/10 ¢ U (kg )}/ (1 - e/10).

-1

The fact that yg is T}-close to u 1 implies that any player 1's strategy

g
(say, k) satisfies

(8) 1-msuy (h}/pu ; thy=21+mM

€ 4) (k.gl))
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for every h assigned a positive probability by g (recall (iii) of Lemma 1}.

Inequalities (7) and (8) imply

(9) Uyt £ L) < e/10 + Uptkgr )/{1 - €/10)

1
< g/10 + U](k,gil)/(l - ) (1 - e/10) [if M is small enough]|

1
Ul(k'g"l) +Ee/6.

1A

If, however, the support of u does not consist only of positive
histories, then there is a positiézyifsiory h s.t. k(h) is not in the
support for fl(h). Suppose first that |h| € s. At this point all the
players follow gil because player 1 is responsible for the deviation.
However, £, is a best response to g}l. Thus, by altering k(h) for |h| = s
to be within what is expected from player 1 (i.e., k{h') is in the support
of fl(h') for every continuwation h' of h), one can only improve upon k (in
the sense that the altered strategy yields at least as much as k). The same
argument holds for every non-positive history reached due to k. Therefore,
one may find another pure strategy of player 1, say, kl, which satisfies:

1

) s U (k. f

1 ), and (ii) every history h, |h| £ s, played with a

-1
positive probability according to (kl,f~1) is a positive history. Since
{ii) holds only for histories with length less than s and since, after time
s, the deviation k may possibly contribute at most €/3, one obtains
(similarly to (9) with the additional e/3):

(10) U O ) < Ul(k,gf1) + €/6 + e/3 for every k.

1

. , 1
Since gl is a best response to g_i.



(11) Ul(k,g%l) + £/2 & Ul(gl) + g/2 £ [since g Mm-plays like gl]
Ul(g)/(] ) + M+ e/2 < [since g €/10 plays like f]
Ul(f)/(l - (1 - €/10) + N + €/10 + €/2 [if 71 is small enough]

< U](f) €.
{10) and (11) imply
Uk, ) S U (f) + €

Thus, f is an e€-Nash equilibrium as desired.

5. An Asymptotically Equivalent Definition

The notion of "g plays €-like f" used in this paper is strong, since it
applies to the ratios of the probabilities induced by the two strategies.
So even for histories that have very small probabilities of being played,
Mf(h)/#g(h) being close to one is meaningful. If we used the differences of
the measures I#f(h) - #g(h)| < g for every h to describe closeness, then we
could have small probability histories that are twice as likely according to
f as with g and still declare that f plays close to g. It turns out,
however, that the event consisting of those histories has a small

probability and we actually obtain equivalence of the two notions of

closeness as we proceed to show.

Proposition 1: For every £ > 0 there exists 6§ > 0 s.t. if p and ﬁ are two

measures defined on the same measure space and if |u(A) - ﬁ(A)i < 4§ for
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every event A, then gy is €-close to ﬁ.

Proof: Let 1/4 > & > 0, to be specified later, and let y,p be two arbitrary
measures satisfying |u(A) - ﬂ(A)L < & for every event A.

Define1 S = supp(u) N supp(ﬁ), and let S be its complement. It is
clear that u(SC) and Q(SC) are both smaller than &.

On S u is absolutely continuous w.r.t. E (i.e., for every D € S

M#(D) > 0 implies Z(D) > 0). By the Radon-Nikodym theorem there exists a

measurable function f satisfying

u(d) = J, fdu for all events D € S.

we]]
I

Define {w]f{w) - 1 > J&}, and

w
i

{w|f(w)y - 1 < -J&}.

Observe that u(B) - a{B) > J8u(B). Therefore, 4(B) < y&. For a similar
reason, ﬁ(@) < J&. Defining Q = S - (B U B), we get #Q) 21 - & - 2J8.
Moreover, for every event D € Q one gets |y(D)/ﬂ(D) - 1| < 2J8. Therefore,
if § + 248 < € then u is e-close to w. //

In view of this discussion, we can introduce a seemingly different
notion of private-beliefs equilibrium which asymptotically behaves like the

one defined above.

Definition 5: A vector g = (gl,...,gn) of individual strategies is a

private-beliefs e€-equilibrium in the norm sense if there is a matrix (gﬁ)

lSupp(p) and supp(ﬁ) are the supports of g and ﬁ, respectively.



17

with:
i
0 = g,
()8i gy
(1) g is a best response to (g?j); and
(2) for every measurable set of play paths, A, and every i, the
probability of A, w.r.t. to g, and w.r.t. gl, are e€-close to each
other. 1.e.,
(*) iyg(A) - M i(A)I < ¢ for every event A.
g

It is easy to see that for arbitrarily small &, there is M > 0 such
that all private-beliefs T-equilibria are private-beliefs §-equilibrium in
the norm sense. Proposition 1 demonstrates that the converse is also true
and that limit results, obtained for the two different notions, coincide.

In particular, one obtains:

Theorem 2: In an infinite repeated game with discounting, for every € > 0
there is am> 0 s.t. if g is a private-beliefs TM-equilibrium in the norm
sense then there is a strategy f s.t.

(1) g plays e-tike f; and

(2) f is a e-Nash equilibrium.

Proof: Fix € > 0. By Theorem 1 there exists & > 0 s.t. if g is PB d-eq
there exists f satisfying conclusions (1) and (2) of Theorem 2. In view of
Proposition 1 there exists m > 0 such that if g is a private-beliefs
equilibrium in the norm sense, then g is PB §-eq. This concludes the

proof. //
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6. The Strong Private-beliefs Equilibrium

In Definition 4 we reguired that for every i g plays e-like gi. Thus,
there exists a big set of histories, say, Q, such that for every h € Q, the
ratic between the probabilities assigned to h by g and by gi is close to 1.
Thus, this definition allows the ratio to be far from 1 on a set of
histories whose union has a positive probability.

The strong version of the private-beliefs equilibrium requires that the
ratio between the probabilities, assigned by g and by gi to every history
reached with a positive probability is close to 1. In case a strong
private-belief €-equilibrium is played there will be no dramatic changes in
any player's beliefs, while if the equilibrium is of the weaker type there
are chances (although slim) that players will have to aiter their beliefs
drastically as a result of new incoming observations. The strong concept is

defined here:

Definition 6: A vector g = (gl,...,gn) of individual strategies is a strong

private-beliefs g-equilibrium (SPB g-eq) if there is a matrix (gj) with

i
0 Lo
(0) g, g

(1) g; is a best response to (gii); and

(2) every history h with y?(h) > 0 satisfies

}yy(h)/# i(h) - 1} < € for every i.
’ g

In other words, when a SPB €-eq is played: (a) each player plays a

best response to his beliefs and (b) each player knows, before the game
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starts (up to €), anything that he can possibly learn during the course of
the game. Thus, players play a best response to their beliefs not only at
the beginning of the game but aiso at any stage and after every likely

history. This suggests that a SPB e-eq, g. is realization equivalent to

some approximate Nash equilibrium. That is, g plays 0-like some €-Nash

equilibrium as shown in what follows.

Theorem 3: For € > 0 there exists 4 > 0 s.t. if g is SPB d-eq then there

exists an e-Nash egquilibrium, f, which plays 0-like g.

Proof: Let g be a SPB d-eq. Define f to be identical to g on histories h
which satisfy #g(h) > 0. If ﬂg(h) = 0 and h corresponds to a unilateral
deviation of player i from gj, define f to be gi on h and on all its
continuations. On all other histories define f arbitrarily.

The proof that f is €-Nash equilibrium (where € depends on §) follows

some of the arguments of Theorem 1's proof and is therefore omitted. /7
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