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Abstract

We present and axiomatize several update rules for probabilities (and
preferences) where there is no unique additive prior.

In the context of non-additive probabilities we define and axiomatize
Bayesian update rules; in the context of multiple (additive) priors we
define maximum likelihood rules. It turns out that for decision makers
which can be described by both theories, the two approaches coincide.

Thus, we suggest a pseudo-Bayesian foundation to classical statistics,
which may also motivate alternative statistical inference techniques, and
provide an axiomatically-based ambiguous beliefs update rule, which is

needed for their application in many economic theory models.



1. Introduction

The Bayesian approach to decision making under uncertainty prescribes
that a decision maker have a unique prior probability and a utility function
such that decisions are made so as to maximize the expected utility. In
particuiar, in a statistical inference problem the decision maker is assumed
to have a probability distribution over all possible distributions which may
govern a certain random process.

This paradigm was justified by axiomatic treatments, most notably that
of Savage {1954), and it enjoys unrivaled popularity in economic theory.
game theory, and sc forth.

However, this theory is challenged by two classes of evidence: on the
one hand, there are experiments and mind experiments (such as Ellsberg
{1961) and many others) which seem to show that individuals tend to viclate
the consistency conditions underlying (and implied by) the Bayesian
approach. On the other hand, people seem to have difficulties with
specification of a prior for actual statistical inference problems. Thus,
classical--rather than Bayesian--methods are used for practical purposes,
although they are theoretically less satisfactory.

The last decade has witnessed--among numerous and various general-
izations of von Neumann-Morgenstern's (1947) expected utility theory--
generalizations of the Bayesian paradigm as well. We will not attempt to
provide a survey of them here. Instead, we only mention the models which
are relevant to the sequel.

1. Non-additive Probabilities. First introduced by Schmeidier (1982,

1986, 1989), and also axiomatized in Gilboa (1987). Fishburn (1988), and

Wakker (1989), non-additive probabilities are monotone set-functions which



do not have to satisfy additivity. Using the Choquet integral (Choquet

- (1953-54)) one may define expected utility, and the works cited before
axiomatize preference relations which are representable by expected utility
in this sense.

2. Multiple Priors. As axjiomatized by Gilboa and Schmeidler (1989},

this model assumes that the decision maker has a set of priors, and each
alternative is assessed according to its minimal expected utility, where the
minimum is taken over all priors in the set. (This idea is also related to
Bewley (1986, 1987, 1988), who suggests a partial order over alternatives,
such that one alternative is preferred to another only if its expected
utility is higher according to all priors in the set.)

Of particular interest to this study is the intersection of the two
models: it turns out that if a non-additive measure exhibits uncertainty

aversion (technically, if it is convex in the sense

v(A UB) + v(ANB) 2 v(A) + v(B)

then the Choquet integral of a real-valued function with respect to v equals
the minimum of all its integrals with respect to additive priors taken from
the core of v. {The core is defined as in cooperative game theory, i.e., p
is in the core of v is p(A) 2 v(A) for every event A with equality for the
whole sample space. Convex non-additive measures have nonempty cores.)

While these models--as many others--suggested generalizations of the
Bayesian approach for a one-shot decision problem. they shed very little
light on the problem of dynamically updating probabilities as new

information is gathered. We find this problem to be of paramount importance



for several interrelated reasons:

1. The theoretical validity of any model of decision making under
uncertainty is quite dubious if it cannot cope successfully with the dynamic
aspect.

2. The updating problem is at the heart of statistical theory. 1In
fact, it may be viewed as the probiem statistical inference is trying to
solve. Some of the works in the statistical literature which pertain to
this study are Agnew (1985), Genest and Schervish (1985), and Lindley,
Tversky and Brown {(1979).

3. Applications of these models to economic and game theory models
require some assumptions on how economic agents change their beliefs over
time. The question naturally arises, then: What are reasonable ways to
update such beliefs?

4. The theory of artificial intelligence, which in general seems to
have much in common with the foundations of economic, decision and game
theory, also tries to cope with this problem. See, for instance, Fagin and

Halpern (1989), Halpern and Fagin (1989), and Halpern and Tuttle {(1989).

In this study we try to deal with the problem axiomatically and suggest
plausible update rules which satisfy some basic requirements. We present a
family of pseudo-Bayesian rules, each of which may be considered a
generalization of Bayes' rule for a unique additive prior. We also present a
family of "classical" update rules, each of which starts out with a given
set of priors, possibly rules some of them out in the face of new
information, and continues with the (Bayesian) updates of the remaining

ones .
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In particular, a maximum-likelihood update rule would be the following:
_consider only those priors which ascribe the maximal probability to the
event that is known to have occurred, update each of them according to
Bayes' rule and continue in this fashion.

It turns out that if the set of priors one starts out with can alsc be
represented by a non-additive probability, the results of this rule are
independent of the order in which information is gathered.

Furthermore, for those preferences which can be simultaneously
represented by a non-additive measure and by multiple priors, the maximum
likelihood update rule coincides with one of the more intuitive Bayesian
rules, and they boil down to the Dempster-Shafer rule (see Dempster (1967,
1968), Shafer (1976}, and Smets (1986})).

Thus, we find that an axiomatically-based generalization of the
Bayesian approach can accommodate multiple priors (which are used in
classical statistics) and, moreover, the maximum likelihood principle, which
is at the heart of statistical inference {and implicit in the techniques of
confidence sets and hypotheses testing) coincides with the generalized
Bayesian updating.

Our hope is that this new, pseudo-Bayesian approach to statistics will
be able to suggest alternative statistical inference techniques which will
be more satisfactory than those we use today, but retain the applicability
of the latter. We also believe that this theory can be applied to a variety
of economic models, explaining phenomena which are incompatible with the
Bayesian theory, and possibly providing better predictions.

As a matter of fact, this belief may be updated given new evidence:

Dow and Werlang (1990), and Simonsen and Werlang (1990) have already applied
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the multiple prior theory to portfolio selection problems. These studies
_have shown that a decision maker having ambiguous beliefs will have a {non-
trivial) range of prices at which he/she will neither buy nor sell an
uncertain asset, exhibiting inertia in portfolio selection. Applying our
new results regarding ambiguous beliefs update, one may study the conditions
under which these price ranges will shrink in the face of new information.

Dow. Madrigal and Werlang (1989) studied trade among agents, at least
one of whom has ambiguous beliefs. They show that the celebrated no-trade
result of Milgrom and Stokey (1982) fails to hold in this context. In this
study, the Dempster-Shafer rule for updating non-additive measures was used,
a rule which is justified by the current paper. Casting the trade set-up
into a dynamic context raises the question of an asymptotic no-trade
theorem: Under what conditions will additional information reduce the
volume or probability of trade?

In another recent study, Yoo (1990) addressed the question of why stock
prices tend to fall after the initial public offering and rise at a later
stage. Although Yoo uses ambiguous beliefs mostly as in Bewley's (1986)
model, his results can also be obtained using the models mentioned above.

It seems that the update rule justified by our study may explain the price
dynamics.

These various models seem to point at a basic problem: given a convex
non-additive measure (or, equivalently, a set of priors which is the core of
such a measure), under what conditions will the Dempster-Shafer rule yield
convergence of beliefs to a single additive prior? Obviocusly. the answer
cannot be "always." Consider a "large" measurable space with all possible

priors {equivalently, with the "unanimity game" as a non-additive measure) .
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In this set-up of "complete ignorance,” no conclusions about the future may
~ be drawn from past observations--that is, the updated beliefs still include
all possible priors. However, with some initjal information (say, finitely
many extreme points of the set of priors} convergence is possible. We
intend to study conditions that will guarantee convergence in future works.
The rest of this paper is organized as follows. Section 2 presents the
framework and quotes some results. Section 3 defines the update rules and

states the theorems. Finally, Section 4 includes proofs, related analysis

and some remarks regarding possible generalizations.

2. Framework and Preliminaries

Let X be a set of consequences endowed with a weak order >. Let (S,L)

be a measurable space of states of the world, where I is the algebra of

events. A function f: S - X is E-measurable if for every x € X

{s|f(s) > x}, {sif(s) 2 x} € L.

Let F = {f: S -» X|f is E-measurable} be the set of acts.
Let FO = {f € F| |range{(f)|< o} be the set of simple acts.

A function u: X = R, which represents 2, i.e.,
u(x) 2 uly) <=> x 2y, ¥ x,y € X
is called a utility function.

A function v: £ - [0,1] satisfying

(1) v(g) = 0; v(S} = 1;



(ii) A CB => v(A) € v(B)

is a non-additive measure. It is convex if

vi(A UB) + v(A N B) 2 v(A) + v(B)
for all A,B € £. It is additive, or simply a measure if the above

inequality is always satisfied as an equality.

A real valued function is E-measurable if for every t € R
{s|w{s) = t}, {s|w(s) > t} € L.

Given such a function w and a non-additive measure v, the (Choquet) integral

of ww.r.t. {(with respect to) v on S is
[owdv = [ owdv = o v({s(w(s) 2 t) dt - 1 (vldsiw(s) 2 t)) - 1]dt.

For a non-additive measure v we define the core as for a cooperative game,

Core(v) = {pip is a measure s.t. p{A) 2 v(A) ¥ A € E}.

Recall that a convex v has a nonempty core (see Shapley (1965)).

We are now about to define two classes of binary relations on F: those
represented by maximization of expected utility with non-additive measures
(NA)}, and those represented by maxmin of expected utility with multiple

priors {(MP}.



Denote by NAO (= NAO(X,E.S,Z)) the set of binary relations 2 on F such
_ that there are a utility u, unique up to p.l.t. (positive linear
transformation), and a unique non-additive measure v satisfying:

(i) for every f € F, u o f is I-measurable;

(ii) for every f,g, € F.

f>g<=> fJuofdv2[uogdv.

Note that in general the measurability of f does not guarantee that of
u o f, and that (ii) implies that 2> on F, when restricted to constant
functions, extends > on X. Hence we use this convenient abuse of notation.
Similarly, we will not distinguish between x € X and the constant act which
equals x on S.

Characterizations of NAO were given by Schmeidler (1986, 1989) for the
Anscombe-Aumann {1963) framework, where X is a mixture space and u is
assumed affine, by Gilboa (1987) in the Savage (1954) framework, where X is
arbitrary but ¥ = 25 and v is nonatomic, and by Wakker {1989) for the case
where X is a connected topological space. Fishburn (1988) extended the
characterization to non-transitive relations.

Let MPO (= MPO(X,E,S,Z)) denote the set of binary relations > on F such
that there are a utility u unique up to a p.l.t., and a unique nonemtpy,
closed (in the weak* topology) and convex set C of (finitely additive)
measures on I such that:

(i) for every f € F, u o f is I-measurable;

(ii) for every f,g € F

> <= i > i .
f2eg > m1npeC Juof dp 2 mmpGC J uogdp
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A characterization of MPO in the Anscombe-Aumann framework was given in
~Gilboa-Schmeidler (1989). To the best of our knowledge, there is no such
axiomatization in the framework of Savage. However, the set NA0 N MPO.
which will play an important role in the sequel may be characterized by
strengthening the axioms in Gilboa (1987).

It will be convenient to include the trivial weak order 2* = F X F in
both NA and MP. Hence, we define NA = NAo U {2*} and MP = MP0 U {*}.

For simplicity we will assume that X has 2-maximal and minimal
elements. More specifically, let x*,x, € X satisfy x, £ x < x* for all
x € X. W.l.o.g. (without loss of generality), assume that x, and x* are
unique. Since for both NAO and MPO the utility function is unique up to a
p.l.t. we will assume w.l.0.g. that u(x,) = 0 and u(x*) = 1 for all
utilities henceforth considered.

When X is a mixture space we define NA' and MP' to be the subsets of NA
and MP, respectively, where the utility u is also required to be affine.

For such spaces X we recall the following results.

Proposition 2.1: Suppose that > € NA' and let v be the associated non-

additive measure. Then > € MP' iff v is convex.

Proposition 2.2: Suppose that > € MP' and let C be the associated set of

measures. Define

v{ia) = mmpeC p(A) for A € E.

Then v is a non-additive measure and > € NA' iff v is convex and



i0

C = Core(v).

The procfs of these appear, explicitly or implicitly, in Schmeidler
{1984, 1986, 1989). Note that the axiomatization of NA' (Schmeidler (1989))
uses comonotomic independence, and given this property the convexity of v is
equivalent to uncertainty aversion. The axiomatization of MP' (Gilboa and
Schmeidler (1989)) uses a weaker independence notion--termed C-independence-
—and uncertainty aversion. Given these, the convexity of v and the equality
¢ = Core{v) {(where v is defined as in Proposition 2.2) is equivalent to
comonotomic independence.

We now turn to define update rules. We need the following definitions.
Given a measurable partition [T = {Aj}?=1 of S and {fi}?=] c F, let

(f],Al;...:fn,An) denote the act g € F satisfying g(s) = fi(s) for all

s € Ai and all 1 € i € n. Given a binary relation 2 on F, an event A € L is

>-null iff the following holds: for every f,g.hl.h2 € F,
) c c
f > g iff (f,A ;hl,A) > (g.A ;hz,A).

Let § denote the set of all binary relations on F. Given B C B, an

where U,: B =+ B

}AGZ' A

update rule for B is a collection of functions, U = (U

A
such that for all > € B and A € E, AC is U,(2) - null and Ug(2) = 2. U, (2)

should be thought of as the preference relation once A is known to have
occurred.

Given B and an update rule for it, U = {U U is said to be

A}AGZ’

commutative w.r.t. > or >-commutative if for every A,B € L we have
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UR(U,(2)) = Uynal2)

It is commutative if it is commutative w.r.t. 2> for all 2 € B. (Note that
this condition is stronger than strict commutativity, i.e., UA o UB =
UB o] UA' However, "commutativity"” seems to be a suggestive name which is

not overburdened with other meanings.)

3. Bayesian and Classical Rules

Given a set B of binary relations on F, every f € F suggests a natural

) f _ f
update rule for B: define BU" = {BUA}Aez by

g BU£(2) h <=> (g.A:f.A) 2 (h,A;£.A%) for all g,h € F.

f is an update rule, i.e., that AC is

It is obvious that for every f, BU
BUi(z) — null for all > € Band A € L. We will refer to it as the

f-Bayesian update rule and {BUf}feF will be called the set of Bayesian

update rules.

Note that for > € NA with an additive v, all the Bayesian update rules
coincide with Bayes' rule, hence the definition of the Bayesian update rules
may be considered a formulation and axiomatization of Bayes' rule in the

case of (a unigue) additive prior.

Proposition 3.1: For every 2 € B and f € F, BUf is 2>-commutative.

Theorem 3.2: Let f € F and assume that |E| > 4. Then the following are

egquivalent:
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(1) BUi(NA‘) C NA' for all A € E;
(ii) f = (x*.T;x*,TC) for some T € L.

Of particular interst are the Bayesian update rules corresponding to
f=x*and f = x,(i.e., T=8or T =¢ in (ii) above). For the latter (x,)
there is an "optimistic" interpretation: when comparing two actions given a
certain event A, the decision maker implicitly assumes that had A not
occurred, the worst possible outcome (x,) would have resulted. In other
words, the behavior given A——BUi(Z)——exhibits "happiness” that A has
occurred: the decisions are made as if we are always in "the best of all
possible worlds."

Note that the corresponding non-additive measure is
vA(B) = v(B N A)/v{A).

On the other hand, for f = x*, we consider a "pessimistic” decision
maker, whose choices reveal the hidden assumption that all the impossible
worlds are the best possible ones. This rule defines the non-additive

function by
v,(8) = [v((B N A) u a%) - va%)1 7 (1 - v(a®%)),

which is identical to the Dempster-Shafer rule for updating probabilities.
It should not surprise us that this "pessimistic” rule is going to play

a major role in relation to MP--i.e., to uncertainty-averse decision makers

who follow a maxmin (expected utility) decision rule. 1In a similar way one

may develop a "dual” theory of "optimism” in which uncertainty-seeking will
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replace uncertainty-aversion, concavity of v will replace convexity, and

- maxmax will supercede maxmin. For this "dual" theory, the update rule

vA(B) = v(B N A)/v(A)

would be the "appropriate" one (in a sense that will be clear shortly).
Notice that this rule was used--without axiomatization--as a definition of
probability update in Gilboa (1989).

Taking a classical statistics' point of view, it is natural to start
out with a set of priors. Hence we only define classical update rules for
4 = MP'. A natural procedure in the classical updating process is to rule
out some of the given priors, and update the rest according to Bayes' rule.
Thus, we get a family of update rules, which differ in the way the priors
are selected.

Formally, a classical update rule is characterized by a function

R: (C,A) |- C' such that C' € C is a closed and convex set of measures for
every such C and every A € £, with R(C,8) = C. The associated update rule

R

will be denoted cUT = {cU (1f R(C,A) = B we define cui(z) - %)

A
A’AeL’
Note that these are indeed update rules, i.e., that for every 2 € MP', every
R and every A € L, A is CUﬁ(z) - null. Furthermore, for 2 € MP' with an
associated set €, CUN(2) € MP' provided that inf(p(A)|p € R(C.A)} > O for
all A € L.

Of particular interest will be the following classical update rule

called maximum likelihood and defined by

RO(c.A) = {p € C|p(A) = max o a(A) > 0},
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0
'Theorem 3.3: CUR is cummutative on NA' N MP'. Furthermore, for

> € NA' N MP',

0
*
anx S)isy - cui (>) € NA' N MP'.

1.e., the Bayesian update rule with f = {x*,S) coincides with the maximum
likelihood classical update rule. Furthermore, they are also equivalent to
the Dempster-Shafer update rule for belief functions. (Note that every
belief function (see Shafer (1976)) is convex, though the converse is false.
Yet one may apply the Dempster-Shafer rule for every non-additive measure

v.)

4. Proofs and Related Analysis

4.1 Proof of Proposition 3.1

It only requires to note that for every f,g, € F, A, B € r

((g.A£,A%),B;£,8%) = (g,A NB:f,(ANB°).

4.2 Proof of Theorem 3.2

First assume (ii). Let there be given > € NA' with associated u and v.

Define for B € £ a non-additive measure vy by
vy(A) = [v({ANB) U (TN B%)) - v(T N BS)} / [v(B U T) - v(T N BS)]

if the denominator is positive. (Otherwise the result is trivial.) For
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every g € F we have
c 1 c
Jguo (g.B:f,B7)dv = J, v({sju o (g,B;f,B )(s) 2 t})dt

V(T N BS) U ({siu o g(s) 2 t) N B))dt

O bt

[viT N BS) + [v(BUT) - v(T N B)] vpl{slu o g(s) 2 t})] dt

[ R

il

w(TNBS) + [vBUT) - vw(TnNBS)] Juo gdv,

whence v_ and u represent BUf

B B which implies that the latter is in NA'.

Conversely, assume (i) holds. Assume, to the contrary, that f(s} ~ x
for s € D where D € E, D # S and x, < X < x* (where ~ denotes
>-equivalence). Let E,F € £ satisfy ENF =END=1D NF =@¢. Denote

o = u(x) {(where 0 < & < 1). Choose m € («,1) and a non-additive v such that

v(E) = v(F) = v(D) = m

v(EUF) =v(EUD) =v(FUD) =m

and v(T) = v(T N (EUF UD)) for all T € E. Next define > € NA' by v and
(the unique) u.

Choose gl,g2 such that

uo gl(s) = uo gz(s) = Q s €D
u o gl(s)= 1, uo gz(s) =a + (1 - o/m) s € E

u o gl(s) =0, uo gz(s) =a + (1 - a/m) s € F



Let >'

correspond to it u' =

be BU
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f

EUF By assumption it belongs to NA'; hence, there

(2).

u and v'. Note that v' is unique as 2' is nontrivial,

and that v'(T) = v'{(T N (E U F)) for all T € E.

As f uo gldv = fuo gzdv, g, - gy whence gy ~ g5 Hence, f u o
gldv' = Juo gadv', i.e., v'(E) =a + (1 - a/m).
Next chose B € (0,«) and choose an act g3 € F such that
i
ja s €D
|
uo ga(s) = {B s € E
|
o s € F
L
For every ¥ € (0,a) choose gy € F such that
(04 s €D
uogy(s) =
Y s € EUF
Then [ u o g3dv =oand [ uo gydv =a + yY(1 - m). Hence, gy > g, and

g, > gs for

Y

whence v'(E)

Remark 4.3:

>-maximal or
not bounded,
However, one

g(s).h(s) 2

between g and h by f = (x*,T;x*,TC).

all ¥ > 0. However, [ u o g, dv’

Y =7Yand J uo g3dv' = gv'(E),

0, a contradiction.

In the case of no extreme outcomes, i.e., when X has no

no >-minimal elements, and in particular when the utility 1is
there are no update rules BUf which map NA' into itself.

may choose for g,h € F0 X*,x, € X such that x* 2

£

f f
i > =
Vs €S, and for every T € E define BU (2} {BUA}AGE

If > € NA, this definition is
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independent of the choice of x* and x,. The resulting update rule will be

_commutative for any (fixed) T € E.

4.4 Proof of Theorem 3.3

Let > € MP' be given, and let C denote its associated set of additive
measures. Define v(e) = min
Assume that v is convex and C = Core(v). For A € E with q{A) > 0 for

some q € C, we have

RO(C.A) = {p € Clp(A) = max_ca(a)) = {p € CIp(a) = v(AT)}.

0 0 0] 0

Rocuy (2) = 2%

(Note that if v(a®) = 1. cui (cug (2)) = CU

As was shown in Schmeidler (1984), v is convex iff for every chain ¢ =

E. EE ¢ S E

o € Eq R n S there is an additive measure p in Core(v) = C such

]

that D(Ei) = V(Ei) 0 < i <n. Furthermore, this requirement for n = 3 is

also equivalent to convexity.

Next define
) . 0
VA(T) = min{p(T N A)|p € R (C,A)}.
, C o
Claim: VA(T) = v({TNA) UA”) - v(AT).
Proof: For p € RO(C,A) we have

[

p(T N A) = p({T N A) U A% - p(a®)

p((T N A) U AS) - v(A%)
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> v((T N A) UA®) - v(a%)
~whence

vi(T) 2 v((T N A) U A%y - v(a%).

To show the converse inequality, consider the chain

g c AC ¢ A U ({ANT) €S. By convexity there is p € Core(v) = C satisfying

p(A%) = v(A®) and p(A® U (T N A))

v(A® U (T N A)) which also implies p €

R9(C.A). Then

vi(T) £ p(T N A) = pUT N &) UAS) - p(A%)
= v((T NA) UAS) - va®)y. //
g0
Consider CU, (»). If it is not equal to 2*, it has to be the case that

v(AC) < 1, and then it is defined by the set of additive measures

Cy = {p,/p € RO(C,A))

where
p,(T) = p(T N A)/p(A) = P(T N A)/(1 - v(A")).

Note that CA is nonempty, closed and convex. Define

VA(T) = min{p(T)ip € CA}.

and observe that vA(T) = vA(T)/(l - v(AC)), i.e.,
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(*) v, (T) = [v((T NA) U A%y - via%)1/01 - vi(a%)l.

Hence, vA is also convex. We have to show that CA = Core(vA).

To see this, let p € Core(vA). We will show that p = a,

q € RO(C,A), Take any q' € Core(v) and define

Q(T) = p(T N A)[L - v(A®)}] + q'(T N A").

Note that

a(T NA) = p(T N AL - v(a®)) 2 v (T N AL - v(A©)]

v({T N A) U A®) - v(a%).

(As p € Core(vA) and by definition of the latter.) Next, since

q' € Core(v),

(T N A%) = q (T A A%) 2 v(T N A%).

Hence,

a(T A A) + q(T N A%

il

a{T)

v((T N A) UAS) - v(a®) + v(T N A%

v

v(T U A%) - v(A®) + v(T N A%) 2 v(T)

where the last inequality follows from the convexity of v. Finally,

for some
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p(A)[1 - v(AS)] + v(A®) = 1.

q(s) = q{A) + q(A®)

Hence, q € Core(v). Furthermore, q € RO(C,A). Obviously, p

r? g0 (x*,8)
Thus we establish CUA (2) € NA'. Furthermore, CUA (2) = BUA T2)

dy-

and the non-additive probability update rule (*) coincides with the

Dempster-Shafer rule. Any of these two facts, combined with the observation

R0 R0
CUA (>) € NA', implies that CU is commutative.

Remark 4.5: It is not difficult to see that the maximum likelihood update
rule is not commutative in general. In fact, one may ask whether the

coverse of Theorem 3.3 is true, i.e., whether a relation 2 € MP’ with
R
respect to which CU O is commutative has to define a set C which is a core

of a non-additive measure. The negative answer is given by the following

example: S = {1,2,3,4}, L = 28, C = conv{pl,pz} defined by

It is easily verifiable that the maximum likelihood update rule is

commutative w.r.t. the induced 2 € MP', though C is not the core of any v.

Remark 4.6: It seems that the maximum likelihood update rule is not
commutative in general, because it lacks some "look—-ahead" property. One is
tempted to define an update rule that will retain all the priors which may,
at some point in the future, turn out to be likelihood maximizers. Thus, we

are led to the "semi-generalized maximum likelihood":
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RI(C.A) = ¢l conv{p €C|p(E)} = maxqGC g(E) > 0 for some E C A}

(where cl means closure in the weak* topology). Note that the resulting set

of measures may include p € C such that p(A) = 0. In this case define

1
R
>) = >*%
CUA (z) >*

However., the following example shows that this update rule also fails

to be commutative in general.

Consider S = {1,2,3,4,5}, E = 2S. and let C be conv{pl.pz,ps,p4}

defined by the following table:

1 2 3 4 5
2y 2 2 .01 09 5
P, 0 0 4 4 2
Py .27 0 .03 0 T
P4 0 27 03 0 7

Taking A = {1.2,3,4} and B = {1,2,3}, one may verify that

R'(R'(C.A).B) = {p,.p,.P,}
and

1
R (C,B) = {p11p2'p31p4}

and that Py is not in the convex hull of {p2 Py 1Py }.
B B B B

We may try an even more generalized version of the maximum likelihood

criterion: retain all priors according to which the integral of sonme
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nonnegative simple function is maximized. 1.e., define

R2(C,A) = ¢l conv{p € C|J u o f dp

= max {f uo f dgjgq € C} > 0 for some f € Fo}.

The maximization of J u o f dp for some f may be viewed as maximization
of some convex combination of the likelihood function at several points of

time.

2
However., the same example shows that CUR is not commutative in

general. //

Remark 4.7: Although our results are formulated for NA' and MP', they may
be generalized easily. First, one should note that none of the results
actually requires that X be a mixture space. All that is needed is that the
utility on X be uniquely defined {up to a p.1.t.) and that its range will
contain an open interval. In particular, connected topological spaces With
a continuous utility function will do.

Moreover, most of the results do not even require such richness of the
utility's range. In fact, this richness was only used in the proof of

(i} => (iii) in Theorem 3.2.
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