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Abstract

A single seller of an indivisible object wishes to sell the good to one
of many buyers. The seller has zero value for the good, the buyers have a
commonly known identical value of one. This paper attempts to determine
strategic environments which ensure the seller’s ability to exploit the
competitive behavior of the buyers to extract all the surplus in the game.
It is shown that in many simple dynamic games, there are subgame perfect
equilibria which involve the seller giving up the good for free. Even if the
seller has an informational advantage which allows him to keep bidders from
learning the bidding behavior of their opponents, there still exist (perfect
Bayesian) equilibria which involve a sale at the price of zero. However, in
this case, a simple refinement in the spirit of sequential equilibria can be
used to rule out such collusive behavior and to show that the unique
equilibrium outcome satisfying this refinement involve a price of one.



Modelling Competitive Behavior

Recent studies of strategic bargaining games have examined how two
agents reach an agreement on the price of a good. These games use aspects
such as impatience and abilities to make price offers as proxies for
strategic power. Intuition suggests that adding either one extra buyer or
one extra seller should be a way of introducing competitive pressures into
the trading environment. This paper analyzes a collection of simple many-
person bargaining games to illustrate that the modelling of competitive
forces in a strategic game is delicate matter. Games which appear to be
highly competitive support as subgame perfect equilibria, outcomes that
yield substantial surplus to the competitors.

The games examined in this paper all have a natural interpretation. A
single seller attempts to sell a single indivisible object to two or more
buyers. Buyers have a reservation value of one monetary unit for the
object, the seller’'s reservation value is zero. One's expectation is that a
seller in this situation should be able to take advantage of competitive
behavior on the part of his potential purchasers to gain all of the surplus.
The purpose of this paper is to see what non-cooperative game theory can say

about characterizing such competition.

1 .
The correct way to characterize the effects of the presence of more

than one buyer in sequential offer trading games is an unresolved issue.
Bargaining game theory illustrates that the determination of questions such
as who gets to make offers, how quickly can offers be made, who is more
impatient, who gets to make the first and the last offers all may have
important implications for the outcome of the game. It may be that these
exogenous features of the game structure are what generate surplus for a
seller rather than the opportunity to sell to many buyers. The games
examined here are infinite horizon games where only buyers make ‘offers’.
Time costs will matter but emphasis will be placed on games where the moves
can be made relatively rapidly. The study of such restrictive structures is
intended to allow us to isolate the effect the presence of another
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Section One examines some simple many-agent bargaining games and shows
by example that it is not always possible for a seller to exploit
competitive behavior to gain in a trading game. The examples show that
predicting the outcomes of strategic pricing behavior may be difficult. It
is often suggested that the equilibrium outcome of a first price auction in
the above framework with one seller and many buyers would involve a price of
one. This paper indicates that it is important to pay attention to the
explicit structure of the auction game. In particular, if a seller cannot
commit to keeping the object if he does not get a sale in the current
period, buyers may engage in implicitly collusive equilibrium behavior in
which they split the surplus.

The games in Section One confirm Stigler’s claim that "...collusion
will always be more effective against buyers {in my model, sellers] who
report correctly and fully the prices tendered to them (Stigler, 1964)."
What, then, of the case in which the seller is successful in keeping past
bids private? Section Two examines more closely a condition which may allow
the seller to take advantage of competitive behavior. An implicitly
collusive behavior arose in some games because bidders conditioned future
bids on their opponents’ past behavior. This conditioning and the existence
of a high price equilibrium ensured the presence of a credible threat to
support a low price equilibrium. Section Two asks whether a seller who is
able to restrict the ability of his potential buyers from observing each

others’ bids can ensure a high price equilibrium. Such a game, with its

interested buyer has on a seller’s ability to get a high price for his good.

2 See, for example, Milgrom and Weber (1982), and Milgrom (1985).



elaborate and asymmetric information structure is quite complicated. If
attention is limited to perfect Bayesian equilibria, it is shown that even
in this case the collusive outcome cannot be ruled out. However, Theorem Two
shows that if a plausible (and simple) belief restriction which rules out
beliefs of correlated deviations is also imposed, then the unique
equilibrium outcome is the competitive outcome.

The result sheds some light on the importance of the differences
between perfect Bayesian equilibrium and sequential equilibrium. More
importantly, it suggests that a seller may be more likely to gain surplus
from competition if he can keep private the buyers’ bidding behavior. Thus
a truly competitive situation may occur not, as one might think, in an
auction pit with many buyers vigorously shouting out prices, but instead in
a quiet office where the seller can privately monitor competing offers from
buyers and prevent them from observing each other’s bids. Such a result has
disturbing implications for the many markets in which the open exchange of

price offers and other transactions information are prized.
Section One: Non-Cooperative Collusive Behavior

Since the work of Bertrand, it has been common to assume that price-
setting competition will compete away profits. The intuition is compelling;
if the competing buyers were enjoying positive profits thgre would always be
an incentive to overbid one’s competitor slightly in order to gain more
trade. This analysis ignores the role of the strategic environment. In a
dynamic context, other intuitive reasoning may be equally persuasive.

Consider the simple pricing game, G There are two buyers and one
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seller.3 Buyer one offers a price, Py, in the first period which the seller
can accept and gain utility P, or reject. If he rejects, the game continues
to the next period where buyer two offers a price Py If the seller
accepts, he gains utility 5p2.4 If the seller rejects Py buyer one offers
again, payoffs are discounted by 52 and so on for potentially an infinite
number of periods. The game may be seen to confer an advantage to the first
buyer but one might expect that, if offers could be made arbitrarily
quickly, this advantage would become arbitrarily small. Theorem One shows

the expectation to be misguided.

Theorem One: The unique subgame perfect equilibrium outcome to G1 yields the
object to buyer one in the first period at a price of zero for any § €
(0,1).

Proof: Let p* > 0 be the supremum of all subgame perfect equilibrium price

offers after any history. Suppose ht is a history in an equilibrium which

-1
prescribes the offer of p* by buyer i in period t. Suppose buyer i offered
p' € (ép*,p*) instead. Since the best a seller can do if he rejects is no
more than 6p*, he must accept p'. But that contradicts the definition of
p*. Therefore p* = 0 and the seller must accept any price greater than zero
in any period. It is straightforward to show that an offer of zero in every

period and acceptance of zero by the seller is, in fact, ‘a subgame perfect

equilibrium. ||

For simplicity, the games are described with only two bidders. THe
arguments all hold (potentially with higher values of §) with many bidders.

Buyer two gains 6(l-p2). Buyer one gains nothing.



The strategic enviromment of G, is not competitive at all. For any

1
positive surplus the seller might expect to gain in this game, the current
bidder could offer somewhat less and force the seller to accept. This
ability is commonly known at every stage of negotiation and, thus, forces
the seller to yield at any stage.

The proof of Theorem One suggests that the result may be due to the
specific structure -- the separation of the buyers in the bidding stages
turns out to confer a striking strategic advantage. Consider, instead,
games G2 and G3 which are more in the spirit of Bertrand pricing games. In
G2, two buyers offer simultaneously in each period and the seller chooses
which price if any to accept. If he rejects them both, the process is

repeated in the next period with payoffs discounted, and so on for an

infinite number of periods. Game G, is like G, except that within a period

3 2
buyers offer sequentially -- buyer one offers, buyer two observes the offer
and then makes his offer and the seller chooses. The process is repeated if

he rejects.

These games are dynamic versions of a Bertrand game where the seller
can never commit to walking away if a sale does not occur and cannot commit
to a tie-breaking rule in the case in which bids are equal. It is easy to
show that a price of one and sale to either buyer in the first period can be
supported by a subgame perfect equilibrium. The proof re%ies on precisely
the Bertrand intuition.

However, the explanation for dramatically different behavior can be as
compelling and is familiar from the large literature on repeated games.
Buyers are aware that competition with each other is both rational and self-

defeating. This awareness, in a dynamic game, can generate tacit collusion.



Buyers offer a low (zero) price in every period and the seller gives the
good up to either buyer with equal probability. An attempt by one to outbid
the other by offering a higher price signals to both the seller and the
other buyer the onset of a price war. If the seller is patient enough (if §
> .5 with two bidders), he will wait until the next period to reap the
benefits of the competition. The putative attempt by a buyer to increase
his surplus would fail. The threat of competition acts as sufficient
discipline to force buyers to ‘'collude’ and offer a profit-generating

price.

It might be objected that the collusive equilibria rely heavily on the
seller’s use of mixed strategies. Aumman’s(1987) interpretation of mixed
strategies as representations of the buyers’ uncertainty about which of them
the seller will decide to grant the good to seems equally valid and perhaps
preferable. The seller might indeed follow a pure strategy but, since at a
price of zero he is indifferent, neither buyer may know who will win the
good but places aqual probability on the likelihood that each will.

This type of implicit collusion supports a price of zero in both games
G2 and G3 and, in fact, can be shown to apply to a large class of dynamic
bidding games. It is true, of course, that for a fixed §, there exists a
large enough number, N(§), such that if there are more than N(§) buyers,

collusive equilibria fail to survive. While this fact conforms, perhaps,

with our intuition that more buyers means more competition, the size of N(§)

Although the games examined here are dynamic games rather than
repeated games, the collusive equilibria have much the same flavor as the
equilibria underlying the Folk Theorem in repeated games (Fudenberg and
Maskin(1986)). This type of equilibrium behavior was first analyzed in
dynamic games of incomplete information by Gul (1986) and Ausubel and
Deneckere (1986). Vincent (1987) shows that the results extend to a large
class of dynamic games.



is enormous. At an annual interest rate of 10%, even if offers could only be
made daily, N(§) = 3561. One may be almost enough for monopoly, but it would

be a surprise if more than 3000 buyers is needed for competition.

Section Two: Silent Bid Auction Games

Section One indicates that in the context of an infinite horizon game,
the ability of a seller to count on his many potential purchasers to compete
away each other’s surplus is uncertain. One interpretation of the result
given its restriction to the particular class of games is that some
additional aspect of strategic power is required by the seller in order to
take advantage of his position. One such source of power lies in the
technology of commitment in the game. An ability to force players to wait a
significant (or significantly costly) length of time before rebidding can be
to the seller’s advantage. This ability would be reflected in a low §. A

simple example is setting § equal to zero in G This yields the one-shot

9
Bertrand game in which it is well-known that the unique equilibrium is at a
price of one. Another source of strategic power which is obvious from
bargaining theory is the ability to make offers. Allowing the seller to
make all the offers clearly is sufficient to grant him all the surplus. Of

course, this is true even if he faced only one buyer.

Strategic power could also be granted by giving the seller an

6 It has been conjectured that stock prices at the Chicago Board of

Trade may obtain systematically higher prices than the New York Stock
Exchange for reasons similar to the above. In the NYSE, pre-established
time and size priority rules determine who wins a trade in the event of a
tie. 1In the Board of Trade, no such rule exists and, the suggestion is,
bidders would rather tie each other and take a chance at trade at a lower
price rather than to engage in a self-defeating bidding war. I am grateful
to Sandy Grossman for bringing this remark to my attention.

9



informational advantage. Note that in the games examined above, the
informational assumptions were very strong. At the close of each stage, all
players knew the entire history up to that stage. If the seller was the
only player able to observe the behavior of all bidders the particular type
of history contingent strategies might no longer be supportable. Such a
game, of course, has a much more complicated information structure and, in
general, a more stringent equilibrium refinement than subgame perfection is
required.

The rest of this section examines a specific example of a game where
the seller enjoys some informational advantage about the history of the
game. Game G2 with two buyers is altered so that a buyer only observes his
own past price offers. At any stage of the game after the first period, he
must form conjectures about his opponent’s bidding behavior. The seller, on
the other hand, observes the complete history of the game. The game can be
interpreted as a sealed bid auction game where a seller always has the
option of refusing to sell in a given period. If he does so, he must put it
up for sale in the next period. However, he is able to keep past bids
secret. The following analysis shows that such a structure also allows him
to extract all the surplus from trade. Silent bid auctions induce
competitive behavior.

A silent bid auction game can be created by consider%ng the game G2
with one seller and two buyers. Change the information structure of the
game so that while the seller still observes the complete history of the
game, buyers only observe their own price offers and the fact that the

seller has rejected. A buyer’s strategy at time t is a price in the

interval, [0,1]. No buyer observes his rival’s price offer but knows his
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own history of offers. The seller observes all offers. Since the buyers’
strategy sets are convex, we restrict attention to the case in which the

buyers choose only pure strategies; the seller may mix. Thus, in period O,

gi € (0,1], and subsequently,

Ca.

gl xJ(t-1) to [0,1], j = 1,2.

where XJ(C) denotes the space of all possible histories of price offers by

bj to time t. A buyer’'s strategy is an infinite sequence of functions

g - (gl.elgd... ), 1=1.2.
Note that each buyer bj observes only his own price offers and rejections by
the seller. At any stage t, his information set is characterized by Xi(t—l),
that is, the space of all possible price offers by his opponent to period t
- 1. When a perfect Bayesian equilibrium is characterized, it will be
necessary to specify beliefs over this set: each buyer must form conjectures

about his opponent’s behavior. Define ml(u(t-l)), to be b.,’'s probability

1

distribution over b,’s price offers to period t - 1 given that bl has

2
offered a sequence of prices u(t-l).7 A generic strategy of the seller is
the same as in G2 -- that is, it is a sequence of distributions over S =
{0,1,2}, gs = (gso,gsl,...) each conditional on the history of the game up

to the current period.
Let a sequence of pairs of price offers to period t be denoted by x(t)
= (u(t),v(t)) and let u(t) = (u(t-l),ut), that is, subscripts denote a

single period offer. The term ut(gl) denotes a sequence of price offers by

Restricting attention to pure strategies of bugers ensures that along
the equilibrium path, the probability distributions m” are point
distributions. Furthermore, given a point distribution belief, the expected
future price offers of an opponent are deterministic.

11



bl given that he has offered a sequence of prices, u(t), and follows
strategy gl henceforth. Thus, uo(gl) denotes the full path of price offers
determined by strategy gl

Let o0 = (gl,gz,gs) be a triple of strategies. After any history, o
determines a probability distribution over the continuation of the game. Let
Uu(e),v(e) gh) = Ul (e, v (g9, g% (g")), v ()] be the expected
utility of a continuation path to buyer 1 when history (u(t),v(t)) has
occurred and ¢ is followed thereafter. A perfect Bayesian equilibrium is a

triple,o, and a pair of belief sequences, (ml,mz) such that

JU(u(t),v<c>,gl>dml<u<c>> > J UCu(t),v(t), g )dnt (u(e))

for all u(t) and for all g € Sl and for ml satisfying Bayes’ rule whenever

possible given the information structure of the game and the equilibrium
strategies. Similar conditions must hold for b2 and the seller.

Despite the seller’s informational advantage, a perfect Bayesian
equilibrium in which buyers get the object for free exists and can be
supported in the following way. Each buyer’s strategy is to offer a price
of zero in every period as long as he has offered zero in each preceding
period. 1If there exists a previous period in which he did not offer zero he
reverts to offering a price of one in every period. The seller accepts any
maximum price greater than §. He also accepts a price of.zero if all
previous price offers were zero (and randomizes between the two buyers). He
rejects zero otherwise and always rejects prices strictly between zero and
6. The buyer’s reversion to a price of one after a deviation is justified

as a best response because he has reached an out of equilibrium node at

which beliefs may be freely specified. Without any restriction on beliefs ,

12



the buyer can believe not only that he deviated but that the other buyer did
as well. Believing (albeit incorrectly) that his opponent is also offering
a price of one, the buyer’s own choice of one is a best response.

The buyer’s belief that his own deviation is correlated with an
opponent’s deviation even though neither can condition on the other's
strategy would be ruled out by stronger equilibrium concepts. In particular,
sequential equilibrium which is defined for finite games rules out such
beliefs by the consistency restriction. The application of the consistency
requirement to games with continuous action spaces is not straightforward,
though, which is why perfect Bayesian equilibrium has tended to be more
frequently used in such games. The approach taken here, is simply to rule
out beliefs which involve correlated deviations whenever observed histories
are enough to explain an agent’s arrival at an out-of-equilibrium
information set.

Assumption One (Al): Fix an equilibrium triple (gl,gz,gs). Let u(t) be any

sequence of price offers by b,. Let x(t) = (u(t),vo(gz(t)). If g2 and g3

1
are such that Prob[gs(x(i)) = (0)] >0 for all i = 0,1,..t, then ml(u(t)) is
such that Prob{v(t) = vo(gz(t)] = 1. A similar condition holds for b2, v(t)

and mz(v(t)).8
Remark: Al ensures that if any buyer deviates and arrives at an information
set which is explained by his deviation and the equilibrigm behavior of his

opponents, then he must believe that his opponents have continued to follow

their equilibrium strategies. Appendix Two shows that, for finite games, Al

8 Al restricts beliefs at nodes which Kreps and Ramey (1987) denote

‘reachable’ nodes given a strategy profile, o. The assumption itself
corresponds to condition i) in their definition of both a structurally
consistent assessment and of a convex structurally consistent assessment.

13



is an implication of sequential equilibrium.

Theorem Two shows that the unique perfect Bayesian equilibrium outcome
to this game under Al is a price of one in the first period. The idea of
the proof is as follows. Suppose that a price less than one can be
supported as an equilibrium outcome. Let the history leading to it be
(u(t),v(t)). Lemma One shows that if some buyer could get certain and sole
acceptance by offering just a bit more than z, = max(ut,vt), the buyer would
do so. Therefore, the seller’s equilibrium strategy must involve some
positive probability of rejection of a price higher than z,

If such a rejection is a best response, there are some restrictions
that are implied for the continuation of the game following a deviation by a
buyer offering the higher price. It is clear that if the seller rejects, he
must expect to get a better deal in the continuation game -- it is also
clear that this better price can only come from the deviating buyer. Lemma
Two classifies the set of possible price paths following deviations by bl
and shows that for any past history of buyer one-only deviations, buyer one
never has a best response that involves offering more than the equilibrium
price offer of his opponent, b2. The combination of Lemmas One and Two yield
Theorem Two.

Let x(t) = (u(t),v(t)), a price path ending with positive probability
of acceptance, be supported by a perfect Bayesian equilibgium, o.

Lemma One: Suppose 1 > Ve oz ou and let § > .5. There exists an €% > 0 such
that if the seller accepted p' = v. tE, 0 < € < € with probability one,
bl would be better off offering p’' than offering u

Proof: See Appendix One. ||

A consequence of Lemma One is that Prob[gs((u(t—l),p’),v(t)) = (1)] <1 for

14



all p' € (Vt’vt + €*). That is, if there is an equilibrium in which a price
less than one is accepted, the seller’s equilibrium strategy must be to
reject some higher (and out of equilibrium) price offer with some positive
probability.
Note, also that if x(t) is an equilibrium outcome with positive
probability of acceptance in period t, then
v, > max Sjvt(gZ(t+j)) for all j > O
t t+j’ ’
otherwise the seller would reject for sure in period t and wait for b2 to
offer a higher price.
. . s g1 s l 2 s ,
Fix a perfect Bayesian equilibrium, o¢ = (g ,g ,g ). The set X' denotes
the set of possible outcomes of the game when b, and the seller follow their

2

equilibrium strategy but b, may not:

1
X' = (X(t)=(u(t),V(t))ZV(C)=VO(g2(t))[t and Prob[gs(x(i)=(0)] > 0, for

all i=0,1,2,..,t, for all t)9.

Define j*,p* as

(j*,p*) = argmax SJpj, such that

P

; vj, for (u(j),v(j)) € X' ,or

g} (u(3-1)) for (u(j-1),v(j-1)) € X’.

g
I

If (j*,p*) are not unique choose the pair with the highest j*. For p > 0

this exists since p is bounded by one and § < 1.10 The idea is to assume

that buyer two follows his equilibrium path but that buyer one may deviate

The notation lt indicates a price path truncated to time t.

10 If p¥ = 0, then it is easy to see that at least one buyer will have

an incentive to deviate and offer a slightly positive price.
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any number of times. Find the highest discounted price offered either by

buyer two or by buyer one assuming that b, uses his proposed equilibrium

1
strategy (conditional on the history) to choose the offer he makes. Recall
that a strategy describes behavior for all possible histories of the game,
so this process is well-defined.
Lemma Two: p* = Vj*.

*

Proof: <Clearly p* > Vj,. Suppose p* = gj*l(u(j*—l)) > Vj*' Note that Al

ensures that for all x(j-1) € X', b, believes that x(j-1) = (u(j-1),v(j-1))

1

and so he expects his opponent to offer v,

3% in period j*. If the seller

accepted for certain a lower price than p* in period j*, then bl would do
better to offer it. Therefore, it must not be the case that the seller

accepts such an offer with probability one. However, suppose b, offered p’

1

less than p* but close enough that p’' exceeded both v_., and the best a
seller can get in a continuation game if he rejects. Since the resulting
outcome is again an element of X' by definition of p* such a p’ exists and
the best the seller can expect is less than p*/§ in the next period. He
would have done better to accept p’ immediately, contradicting the
definition of p* = gj*l(u(j*-l)). That is, the prescribed equilibrium
strategy choice determined by g after a history x(j*-1) would not be p* but
a price less than p*. Therefore, no matter what the history of buyer one
deviations in X', buyer one will never make a maximum prige offer higher
that the offer he expects buyer two to make. ]l
Theorem Two: Let § be greater than .5. The unique perfect Bayesian outcome
is (1,1l)with acceptance in the first period.

Proof: Let (u(t),v(t)), 1 > Vt > ut be a pbe outcome. Suppose b, deviates

1

and makes an offer p' greater than v, and suppose that rejecting p' is part

16



of the seller’s equilibrium strategy. The continuation path now is in X' and
the highest discounted offer the seller can expect if he rejects p' is 6j*p*
= 6J*Zj* < 6tvc < 6tp’. The first equality is by Lemma Two and the
inequality follows by the assumption that buyer two follows his equilibrium
strategy. Therefore rejecting p' > v, can not be a best response for the
seller. But Lemma One shows that there is a p' > Ve which, if accepted for
sure, bl would prefer to offer. This implies v, = 1, i.e. any equilibrium
outcome occurs at a price of 1. Now suppose that t > 0. This implies that
both first period price offers are less than § since the seller will always
accept a price greater than 6. Along the equilibrium path, no buyer gains a
positive utility from trade. Each buyer would do better, then, to offer p €

[6,1) and gain acceptance in the first period rather than to wait for the

later equilibrium price of cne. ll
Section Three: Conclusion

The result of Section Two may seem counter-intuitive but in light of
the preceding Section it is less surprising. It is commonly thought that
more information rather than less is advantageous for a competitive
environment. However, when the behavior of other agents can be observed the
possibility of enforcing collusive behavior arises. The games of Section
One show that such ‘collusion’ can occur even without an gxplicit agreement
-- that is, apparent opponents can coordinate their actions to split the
surplus while following equilibrium behavior in a non-cooperative game. The
mere presence of additional interested buyers is not sufficient to ensure
the seller’s ability to capture all the surplus -- the strategic environment

may frustrate this ability. Section Two shows that with a simple refinement

17



in the spirit of sequential equilibrium, if agents can no longer observe
each other’'s actions, then a seller can ensure himself the competitive

price.

18



Appendix One

Proof of Lemma One: Without loss of generality let
lowest expected utility when x(t-1) is the history
proposed equilibrium offers in period t.
Case I: Suppose the seller’s strategy is such that
= 0; that is, he accepts with certainty. In period
by offering u is

.5(1 - ut) < (1 - ut - €) for any € such that
Case II1: Suppose the seller rejects x(t) with some

i.e. w> 0. For this to be a best response of the

b1 be the buyer with the

and (u_,v_) are the
tt

Prob[g® (x(t)) = (0)] = w

t, the most b, can expect

1

0 <e<xex = . 5(1 - ut).
positive probability,

seller the value of the

continuation game to the seller must be no lower than V.- The best b, can do

from x(t-1) is

1

OSw(l - Vt) +6(1 - w)(1 - Vt/S) < (5w o+ 86(1 - w))(l - Vt)

< 6(1 - Vt) for § > .5,

<1 - Vt - € as in Case 1. \l
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Appendix Two

This appendix shows that for finite extensive form games assumption Al
is iﬁplied by the consistency requirement in the definition of sequential
equilibrium. Notation in this appendix is borrowed directly from that used
in Kreps and Wilson (1982).

Lemma Al: Let (up*,n*) be a sequential equilibrium of a finite extensive form
game with perfect recall. Let h be an information set belonging to player
i¢h) and ai be the collection of pure strategies of i leading to h. Suppose
there exists a y € h such that Prob(y:w*_i,ai) > 0. Then for all x € h such
that Prob(x : n*_.,ai) =0, pu*¥(x : h) = p*(x) = 0.

Proof: Let @O be the set of assessments (g,n) such that = is a profile of
fully mixed strategies and u are beliefs formed over the information sets
derived via Bayes’ rule given n. From Kreps and Wilson (1982), u(x) is
defined by

p(x) = PT(x)/P"(h(x)) where

1(x)

P (x) = p(p (x)) T
1(x) 1=1

n ML) ap o)

and P (h(x)) = T P(x').
x'eh

Factor out the strategies belonging to i(h).
1(x)

PT(x) = p(py () MGt m A P e o
(py ()1 ()
where
. 1(x) .
uet o =L AP @ o)

i (py (x))=i(h)

Perfect recall ensures that only one strategy path for player
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i(h) leads to information set h. Thus for any x' € h
M(xt x) = M(n",x') = M(x).
Setting P’ -i(x) = P (x)/M(x"), yields

p(x) = PTi(x)/(E P (x7)),
x'eh

that is, u(x) does not depend on the strategy choice of player 1.
Suppose there exists a y € h such that P (y) > 0. By

*
hypothesis, x is such that p'7 (x) = 0. By the continuity of P'’

in n, for all n converging to x%*, lim P'”(x) = 0. The existence
of y ensures that the denominator is positive so up*(x) = 0.

The implication of Lemma Al is that if i reaches an information set h
and can explain his arrival at that set by assuming that W*_i was followed,

consistency requires that he believe n* . was, in fact, played.
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Appendix Three

This appendix shows that changing the game structure to allow the
seller some oppoertunity for offering at stages of the game may not
qualitatively alter the results of Section III. Let G4 be the game in which
there are two buyers, bl and b2 and a seller. In periods 4i, buyer bl makes
offers which the seller may accept or reject, in periods 2 + 4i buyer b2
makes offers and in periods 1 + 21 the seller makes an offer to the buyer
whose offer he just rejected.

In this game it is easy to show that a strategy profile in which each
buyer offers § in their offering period and accepts any price less than or
equal to one in their responding period and the seller offers price of one
and accepts any price greater than or equal to § forms a perfect
equilibrium.

Consider a slight change to the structure of G4. The game G5 is the
same as G4 with the exception that the seller makes the first offer. Thus
in the first period the seller offers a price to buyer bl, if it is rejected
bl then offers to the seller, if it is rejected, the seller offers tc b2, b2
offers to the seller if he rejects and so on. With a common discount factor
§, a proof similar to that of Rubinstein’s proof in the one buyer-one seller
game shows the existence of a unique perfect equilibrium outcome at exactly
the Rubinstein price for the two player game. That is, the unique perfect
equilibrium outcome has the seller offering a price of 1/(1 + é§) and bl
accepting in the first period. The same result holds for any number of
buyers in the game; the seller does not gain from the presence of other

buyers.
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