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Abstract

Under what circumstances will a successful incumbent in a related
market be the first to enter a new market? We present a model in which the
order of entry into new markets has long run effects on the firms' profits.
We assume that a firm that is successfully producing in a related market has
valuable information about the demand in the new market. By his choice of
location in product space in the new market the incumbent reveals
information about the demand to the potential entrant. Thus, the incumbent
would like to enter after the newcomer in order to prevent the rival from
free riding on his proprietary information; however, the rival would also
like to enter second go that he can benefit from the other’s information.

When both firms want to enter last, the order of entry is modeled as a
timing game in continuous time. Using a refinement of Nash equilibrium
known as "risk-dominance" we show that when the informational advantage of
the incumbent is very great, his implicit threat to wait out his rival is
less powerful than the equivalent threat by the potential entrant, and the
incumbent will enter first. On the other hand, the incumbent’s lower
incentive to enter the new market due to the "cannibalization" effect of
entering a related market is a weapon that the incumbent can use to "force”
the rival to enter first, in equilibrium. We also find that incumbent
entrants into new markets are more likely to succeed in the new market, in
equilibrium, than are newcomers, regardless of order of entry. On the other
hand, looking cross sectionally across markets, incumbents are more likely
to succeed when they are early rather than late entrants, but newcomers are

more likely to succeed when they are late entrants rather than early.



I. Introduction

It is a rule of thumb in bridge that, whenever possible, one should not
break a new suit. If you can force the opponents to break the new suits it
puts your team at a competitive advantage. In this paper we analyze the
incentives of and the competitive advantages and disadvantages to firms of
being the first to enter new markets. In particular, we ask: under what
circumstances will a successful incumbent in a related market choose to be
the first to pioneer a new market rather than entering after a newcomer has
entered? We show that in our model, as in bridge, both firms would prefer
to be the later entrant. Which firm actually enters first is derived as the
equilibrium to a sequential game in continuous time, and we present
conditions under which each firm is, in equilibrium, more likely to enter
first.

There is evidence from industry studies that pioneering entry by
newcomer firms is an important phenomenon, even in the presence of the
threat of responsive entry by established incumbents in related markets.
Schmalensee’s (1978) study of the ready-to-eat cereal industry is a clear
example, as is the automated teller machine market studied by Lane (1989).
In both of these industries the first entrants into the new market were not
the firms that were already successful in related markets, but rather were
start-up firms or firms operating in unrelated industries. Nevertheless, in
both cases it was the incumbents from related markets that were the eventual
survivors, though their late arrival suggested apparent reluctance to enter
the market. Why would the incumbents (who, when viewed ex post, apparently
had an ex ante higher probability of success in the new market) be so
reluctant to pioneer the new market, while newcomers (who ultimately failed)

showed greater enthusiasm? A feature of my model is that reluctance to



2
enter a new market does not signal that the incumbent views the market as
unprofitable; rather, it means that the incumbent views it more profitable
i1f he can induce the rival to enter first.

Other authors (Kamien and Schwartz 1978; Conner 1987; Ghemawat 1986;
and Reinganum 1983) have pointed out that incumbents tend to have less
incentive to enter a new related market than do new entrants. The
incumbent’s reward for entry must net out the decreased profits in the old
market due to the new substitute product, while from the perspective of a
new entrant, the decrease in profits in the old market are an externality
that he does not internalize. Kamien and Schwartz show formally that
monopoly incumbents are less likely to innovate than newcomers to a market.
Reinganum shows that, in the Nash equilibrium of an innovation race, the
incumbent invests less than the rival, and therefore the rival is most
likely to innovate first. Conner shows that if the innovator need not
introduce the innovation upon discovery but can wait until a more desirable
introduction time, then the incumbent will invest more in innovation but
wait until the rival introduces the new product to introduce its own.

Our paper takes a different approach. We do not analyze the R&D
problem, but rather focus on the strategic positioning decision faced by the
firms. We assume that a firm that is successfully producing in a related
market has preoprietary information about the new market that the rival does
not have. Specifically, the incumbent has some information about which
types of new products are more likely to be successful. The order of entry

affects the firms’ long run expected profits because it determines the
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transmission of information.1 If the informed firm enters the new market
first, the uninformed potential entrant can learn about the market just by
observing the type of product that the incumbent plans to produce (even
without waiting to see whether the incumbent’s new preoduct turns out to be a
success). If the uninformed firm enters first it must commit to a product
type without benefit of the other firm’s knowledge. The advantage to late
entry into a market by a new entrant is that it permits the firm to learn
from the informed rival before committing to a product type..Of course,
there is a corresponding advantage to late entry by the incumbent: late
entry prevents the uninformed rival from benefitting from the incumbent’s
information. In addition, whichever firm is the later entrant enjoys the
power to position itself relative to the observed strategy of the other. We
will show that, although both firms would like the strategic advantage of
going last, there is no actual delay in equilibrium. However, when the
informational advantage of the incumbent is very great, his implicit
"threat™ to wait out his rival is weak; that is, it is less powerful (in a
sense to be made formal later) than the equivalent threat by the potential
entrant. In this case, contrary to the results in the innovation-race
literature, late entry is so valuable to the entrant that he can "force" the

incumbent to enter first. On the other hand, if by entering the new market

1In interesting related work, Ramey (1988) analyzes a model is which
late entrants benefit from information transmission, but in a model with ex
ante symmetric firms, Thus, the natural focus of his paper is on issues of
delay of entry, rather than the order of entry of firms that are
identifiably different ex ante. McGahan (1990) considers whether a firm
with an informational advantage will find it optimal to deter entry through
large capacity commitment. In that model the informed firm is assumed to
enter first; the model focuses on the firm’s capacity choice at the time of
entry.
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the incumbent will strongly cannibalize his original market, this decreased
incentive to enter the new market is a weapon the incumbent can use against
the rival to induce him to enter first.

We also find that incumbent entrants into new markets are more likely
to succeed in the new market, in equilibrium, than are newcomers, regardless
of order of entry. Looking cross sectionally across markets, incumbents are
more likely to succeed when they are early rather than late entrants, but
newcomers are more likely to succeed when they are late entrants rather than

early.

II. The Model

Let firm A be a (successful) incumbent producing a product, x. Firm A
is considering introducing te the market a never-before produced product, vy.
At the same time, a potential entrant, B, is considering entering the y
market. It is assumed that x and y are substitutes in consumption. In
deciding whether and when to enter, the positions of the two firms are
different for two reasons: first, the decision problem for A must account
for the effect of y on A's profits in the x market, while B’s decision
problem involves no such considerations; second, A, being an experienced
producer in x, has expertise and knowledge that may be valuable in y.

Because y is a new product, no one knows whether it will be successful,
which particular features of the product will be popular, what the optimal
production process is, and so forth. Suppose that there are many possible
technologies for producing the product. We will think of these technologies
as determining a location in product space, and to aveid endpoint problems

we will take the product space to be the circumference of a circle (see



Salop 1979). Denote a position on the circle w. One could alternatively
interpret the choice of location w on the circle to determine the firm's
marginal cost, though we will adopt the former interpretation in our
discussion.

Some comments are in order regarding our meaning of "entry." What is
important in our model is that, at the time of "entry," a firm commits to a
particular technology, or location in product space. We are not so much
predicting when a firm will begin to sell output as the order in which firms
will take a position in the market. For example, this may mean investing in
development of a particular type of product. If the time it takes for the
rival to discern the other’s product strategy is long, then being first may
confer an important "head start." (See Lieberman (1987) for a survey of the
literature on first mover advantages.) We abstract from these issues by
assuming that committing to a technology and producing the product are
simultaneous events.

A firm must commit to a technology before learning what the success of
the chosen product will be. For example, before the introduction of
personal computers, IBM and Apple had to commit to a particular operating
system before knowing either the relative costs of various possible
technologies, or their relative desirability in the eyes of consumers. We
assume that rivals can learn or observe the other’'s chosen location in
product space before nature has revealed the level of demand associated with
that technology. Continuing our example, this means that Apple knew that
IBM was developing a disk operating system (DOS) before either firm knew how
successful that system would be. This confers a potential advantage on the

firm that goes gecond: that firm can make its product choice having
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observed the strategy of the first entrant.

We assume that the level of demand for each firm's product is unknown
ex ante, and by choice of "technology" (i.e., product characteristies) the
firms determine a probability of a successful product and an ex ante
correlation between the likelihood of success of their products.

Let inverse demand be given by

(1) Px =m - bx - C(YA + YB)
i - .
py - a; - b(yA + yB) -¢cx, 1 =A,B, b>0, ¢ >0,

. . .. 2 .
where y; is the output of firm i in the y market”. Marginal costs are

constant at kj, j = x,¥y. Thus, flow profits to firm A are

ﬂA = (m - bx - c(yA + yB))x - kxx

+ (aA - b(yA + yB) - cx)yA - kyyA.
Flow profits to firm B, if it enters the y market, are

B -
- (aB - b(yA + yB) - cx)yB - kyyB.

The intercept Ei is a random variable for each firm. 1Its distribution
is determined by the location the firm chooses in product space, and how

"close" (in a sense to be discussed presently) the locations of the two

2 X . .
The demand structure implies that the uncompensated cross-price

effect, b, is symmetric. Of course, this would only be strictly true if
income effects were zero; nevertheless, we adopt this structure for
tractability. We do not believe the assumption materially affects the
results of the paper.



firms are to each other.

This specification captures the idea that one product may turn out to
be greatly preferred to the other, because one firm was better able to guess
accurately which product features will appeal to many people. "Greatly
preferred” means that, if a; > aj, P, = a; - aj + pj, regardless of the
quantities sold. That is, in any equilibrium the price charged for Yy will
exceed that for yj. Further, by observing his rival’s product
specifications, a firm can design a product whose success is likely to be
highly correlated by imitating the rival’s product; or uncorrelated (or
perhaps negatively correlated) by innovating relative to the rival's
product.

To further simplify, we assume that a, can take only two values, aH and
aL, aH > aL > ky. If A locates at Wy and B at Vg then the joint
distribution of the a’'s can be fully described by the function P(w), where
- prob(ak - ale - wk), k = A,B, and the function

- prob(aA - aH, ag = aL). These parameters determine the

P(wk) - Pk

Z(WA,WB) = ZAB

covariance as follows:

) - Z..]

g,, = cov(ai,aj) - {Pi(l - P

ij

and the following probabilities:

H H
prob(ai =3 ,a, = a ) = Pin + 0, .,

] ij

L L
prob(ai = a ,aj - a )= (1 - Pi)(l - Pj) + aij

L H
prob(ai = a ,aj -a ) = {1 - Pi)Pj - aij'



8

Now suppose that the firms had no prior knowledge that generated
distinct priors over the technologies. In other words, suppose the firms
placed the same probability of success, P, on every location in product
space. Although firms may not know which product type is likely to succeed,
we assume that they can easily determine which are "similar"™ and which are
"dissimilar™ to each other. If a firm adopts a similar product location, or
"imitates," he is choosing to cast his lot with his rival and they succeed
or fail together. 1If he decides to strongly differentiate his product from
his rival’s (or "innovate"), then he benefits from the increased probability
of succeeding when his rival fails, but also risks the increased probability
of failing when his rival succeeds.

Output decisions are made by each firm after their a; have been
revealed. More realistically, one could assume that it takes some period of
uninformed competition before the a, are revealed. However, for a long
enough horizon, a short enough period, or a sufficiently low discount rate,
this period of information gathering will be an unimportant component of the
present discounted value of the future profit stream. As our purpose is not
to study this information gathering (see Grossman, et al. 1977), and there
does not appear to be an interaction between it and the problem at hand, we
ignore it in this paper.

Finally, we assume that once a technology is adopted the choice is
irreversible for the foreseeable future. It is crucial to our model that,
in particular, the pioneer firm is locked into its technology choice for an
economically meaningful period of time. However, our reduced-form profit

functions permit the possibility of exit from the market entirely (see Judd

1985).
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Once one firm has entered a market and chosen a technology, the rival
firm has the option of imitating or innovating relative to the rival.
Specifically, by its choice of technology the later entrant chooses the
covariance in success rates between the two firms. If firm A is operating
in both the x and y markets, and firm B is competing in the y market, each

firm i’'s ex ante expected profits are

i i, H H i, L L
(2) Ex” = (PA.PB oo, (aA,aB) + ((1 - PA)(l - P+ OAB)" (aA,aB)
i, H L i, L H
+ (PA(l - PB) - aAB)x (AA,aB) + (PB(l - PA) - aAB)r (aA,aB)
where
A, J k A . j _ k .
n (aA,aB) maxx, A T (x,yA,aA a ,aB a), j,k e {HL},
and
B, j k B, B, i k
T (aA,aB) maxy n (y ,aA a ,aB a),

B

. i, j k
that is, =« (aA,aB

profits with respect to the covariance:

L L i, H L i, L H

(3) dE:ri/daAB - ri(aA,ag) + ri(aA,aB) - x (aA,aB) - (aA,aB).

Denote this derivative AzEnl, and note that
(4) si n(AzEri) = si n(dzﬂi(a a_)/da,da_)
& & A3/ 4
when the cross derivative on the right takes a constant sign.

Lemma 1: Under the specification given by (1), A2Enl <0, i =AB.

) 1s the reduced form profit function. Maximizing expected
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Proof: Straightforward but tedious calculations show that

2 A 2B
d°x (aA,aB)/daAdaB = dx (aA,aB)/daAdaB = -4/9b. Q.E.D.

This result means that both firms would choose the cornmer solution in
which the covariance is as low as possible,.

We have assumed that the firms' choice of product characteristics
determines a distribution over their demand conditions. We could instead
assume that demand is fixed and the technology choice determines the firms’
marginal costs. Then the choice of correlation would lead to a condition

analogous to (3),
i 2.1
dEx~/dt = A"En",

and, analcgously,

; 2.1 . 2 i
sign A"Ex" = sign(d™=x (kA,kB)/dkAdkB),
where nl(kA,kB) is the reduced form profit function for firm i, whose
arguments are the firms' marginal costs. With linear demand,
straightforward calculations show that
dzxi(k k. )/dk dk_ = dzwi(a a_)/da da_ for both i = A,B
A'"'B A B A'"B A B T
Some remarks are in order regarding the expression dznl(kA,kB)/dkAdkB, which

we denote expression (5). A similar expression shows up in other contexts
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(Glazer 1989; Reinganum 1983; Bagwell and Staiger 1990) but, as these other
authors have noted, it does not appear to be possible to characterize
general conditions on demand that determine its sign.3 Investigating the
sign on a case-by-case basis for different functional forms appears the only
tractable route, but one quickly exhausts the set of functional forms that
are amenable to brute force calculation. Given these difficulties, it is
nevertheless interesting to note that neither we nor other authors have
succeeded in finding demand specifications in which the sign of (5) 1is
positive (unless one firm is assumed to have a large expected cost
advantage). This is true under Bertrand or Cournot assumptions. We and
others have verified that for demand functions of the form p = a - bx,
p=2a - bx - cxz, and p = a - bin x, (5) is negative under Cournot
competition. The expression is also negative under linear demand with
increasing marginal costs of the form ki + ay, i = A,B. In addition, (4) is
negative for linear demand under Bertrand competitionm, and (5) is negative
under Bertrand competition with linear demand as well as Cournot.
Therefore, at least for changes in costs (resp. demand levels) that are
small enough that the linear model is a good approximation, we feel

confident in assuming more generally that (5) (resp. (4)) is negative.

3The difference between our expression (5) and the expression that
arises in the papers cited is the presence of the x market in our model.
Both firms must take into account A’'s operations in x when determining their
output in y. Consequently, (5) has terms that would not otherwise appear.
Of course, the added complication makes an already intractable expression
even more so, but our investigation on the sign of (5) on a case-by-case
basis does not reveal an example in which the added market changes the sign
of (5).

4 : . ;

It is also worth nothing that (5) is not related to Bulow, Geanakoplos
and Klemperer's (1985) definition of strategic substitutes and complements.
Whether two markets are strategic complements or substitutes depends on the
sign of the cross derivative of the direct profit function with respect to
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The implication of Lemma 1 is that, absent other considerations, the
firms have congruent interests regarding the covariance in demand (or cost)
parameters; namely, both would prefer to have as low a covariance as is
feasible. The high profits that a firm accrues when it "succeeds™ (gets aH)
and his rival fails (gets aL) more than makes up for the low profits when he
fails and the rival succeeds relative to the profits he gets when both
succeed or both fail together. If both firms were completely ignorant as to
which technologies were more likely, ex ante, to succeed, then they would be
indifferent as to who enters first; the latter entrant would innovate as
much as possible (i.e., choose the technology with the lowest covariance)
relative to the first. (Note, however, that both prefer sequential entry to
simultanecus entry if the simultaneity impedes the firms’ ability to
knowingly differentiate themselves from each other.)

Now suppose that due to his successful operations in the x market, firm
A has better information or expertise that allows him to put higher
probability of success on some locations w, than others. Firm B, on the
other hand, views all product locations as equally likely to succeed.
When B has inferior information it may be in his interest to wait until A
has chosen a position to choose his own. A's product choice reveals

valuable information about the market to B. Roughly speaking, if B's

the firms’ outputs; in our notation:
2 A
d'n (x,y,,¥5)/dy,dyg,

while (5) is the cross derivative of the reduced-form profit function with
respect to the cost parameters. The Bulow-Geanokoplos-Klemperer concept
describes the way reaction curves shift for a given set of parameters,
whereas (4) and (5) summarize the effect on profits the of change in the
actual equilibrium when parameters change. These are conceptually quite
different effects and the two need not take the same sign.
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objective were to maximize the probability of success, he would want to
observe A’'s choice and then imitate it. However, by imitating A’s product
(or cost) technology, B also maximizes the covariance between his likelihood
of success and his rival's, which lowers his expected profits. Thus, his
optimal product choice involves a tradeoff between the advantages of
imitation (higher probability of success) and the advantages of innovation
(lower correlation of success rates).

Suppose A chooses location wj. What information does this reveal?
Suppose the important features of the product can be measured on an ordinal
scale--for example, an ice cream product may be ranked on how much butterfat
it contains; a computer may be judged on how fast it is and how user-
friendly it is. In some cases the characteristics themselves are clearly
desirable but involve tradeoffs (a faster or more user friendly computer is
more costly to build); in other cases the optimal level of the trait itself
(such as sweetness) may be in question. In any case, A's choice locates its
product in characteristic space, and we assume that products that are
"closer" to A's choice are more highly correlated with its success, and that
the closer is i to j in this product space, the closer is Pi to Pj' More

formally, we assume a function P(w) with the properties

(A.1) 3 a unique w such that w = argmax P(w)

(A.2) P(w + k) = P(w - k) for k < one-half the circumference of the
circle.

(A.3) dP(w)/d(|w - w|) = 0 for |w, - wjl < one-half the

circumference of the circle.

(A.4) sz(w)/d(lw - Glz) < 0 for iwi - wj| < one-half the
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circumference of the circle.
A.1-A.4 mean that the function P(w) has a unique maximum at w, and is
symmetric, decreasing, and concave around w. Let P = P(;).
We specify the covariance function as follows. Without loss of

generality, let ws < w If a(wi,wj) is the covariance in the joint

i

distribution of a; and aj, then

(A.5) da(wi,wj)/d(wj) < 0,

(A.6) dza(wi,wj)/d(wj)2 > 0.

In other words, as the locations get farther apart the covariance in
success rates decreases at a decreasing rate.

We assume that B knows the functions P(w) and a(wi,wj), but not the
location of w. B's prior on the location of w is uniform. Thus, if A is
expected to choose a product location with a high probability of success,
B's posterior after observing A’'s choice will assign a higher probability of

success to products located "close" to w,.

A
Now suppose that given A’s location W the location that maximizes B’s
expected probability of success is also V- Then B's optimal location
choice, if he observes A’s choice is
B, H H B, L L
mau‘:aA-B (PBPA + aAB)r (aA,aB) + [(1 - PB)(l - PA) + aAB]n (AA,AB)
B, H L B, L H

+ (B, (1 - By - o, )0 () ar) + [B(L - Pk) - o, 7t (aran),

given that P Thus, B's optimal location decision must satisfy

B~ Pploap)-



15

Asz + [PA(NB(ai,ag) - IB(ai,a
B, L L
- % (aA,aB)) ] (dPB/dﬂAB)

L H)

L a
B A’"B

B .
)) + (1 - P )(n(a;

= 2.8 4 [PAAwB(ai,-) + (1 - PA)AwB(ai,-)](dPB/daAB) - 0.

Thus, B's optimal location, given B's estimate of PA’ satisfies

(6) 4Py (o%,)/do, o = -a°xP/[B,an" (el +) + (1 - Boax"(a), )],

where the numerator is the marginal value to B of decreasing the covariance,
and the denominator is the expected marginal value to B of increasing his

probability of success. Call the correlation that satisfies (6), UE'

The solution is illustrated in Figure 1.
[FIGURE 1 ABOUT HERE]

Let ¢ be the highest correlation achievable--that is, it is the correlation

if both firms locate together. C1 is B's opportunity frontier in this space

when B locates at Wy A.1-A.6 determine the increasing concave shape of the

frontier. B's isoprofit curves are linear, with profit increasing to the
northwest. Thus, B’s optimal location results in (P¥%, aﬁ) when A locates

at w, .
A

Now consider A's decision problem if A enters first. A must choose PA

to maxinmize

7) (PP, + aAB)wA(ai,ag) FLA-POA-P) +0 A k
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A, H L A, L H
+ (PA(I - PB) - aAB)r (aA,aB) + (PB(l - PA) - UABI (aA,aB),
keeping in mind that PB - PB(PA) via (6). Thus, PX solves
A, H H A, L L A, H L A, L H
[PAx (aA,aB) - (1 - PA)K (aA,aB) - PAX (aA,aB) + (1 - PA)x (aA,aA)]
A, H H A L L A, H L A, L H
+ PBw (aA,aB) - (1 - PB)w (aA,aB) + (1 - PB)x (aA,aB - PBw (aA,aB)

(8) = [PXAKA(aﬁ,-) + (1 - PX)AKA(ak,-)](dPB(PX)/dPA)

+ [PB(PX)AWA(-,ag) + (1 - PB(PX))AwA(-,A§)1 -0,

where the first term in brackets is negative and the second is positive.
The first term is the loss that A incurs if increasing PA also increases PB
at the margin by dPB/dPA; the second term is the direct benefit to A of
increasing his probability of success.

In the region at and around ?, dPB/dPA > 0. To see this, note that PB
is really a random variable. By (6) and A.1-A.6, B's positioning strategy
once A enters 1s to choose a distance Aw (determined by o) from A, which is
independent of A's location. However, B could locate Aw to the "right" or
"left"” of A in product space. Assume B chooses left or right with
probability 0.5 each. Then if A.4 holds with strict inequality, B's
expected probability of success falls as A moves small distances away from
P. Thus, in this region, dEPB/dPA < 0 and A will choose an interior
solution at which PA < P. An interesting result, then, is that when A.4
holds with strict inequality, A will choose a location that he knows does

not maximize his probability of success, in order to decrease B's

probability of success. Of course, B knows that this is A's optimal
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strategy, and because B knows the functions P(+*) and o(+) B even knows what
A's probability of success is at Wy Nevertheless, since B's prior is
uniform over the cirecle and the function P(s+) is symmetric and concave, the
location that maximizes B’s expected probability of success is exactly Wy
Thus, the strategies in (6) and (8) are consistent.

If A.4 holds with equality then locating at w will maximize A's
profits. 1In order to simplify the analysis we will assume this to be the
case for the remainder of the paper.

Now suppose that B moves first. Since B has no information about the
relative desirability of the locations, B can be assumed to choose at random
according to a uniform distribution on the circle. Let B's choice be Vg~
What will be A's optimal location in response? A's tradeoff is to move
close to w (to maximize PA), and also move away from wB (to minimize UAB)'
Thus, given Wpo OXB solves

[PBAHA(-,ag) + (1 - PB)AwA(-,ag)]dPA(aKB)/daAB + 228 20,

for an interior solution. Thus, UXB must satisfy

2.A A H A L
* - - L] - L
(9) dPA(a E)/da B A™n / [PBAr ( ,aB) + (1 PB)AK ( ,aB)],
where the right side is a constant. Figure 2 illustrates Condition (9).

[FIGURE 2 ABOUT HERE]

A's opportunity frontier depends on B's location, which is random. If

by his good fortune B locates at w then A's opportunity set is denoted C2.
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If B locates at LIE with P(wl) < f, then A's frontier will look like C3. It

is downward sloping over the region in product space in which A can move
away from Vg and toward w. Beyond w there is a positive tradeoff between P

and 0. Since an optimum will never be located in the negatively sloped

region, it is represented in broken lines. The solid-line frontiers that

are higher to the northwest correspond to lower probability of success
locations for B.

Let —AnA/PBwA(-,ag) + (1 - PB)AxA(-,aE) = K. Hence, A’s isoprofit
curves are linear with slope K. For some range of locations for B with low
probability of success, A may be at the corner solution at which P = P.
(dP/do need not be 0 at ?.) As B locates closer to the optimal product, A
will choose an interior solution. Thus, there will be a locus of tangencies
characterizing A's optimal location choice such as L.

In equilibrium, the presence of B induces A to sacrifice some
probability of success in order to differentiate himself from his rival, if
his rival chooses a product location that is sufficiently close to w. It is
interesting that, at the margin, the higher the probability that B’s product

succeeds, the lower the probability of A’'s success, and this is by A's

choice.

A

Denote the optimal correlation for A if B chooses w to be Ty

Thus,

A

Comparing Figures 1 and 2, a§ may be greater or less than Ty

although it appears likely, we cannot unambiguously claim that the ex ante
expected value of the correlation chosen by A if B enters first will be less
than ag, the correlation B will choose if A enters first.

On the other hand, one can conclude that the extremes on the low (or

negative) end of the covariance are likely to have resulted from the
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incumbent entering after the new firm. Thus, in markets with highly
differentiated products, it is likely that previous incumbents in related
products were late rather than early entrants.

Additionally, we can conclude the following:

Proposition 1: Assume that A.4 holds with equality. Then the expected
probability of success for an incumbent is higher when he is the first
rather than second entrant; the expected probability of success for a
newcomer is higher if he is the second rather than first entrant.
Proof: By A.4, when the incumbent enters first he chooses ;, at which the
probability of success is P. When he enters second he faces the tradeoff
given by (9), illustrated in figure 2. Since B's entry decision is uniform
on the product circle, there will certainly be a set of positive probability
on the product circle such that, if B locates there, A will locate strictly
away from w. Thus, A's expected probability of success for A is certainly
less than P.

For B, when B enters first he chooses a location blindly. His expected
probability of success is simply the expected probability of success over

the entire product space. When he enters second he will, on average, locate

closer to w, by (6). Thus, the result holds by A.1 and A.3. Q.E.D.

We now ask whether the firms would prefer to enter first or last.
Consider first firm A. The advantage to firm A of moving last is that by
doing so B 1s forced to choose a location in ignorance. The disadvantage is
that by going first, B may, by chance, enter near the optimal location and

"stake it out"” for himself. B's entry near w does not preclude A from
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entering at w also, but B‘s presence there will render it no longer profit
maximizing for A to do so -- the correlation with B’'s product will be higher
than desirable to A. By entering first, A insures his position at or near
w, and insures that B will locate some distance away.

Thus, whether the incumbent prefers to enter first or last depends in
part on how likely it is that B will randomly locate at a near-optimal
position in product space.

Firm B faces a similar tradeoff. By entering first he enters blindly,
but has some chance of locating near the optimal product. If he waits for A
to enter he learns which products are more likely to succeed, but A will
have already staked out the best product. Once again, the intuition is that
it is more likely that B will want to enter last if the probability of
blindly locating near the optimal product is low.

As the discussion suggests, the tradeoff could tip either way for each
firm -- it might be optimal for either or both firms to enter first if the
stakeout effect is important. However, intuitively one would expect that as
A's informational advantage becomes greater, it becomes more likely that
both firms would prefer to enter second.

We formalize this notion as follows. Let the closed interval [wl,w2

be a strict subset of the product circle such that for all w € [w P(w)

1'¥2 1
> 0, and for all w ¢ [wl'WQ}’ P(w) = 0. That is, the interval contains all
locations that have positive probability of success. Now hold constant the
function P(o) over this domain. Then we say that information is more
valuable as the size of the circle grows, helding constant the size of

[w This leads to the following intuitive result:

1'%l
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Proposition 2: For sufficiently valuable information, both firms prefer to
enter second rather than first.

Proof: See Appendix A.

Because we are interested in new markets here, the spirit of this paper
is that A's proprietary information is of great potential wvalue. That is,
left to guess on his own, we think it is reasonable to expect that in a new
market B is likely to choose a product mix with very low probability eof
success. We will assume that by their very nature, new markets are
characterized by great uncertainty about the product mix that consumers will
find desirable. Thus, for the remainder of the paper we will assume that by
definition of a new market, information is sufficiently valuable that, by

Proposition 2, both firms prefer to enter last,.

I1TI. The Timing Game

Our analysis thus far indicates that, when the informational asymmetry
is great both firms would prefer to enter the new market second rather than
first, but the payoffs to doing so differ between the firms. Both firms
would like to be able to credibly "threaten" the other to wait him out.
Intuitively, one would expect that the firm that bears the least cost in
waiting, and/or has the most to lose in entering first, would be able to
make the more credible threat to wait until the other has entered, and would
be the firm to succeed in entering last. We formalize that intuition here
by modeling the players' choice of entry time as a game in continuous time.

We will assume that the firms face an infinite horizon over which they

would enter, and have discount rate r. They choose their entry time
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noncooperatively, but each can instantaneously observe the other’'s action.
Once a firm enters it locates and produces according to the profit
maximizing strategies derived in the previous section. That is, we assume
that each firm locates optimally in product space conditional on entry.

In order to describe the payoffs it will be convenient to have some
notation that keeps track of the status of entry into the new market. Let E
denote entry, N denote no entry. Then (i,j), i,j € (E,N} describes the
state in which firm A is in state i (has or has not entered), and firm B is
in state j. If i and j = E (that is, both have entered) we must keep track
of the order in which they entered. Then (E,E;k), k = A,B,T will denote the
case in which both firms have entered and firm k entered last ("won" the
game). If the firms entered simultaneously, then k = T denotes a tie.

Using this notatioen, rA(i,j;k) will denote firm A’'s (maximum) ex ante
expected flow profits in the state described by (i,j;k), given the optimal
locations in that state as derived in Section 2. For firm A the expectation
is taken over the a’s, given the actual probabilities of success and
correlation at the two locations. ﬂB(E,E}A) is B’s expected profit given
his prior over the locations and (9); rB(E,E;B) is B's expected profit given
his prior over the locations and his expectation of the value of information
that will be revealed by A’s entry (as determined by (8)). For what follows

we note the following:

Lemma 2:
(10) xB(E E:B) > xD(E.N) = 0
and

(11) xB(E,E:A) > nD(N,N) = 0
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Proof: Both (10) and (1l1) follow directly from the assumption that aH > aL

> ky and Cournot competition. Q.E.D.

Additionally, we assume

(A.7) AEEA) > NN E)
and
(A.8) r > 0.

By (A.7), the incumbent would prefer to enter the new market once the
rival is in there (but before learning whether or not he is successful)
rather than not entering at all. This is the only interesting case for the
model. The idea is that the two markets are sufficiently related in demand
that if B enters the new market, the incumbent is threatened in his own
market because success by the newcomer would be very costly. This makes it
worthwhile for the incumbent to compete in the new market. (Of course, it
is certainly not necessary that the two markets even be related for A.7 to
hold.)

Assumption A.8 implies that it is optimal to enter immediately, rather
than later, once the rival has entered.

A formal model of the order of entry in continuous time requires that
we define strategies that specify each player i's action at each time t,
including times after the rival’s entry if i has not yet entered (that is,
off the equilibrium path) for each possible previous entry history of the
rival. In addition, issues arise in the continuous time game that do not
arise in the discrete time analog. For example, one must formalize the
continuous time meaning of entry "immediately after but not simultaneous to”

the opponent.
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These difficulties are not intractable (see, especially, Simon and
Stinchcombe (1989) and Fudenberg and Tirole (1985)). However, we are able
to simplify the game significantly without affecting its richness. We
assume that, once one firm as entered, the rival follows immediately. That
is, the formal game that we will model ends once one firm enters. This
simplifies the game because it restricts the possible game histories to one-
-the history in which no firm has entered. No other histories are feasible
since, if one firm has entered, the game is over. Thus, the firms'
strategies need only specify what each firm will do at each time t € [0,=)
if neither has entered before t,

The interesting part of the game is in determining the timing of first
entry and, certainly, in equilibrium, the second entrant will follow
immediately, by Lemma 2, A.7 and A.8. Our modification of the formal
structure of the game retains the interesting strategic interaction, and
does not affect the equilibrium outcome, but significantly simplifies the
analysis.

We define a history at time t as the interval [0,t), during which no
entry has occurred. A subgame at any time t (before which no entry has
occurred) is the interval [t,=).

There are four possible play paths:

1. No entry ever.

2. A enters at some finite time t = O.

3. B enters at some finite time t = 0.

4. Both A and B enter simultaneouslyiat some finite time t = 0.

At any time t each player can choose from only two possible actions:

enter (1) or do not enter (0). A (pure) strategy for player 1 is an index
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i

i +
function Il(t), I i+ -+ {0,1), where t € 8 is the current time, before

which no entry has occurred. We require that strategies satisfy

(C.1) Il(t) must be continuous from the right with respect to time.

" Condition (C.1) means that the "first time" of entry is well defined in
the continuum for any strategy, which will be important in the proof of
Propositions 3 and 4. Condition (C.l) is analogous to Condition F3 in Simon
and Stinchcombe requiring right-continuity with respect to histories. Our
simplification reduces possible history types to one, and as a result
continuity with respect to time is equivalent to continuity with respect to
histories, but we are spared the task of defining a metric over histories.
In addition, the problems that can arise when (C.l) is violated, in which
well-defined strategies do not uniquely determine game outcomes, are not an
issue in the simplified game because (for example) strategies of the type
"enter at each time t before which my rival has entered" do not arise.

One market structure of particular interest in this setting is the case

in which

(12) 2 (E EB) < x (N N).

We view this to be an important case for the following reasons. In our
model the presence of a potential entrant is known and certain. One might
ask: How did the market get into this situation? That is, if entry occurs
in equilibrium at t = O, as we have shown, how did the market arrive at a

time before which no entry had occurred in y and A was an unthreatened
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monopolist long enough to develop its expertise? One answer is that, for
some time before "t = 0," the presence of a rival was not certain. During
that time, firm A might imagine that its entry into y would reveal the
presence of a market that others had not yet discovered. In such a
situation, firm A faced the real choice of remaining a monopolist in x with
no rival or presence in y, and operating in y but risking imitation in the
new market, once revealed. In such a situation, firm A would certainly not
enter the new market if (12) held and the firm put a sufficiently high
probability on imitation once it entered. Conversely, if (12) failed, firm
A might enter the new market even though doing so invited entry, rather than
wait for others to discover it and enter first.

We do not model this larger game but only note that this story appears
to us a compelling reason to consider the case in which (12) holds. We can

immediately state the following result:

Proposition 3: Assume (12). Then the pair of strategies

r

™)y =0 Vite [0,
(52) 1

) =1 Vvite [0

is the only subgame perfect Nash equilibrium in pure strategies to the
timing game. That is, firm B will enter immediately with probability one,
(and A will follow immediately thereafter).

Proof: The proof is subsumed in the proof of Proposition 4.



27
The effect of (12) 1s precisely what one would intuitively expect.
When (12) holds, firm A's implicit "threat" to wait until firm B enters or
not enter at all is completely credible. Indeed, it is a dominant strategy
for firm A to wait until firm B enters.

Now suppose that (12) does not hold. That is, assume

(13) AP(E E:B) > 2 (N N).

This is the most interesting case form a theoretical standpoint, since
in this case both firms would prefer late entry over early entry, but both
prefer early entry to none at all. Violation of (12) implies that the new
market is so attractive and/or competition in the new market has
sufficiently small effect on the incumbent’s market, that A prefers to
compete in y as an early entrant to remaining a monopolist in x with no

competition or presence in y. We can now show the following result:

Proposition 4: Assume (13) holds. Then the pair of strategies

)y =0 Vvite ([0,
(81) 4

By =1 viee [0,

and the pair
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™)y =1 Ve [0«
(s2) 1

By -0 vee (0w

are the only subgame perfect Nash equilibria in pure strategies to the
timing game.

Before proceeding to the proof, let us comment on the proposition. If
strategies (S2) are played, then A will enter the market immediately, the
formal game ends, and B follows right away. If (S1) are played, B enters
immediately and A follows. In either case, there is no strategic waiting
(which, socially, would be pure deadweight loss). More important, both are
equilibria even if one firm has a much stronger incentive to hold out than
the other. For example, in our setting it may be much more costly for B to
wait than for A, because B gives up the entire flow profits for the duration
of the wait, but A gives up only the net profits since he continues to
operate in X while waiting. Intuitively, one might be suspect of an
equilibrium concept in which such considerations are irrelevant. More
intuitively appealing would be an equilibrium concept that allows us to
predict which firm will enter first, depending on their relative costs and
benefits of waiting. Such considerations will lead us to a refinement of
equilibrium concept that will allow us to make such predictions.

For the proof of Propositions 3 and 4 we need to specify formally what
the players’ payoffs are in a "tie." The natural interpretation of a tie is

that each player i chooses his location without observing firm j’'s choice,
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and knowing that firm j will choose without first observing firm i's
location. Since firm A has private information about the probability of
success at each location, the appropriate equilibrium concept is Bayesian-
Nash. However, an exhaustive analysis of this simultaneous-entry game
would, in our opinion, be a digression here. Rather, we assume that, if the
firms enter simultaneously, they adopt the strategy they would choose if
they entered first. That is, A locates at w, and B randomizes according to
the uniform distribution.

It is easily verified that these strategies do form a Bayesian
equilibrium to the simultaneous entry game. Although there are many other
equilibria in this game, others would require some sort of communication to
implement. Thus, we view our focus on these particular strategles as
natural, since they require no communication, and justifiable since they
form a Bayesian equilibrium.

Then, by Proposition 2,

(14) *L(E.E:T) < #(E.E:1).

Proof of Proposition 4: First we show that (S1) and (S2) are subgame
perfect equilibria. Then we show that no other subgame perfect equilibria

exist in pure strategies.

Equilibria
If i's (i = A or B) strategy is "not enter" at every time t (Il(t) = ()
then j's (j = A,B, j » i) best response at time C¢ is to choose the first

entry time r that maximizes
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] -rt b D 4 =
Jo @ me T rae + ff = (E,E;i)e " dt.

By (13) and Lemma 2, nJ(N,N) < 9 (E,E;i) for both j = A,B. Thus, r* = 0.
After any history (at any time s > 0), if i's strategy is to not enter
at every time t = s, then j's best response is to choose the first entry

time 7 to maximize
ST me T + [0 (BB e R,

Again, by (13) and Lemma 2, r* = t.
Thus, strategy IJ(t) = t YVt is the unique best response to

Il(t) = 0 vt, and by the above arguments, it is also subgame perfect.

Uniqueness

Let L, = L(I'(t)) be the smallest t such that I'(t) = 1 for i = A,B.
By (C.1), L, is well defined, and L) - 1.
Then either
a. L, = L.; or
i b
b. (without loss of generality) Li < Lj'

Case (a): 1If, at Li’ player j enters, his payoff from then on is
> w)(E,E;T)e " at,

If he does not enter his payoff is
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: (B, E:j)e Ttat.

Since 7 (E,E;T) < #9(E,E;j) by (14), j can do better if IJ(Li) - 0. Thus,

(a) is not an equilibrium.

Case (b): First we show that if Li < Lj then Li = 0. Define Ki as the
time such that, if player i's strategy were to not enter (first) until Ki'
player j would be indifferent between entering at time t = 0 and waiting

until i has entered. That is, Ki solves

- K. ,
Jo P (BB e = [ P we T + [y wl (BB e,
i

By Proposition 2 (wj(E,E;i) < ﬁj(E,E;j))»
(15) K. >0.

If at t = 0 it is optimal for i that L.1 < Lj, then it must be the case that

L. = K.. Then i's optimal strategy at t = O is to choose r to maximize

J

J7 oAt mye e + fT xT(E,E;j)e "Cdr.

By (13) and Lemma 2, 7% = 0. thus, i's optimal strategy at t = 0 is to

5 . . . . .

The payoffs defined above reflect the idea that, in continuous time,
entry can occur sequentially, but at the "same instant in time." See Simon
and Stinchcombe for elaboration.
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enter immediately.
For any t such that 0 < t < L, - Kj, i's optimal strategy is to enter

]
immediately, by the same argument. For all t such that I..j - K, <t=L,,

J
i's optimal strategy is to wait, by definition of Kj and the stationarity of
the game,
Let Si - S(Ii(t)) be the next time i enters after Lj - Kj. Since
Ii(t) = 0 for Lj - Kj <t < Lj’ Si must be strictly greater than Lj. Now,

if it is optimal for j to enter at Lj < Si' then (by the same argument as

above), lj - Lj - Kj, which is a contradiction by (15). Q.E.D.

The reader will note that we have considered only pure strategies. In
Appendix B we show that there is a unique subgame perfect equilibrium in
behavior strategies. However, we do not find this equilibrium to be
intuitively compelling. In an equilibrium in behavior strategies, roughly
speaking, each firm’s instantaneous hazard rate of entry must be the one
that makes his opponent indifferent between entering now or waiting a short
time. If player 1 bears a very high cost of waiting, then player 2's
"probability" of entry would have to be very high in order for player 1 to
find it worthwhile to wait to see if player 2 enters. Conversely, if player
2 bears a low cost of entry then player l’s equilibrium entry probability
must be low to leave player 2 indifferent between entering and waiting.
Thus, two features of such an equilibrium are disturbing. First, each
player’s equilibrium strategy is a function only of the opponent’'s payoffs
rather than his own. Although neither player can do better by deviating, he
does no worse either, and it is difficult to motivate how the players would

reach such an equilibrium. Second, the equilibrium always has the feature
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that the player with the higher cost of waiting or lower value of winning
has a lower probability of entry. In other words, the behavior-strategies
equilibrium would predict that, on average, the player who can more credibly
threaten to wait out his rival, because his waiting costs are low or benefit
to winning is high, will enter first.

We view this as an artifact of the way randomized strategy equilibria
are calculated, rather than as a serious predictor of economic behavior.
Therefore, we reject the notion of equilibrium in behavior strategies in
favor of an attempt to choose between the pure strategies equilibria. Of
course, readers who find the notion of behavior strategies sufficiently
compelling that they are willing to accept the strong counter-intuitive
implications will reach conclusions about order of entry opposite to ours.
Put differently, any attempt to validate our theory empirically would
necessarily be testing the joint hypothesis that the theory presented in
Section II is correct, and that our refinement of pure strategies equilibria
is a better predictor of economic behavior than behavior strategies
equilibria.

We adopt the refinement known as "risk dominance." To motivate this
idea, consider the following thought experiment.

Suppose firm A expected the firms to play equilibrium S1. Firm A might
wonder if, indeed, firm B planned on playing that equilibrium. If in
reality firm B planned on playing S2, then firm A’s strategy would not be
optimal. So, to the extent that firm A thinks it possible that firm B will
play S2, firm A bears some risk. The risk is measured by what firm A would
lose by playing S1 when he could do better by playing S2 along with firm B.

Now suppose that firm A's return in S1 is so high that, even if firm A
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thought that firm B might play S2 with probability .9, firm A would still
prefer to take his chances and play S1. This would not only make it
sensible to expect firm A to play S1 but, if we think of the players as
forming Bayesian priors over the other’s behavior, it would also make it
rational for firm B to expect firm A to play S1. Of course, one must also
consider firm B’'s risk associated with S1. Harsanyi and Selten (1988)
developed a formal refinement algorithm, known as "risk dominance," that
allows us to choose between two equilibria precisely along the lines
described above. Although Harsanyi and Selten define the concept for games
in normal form, we adopt it in the most straightforward way for selecting
between two subgame perfect equilibria.

A formal definition of risk dominance is as follows:6

Consider two equilibria, a and 8. We must firs: define the resistance
of a against 8. Let Ai be the largest probability such that, if player j
played his B strategy with probability Ai and his a strategy with
probability (1 - Ai), then i would be indifferent between playing a or 8.
Define Aj analogously. Then the resistance of a against g is min(Ai,Aj) =
R(a,p).

We say that o risk-dominates 8 if R(a,8) > R(8,a).

Note that the payoff to firm A under S1 is

s A (E,E;B)e “tdt = »*(E,E:B) /r.

The payoff to B under S1 is

6'I'his definition follows Myerson (1991).
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S5 #°(E,E;:B)e " Cdt - x°(E,E;B)/r.
Similarly, the payoffs to firms A and B, respectively, under S2 are
(ﬁA(E,E;A)/r, WB(E,E;A)/I). Using these payoffs to calculate the resistance

it is straightforward to show:

Propogition 5: S1 risk-dominates S§2 (that is, the incumbent enters last) if

and only if

(B E:B) - 2t NLN) D (E,E:A)

(16) <
A E:A) - 0 (E,E;T)  °(E,E:B) - xP(E,E:T)

Proof: See Appendix A.

The denominator on the left side is the incremental gain to firm A of
winning relative to a tie; the numerator is the incremental value of being
in the market as a loser relative to no entry into the new market at all.
The terms on the right are the corresponding values for firm B, keeping in

mind that wB(N,N) = 0. Thus, Proposition 5 implies the following:

Corollary 5.1: Firm A is more likely to be the later entrant, ceteris

paribus:
a. The higher is the incremental value to firm A of later entry
relative to a tie;
b. the lower is the incremental value to firm A of being in the new

market as first entrant over being out of the market;

c. the lower is the incremental value to firm B of late entry over a
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tie;
d. the higher is the wvalue to firm B of being in the new market as a
first entrant.
We can identify a-d with the costs and benefits of late entry analyzed

in Section II. Rewriting (16), Sl risk dominates 82 iff

xB(E E:A) xB(E.E;B) - #°(E,E:T)

(17) >
A(EEB) - aNN)  #(E,E:A) - x°(E,E:T)

The two sides of expression (17) separate the two countervailing
effects we identified in Section II. First, firm A bears a lower waiting
cost than firm B in that the incremental profits of entry to firm A net out
the loss in profits in its original market, while firm B counts the entire
profit in Y as a gain. This is the "cannibalization" effect studied and
formalized by Kamien and Schwartz, Reinganum, Conner, and others. The
greater this effect is, the larger the left side of expression (17) will be,
and the more likely that S2 dominates, i.e., the incumbent will be the late
entrant. This result is consistent with the above-mentioned studies.

However, we also identify an additional benefit to late entry that may
favor late entry by firm B. If firm B is the later entrant, it can choose
product characteristics after learning from firm A's product choice. If
firm A is the late entrant, he learns nothing from firm B, but he prevents
firm B from profiting from firm A’'s expertise at firm A’'s expense.

How profitable it is for firm B, and how costly for firm A, for firm B
to enter second depends, then, on how important the learning effect is. To
understand the effect, consider two extremes.

Suppose each location on the circle has the same probability of success
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and that this is common knowledge. Then the value of going last is only to
choose the largest feasible covariance, and firms A and B would be
indifferent as to who was the later entrant on these grounds. Since the
chosen correlation would be the same regardless of which firm entered last,
and since (by Lemma 1) dn'/do = dx’/do, the right side of (17) would be
unity. In such éase, the cannibalization effect would dominate, and the
incumbent would enter second.

At the other extreme, suppose Pi = 0 at all we except one, w, at which
P=7P>0. In this case, firm A will always locate at w, regardless of
where firm B locates or the order of entry. If firm B enters first, or in a
tie, the probability is zero that it will locate at w. However, if firm B
enters second, it will imitate firm A exactly. Thus, WA(E,E;A) = xA(E,E;T),
but nB(E,E;B) - rB(E,E;T) > 0. Thus, the right side of (17) is zero, and S2
will risk dominate S1. In other words, the incumbent will enter first,

The discussion suggests that as information becomes more important, the
probability of the incumbent entering first increases. We cannot show this
to be everywhere true, but it is certainly true as information becomes

extremely valuable:

Proposition 6: As information becomes more valuable (in the sense defined

earlier) near the limit, the incumbent is more likely to be the first
entrant.

Proof: The proof follows from the observation that as information becomes
extremely valuable, wB(E,E;A) - 0, but IA(E,E;A) approaches a finite limit,
and the other terms in (l4) are unaffected. Q.E.D.

Finally, consider the effect of the correlation choice on the order of



38

entry. As an extreme, suppose that the probability of success increased as
one located closer to w, but success distributions were independent for the
two firms, regardless of location. If firm A had no superior information,
then we would again be in the world in which the only difference between the
firms’ entry incentives is that firm A would lose some profits in its
current market if it entered the new market. In this situation the firms
would again be indifferent as to which entered first, and indifferent
between simultaneous and sequential entry. Thus, the model suggests that
the cannibalization effect in itself has no implicaticns on order of entry.
The reason is that, although the incumbent has less incentive to enter the
new market than the rival, it has no reason to stay out if it knows entry is

inevitable.

IV. Conclusions

The model suggests a number of avenues for future research. A full
understanding of order of entry into new markets would require a taxonomy of
market conditions under which both firms would prefer early entry, both
would prefer late entry entry, and so forth. When both prefer early entry,
another game of timing emerges that may merit study. A full analysis of the
Bayesian game of simultaneous entry with one-sided incomplete information
may yield interesting results, Certainly, it would be important to know how
the presence of more than two firms affects the outcome. Of course, all
such studies would be enriched by continued progress in empirical research
that explicitly studies order of entry, incumbency effects, and success

rates in new markets.
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Appendix A

Proof of Proposition 2: As information gets extremely valuable the

probability that B will choose a location that has a positive probability of
success goes to zero when B enters first. When A enters first B will
certainly choose a location with positive probability of success, and that
probability of success is independent of the value of the information (since
we hold P(o) constant). Thus, as information gets more wvaluable, (using the

notation of Section III)
AP (E,E:A) ~ 0
B .
n (E,E;B) is unaffected

A (E,E;a) » «(E,N)

and

xA(E,E;B) is unaffected.

Clearly, under the assumption of Cournot competition

A(EN) > n*(E, E:B) for

xB(E,E;B) evaluated at w and

xA(E,N) evaluated arbitrarily close to w.

By Lemma 2

xD(E E:B) > 0. Q.E.D.
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Proof of Proposition 5: First we calculate the resistance of S1 against S2.
For firm A, we want to find the maximum probability X that B can put on

$2 such that A still (weakly) prefers to play S1. If B deviates to S2 with
probability XA, A's payoff if A plays Sl is

A A
B.1 (L/r)[Ax " (N,N) + (1 - X)=x (E,E;A)]
If A plays S2Z his payoff is

A A
B.2 (1/t)[(Ax (E,E;B) + (1 - A)x (E,E;T)]

Equating B.1 and B.2 and sclving for A

wA(E,E;A) - rA(E,E;T)
A =

P(E,E;8) - 2(E,E;T) + 2"(E,E;B) - nt(N,N)
For firm B we want to find the maximum probability vy that A can put on
deviating to S2 such that B still (weakly) prefers S1.
If B plays S1 his payoff is
B B
B.3 (1/x) [y= " (E,E;T) + (1 - v)n (E,E;4)]
If B plays S2 his payoff is

B4 (1/1) [yn2(E,E;B))

Equating B.3 and B.4 and solving for +:

2



NB(

LELA)

=3

TS TR B
n (E,E:A) + n (E.E;B) - m (E E;T)

The resistance of Sl against S2 is min{A,vy).

Similar calculations show that the resistance of S2 against S1 is

min(l - A, 1 - ).

Now if X < 5 then R(S1,52) = x and R(S2,81) = (1 - y). Thus, S1 risk

dominates $2 iff

B.5 A > 1 - v

If A > v then R(S1,S2) = v and R(52.81) = 1 - X and S1 risk dominates 52 iff
v > 1 - X, which is identical zo B 5.
Thus, Sl risk dominates S2 if

A . A -
m (E,E;A) - m {E E:T)

ﬂA(E,E;A) - ﬂA(E,E;T) + WA(E,E;B) - wA(N,N}

(B E:B) - nD(E.E:T)
>

ﬂB(E,E;A) + WB(E,E;B) - nB(E,E;T)

Since the numerator and denominator of both the left and right side terms

are positive by (13), (14), and Lemma 2. the result holds. Q.E.D.

L



Appendix B

We define a randomized strategy for player i to be a function
Fi: % - R such that the probability of entry before time t is F(t). We
require:

1. 1imtw4 F(t) < 1;

2. F(t) is right continuous.
At any time t, for player i to play a randomized strategy during the
interval [t,t + At] he must be indifferent between entering for sure at t
and waiting until t + At to enter. For this to be optimal at time zero,
player i must be indifferent between entering at t and waiting until t + At,
conditional on no entry before t. We first find the probability of entry
during At for player j that makes 1 indifferent between the two pure
strategies:

Let the probability that j enters during [t,t+At] be »Jat. If 1 enters

at t (which we will interpret to mean during At) then his payoff is
(3) (1/r)e To A Jaent (B, E;T) + (1 - AMan)at(E E; ).

If i waits At and then enters, his payoff is

-l’t[ At

(4) (1/rye T8 daent (B, E;1) + (1 - Alat)(xi (N, Myrac + 7 (B, E;j)e TAT.

Given At, ATAt must equate (3) and (4). Thus,



-rAt

R - e T2 L oetn, Mt

AjAt -

-rAt

AEE (L - e TAY 4 xl(EEjL) - #T(EE;T) - (N, N)aE

Now, to find Al(t) we divide by At and take the limit as At + 0. Thus,

using L'Hopital’s rule,
(5) Aty = (et EE ) - At /[N (E B L) - n (R ET)],

which is positive by Lemma 2, (3), and (l4) in the text. Notice that Ai(t)
is not a function of t.

By construction, Ai(t) - fi(t)/(l - Fi(t)), where fi is the derivative
of FI(t).

Now, it is well-known that the only function that satisfies (1), (2)
and (6) is F(t) = e-)‘lt (see Thompson, Ch. 4). Thus, during any period At
that the players randomize, the function describing the distribution must be
exponential, with parameter given by (5).

The pair of strategies Fi(t) =1 - e-A v form a subgame perfect

equilibrium because of the "no memory" feature of the exponential

distribution: for any times t and s,
pr(T < s) =pr(t < T <t + s|T > t).

Now we note that the probability that player i enters during any
i
interval [t,t + At] conditional on reaching t, is 1 - ex At, which is
increasing in 2'. The conditional probability of i entering during the

interval [t,t + At] exceeds the condition probability for j if and only if

Al > AJ; or



A (E,E;§) - n (N.N) (B E D) - SN
i ' < — :
*'(E,E;i) - # (E,E;T) #9(E,E;j) - x(E,E;:T)

Thus, i has a higher probability of entry than j if the value to i of
entering last (rather than trying) is higher than that for j, and if the

value to i of entering first relative to no entry is lower for i than for j-



