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Abstract

This paper presents a model of random matching between individuals
chosen from large populations. We assume that the populations and the set of
encounters are infinite but countable and that the encounters are i.i.d.
random variables. Furthermore, the probability distribution on individuals
according to which they are chosen for each encounter is "uniform", which
also implies that it is only finitely additive.

Although the probability measure which governs the whole matching
process also fails to be (fully) sigma-additive, it still retains enough
continuity properties to allow for the use of the law of large numbers.
This, in turn, guarantees that the aggregate process will (almost surely)

behave "nicely", i.e., that there will be no aggregate uncertainty.



1. Introduction

Economic theory often requires models of random matching among few
individuals out of large populations, as in search models, evolutionary game
theory and so forth. Partly in order to avoid the messy computations
involved with large but finite populations, it is quite prevalent to assume
that there are uncountably many agents of various types, each of which has
no effect whatsoever on the aggregate behavior, thus eliminating strategic
considerations which extend beyond a specific encounter.

The purpose of this paper is to formalize this notion of random
matching. Our goal is to construct a model of random matching, say, for
simplicity, between individuals chosen out of two large populations, with
the following properties: (1) The encounters are i.i.d. random variables,
each of which specifies an individual from each population and the time of
their encounter; (2) All individuals of each population have the same
distribution over the encounters they may be involved in (in terms of both
the time of encounter and the individual with whom they are matched;) (3)
For each individual, the probability of being matched with any given
individual (of the other population) is zero, and so is the probability of
being matched iﬂ any given encounter, though with probability one that
individual will be matched at some point with someone; and (4) The
(realization of the) distribution of encounters over time equals their
(common) distribution as random variables with probability one.

This task may seem straightforward: each encounter may be thought of as
a random variable, specifying which individuals are matched and possibly

also when does the encounter occur, and then one may stipulate that these



random variables be i.i.d. with a specific distribution according to the
economic assumptions of the model.

However, even much simpler models with uncountably many random
variables in general, and i.i.d. ones in particular, pose some fundamental
mathematical problems. A special attention has been given in the literature
to the law of large numbers, which is often informally invoked to guarantee
that there will be no aggregate uncertainty in such a model, though each
individual does face "private" uncertainty. Judd (1985) showed that in a
model with uncountably many random variables, there is an extension of the
probability measure such that the law of large numbers is guaranteed. Since
there also exist other extensions for which the law is not valid, there is a
disturbing freedom in the choice of the extension. Feldman and Gilles
(1985) considered a model with countably many random variables endowed with
finitely additive measure and showed that the law of large numbers is always
guaranteed.

We choose to model both the populations and the encounters as countable
sets endowed with a finitely additive measure. This measure is assumed to be
"uniform” in the sense that it equals the limit density of every subset, if
the latter exists. Our model differs from that of Feldman and Gilles due to
the additional éomplication of the matching process. More specifically, we
have to use a finitely additive probability space. Indeed, if we consider
events of the type "Individual number 1 (from population 1) is matched at
some point of time with an individual belonging to a set A (a subset of
population 2)," we would like its probability to equal the measure of the
set A. In particular, it should be zero for every singleton and one for the

entire {countable) population. Note that Feldman and Gilles use a finitely



additive probability space only for measuring the "number"” of random
variables and a countably additive one for the underlying distribution of
the random variables.

The difficulty is that a finitely additive probability may not
guarantee the law of large numbers. However, our model shows that all the
requirement mentioned above are consistent. That is to say, not only can one
construct a model satisfying the random matching requirements (properties
(1)-(3)), one can also do so with strong enough continuity properties of the
underlying probability measure to obtain the law of large numbers for some
random variables of interest (i.e., property (4)).

Although we restrict our attention to the specific random matching
model described above, which suffices for a certain class of economic
applications, we believe that our method of proof may be extended to other
matching processes as well. For instance, in our model each individual is
matched exactly once with probability one. For some applications it may be
required to have a more interesting distribution of the number of encounters
an individual is about to be involved in (e.g., a Poisson distribution).
Some of the proofs may be turn out to be more cumbersome, but the basic
procedure is likely to yield the desired results.

The result“pfesented in this paper does not only mean that one may
construct a random matching model as described above and use it as a
starting point for economic analysis; it may also be interpreted as an
alternative, more formal underlying model for many existing economic theory
results, implicitly or explicitly assuming a model of this type. It may
therefore be viewed as extending the "good news"”, i.e., the possibility

results of Judd, Feldman and Gilles, and Green (1988), to a model which



formally describes a random matching process.
Our model and formal results appear in the next section, which is
followed by the proofs of the results. The final one is devoted to a brief

discussion of finitely additive measures and their relevance to economic

theory.
2. Model
Let (N,2N,y) be a finitely additive measure space where N={1,2,...} is

the set of natural numbers, and 4 is a finitely additive measure constructed
as follows. Let Z be the class of subsets of N which have a limit
frequency, i.e., Z={AcN: limnqm %|{ieA: i<n}| exists}. Given A€Z, let u'
be this limit frequency: #'(A)=limnqw %l{ieA: ign}|. Then for any A and B
in Z with ANB=¢, AUB is also in Z, and

M (AUB)=x' (A)+u' (B)
holds. Let u be an extension of u'. The proof of the existence of such an
M 1s fairly standard (see e.g. Feldman & Gilles (1985)}).

Now, we construct a finitely additive probability space (Q,Z,v) for a
random matching device. It is constructed by introducing countably many
random variable;.A Formally, let Q be the set of all functions from N to
[0,1)xNxN where, for a state of the world weR, a typical value
u(k)=(w1(k),wz(k),ws(k))=(t,i,j) implies that the i-th individual of type 1
and the j-th individual of type 2 meet in the k-th encounter at time

te[0,1). We also write w=(w1,w ) where w1:N~[0.1), w2:N~N. and w3:N~N

2'¥3
with the obvious meaning. We define E=0([$([0,1))XZNX2N]N), the g-algebra

generated by [‘13([0,1))><2NX2N]N where B([0,1)) is the set of Borel subsets of



(0.1).

We are looking for a finitely additive measure v on (},£) which
satisfies the following conditions. First of all, we need o-additivity on
the sub-o-algebra denoting only the time of encounters. To do this, let G
be a distribution function on [0,1), and let Mg be a Lebesgue-Stieltjes
measure induced by G. We introduce two auxiliary spaces: first, consider
(01.8’,A') where Ql=[0,1)N, &' is the o-algebra generated by [B([O,l))]N. Al
is a (countably additive) measure on &' satisfying A'(E)=erKpG(Tk) if
E={w1|w1(k)eTk for all keK} with |[K|<=. Next, consider (Ql,Q,A) where
£=0[&'U{ECQ’| 3F: ECF, A'(F)=0}], and A on & is the completion of X' on &' .
Notice that X\ is uniquely determined by #G (see, e.g., Halmos, 1974). We
would like to stipulate that v be an "extension" of )\, a condition which is
formally given below as a special case of P-1 (with Ak=Bk=N)'

The second condition is that the random variables, i.e., the encounters
are i.i.d. and, moreover, for each encounter k, w_ (k), w.(k), and ws(k) are

1 2

independent as well. More formally:

P-1. For all KEN (a set of encounters) with |K|<eo, and A Bng (ke€K), and

k L
all Ee€g&, we have

v ({we?| wleE, wz(k)eAk and ws(k)GBk for keK}) = A(E)ﬂkeK#(Ak)y(Bk).

The third condition focuses on individuals. It states that for each
individual the time of encounter is independent of the matched partner, and
that these are i.i.d. across individuals. It also implies that with

probability one, a person is matched once and only once.



P-2. For all JcN (a set of individuals) with |J|<e, for all Tj in B([0.,1))
and all CJSN (jeJ), we have

v (N (we)] w(k)eTIx{jxcT, w, (k' )#) for k'#k)

jes%ken
(19 )u(c)y.

= v(n (wed] w(k)eTIxcIx(j}, w, (k)23 for k') = IL,

jea%ken eJ™G

Our main results are:

Theorem: There exists a finitely additive measure v on (Q,Z) satisfying P-1

and P-2.

With this construction, we will also show that the distribution of

encounters over time follows G almost surely.

Proposition. v({we?| u({k] wl(k)St})=G(t) for all te[0,1)})=1.
3. Proofs

(1) Proof of the theorem:

We begin with the following lemma.

Lemma 1: Let Q be an arbitrary set, and let B be a subset of 2Q satisfying:
i) ¢, Qe 3B,
ii) if A and B are in B, then ANB is also in B,
iii) for any A in B, there exist finitely many pairwise disjoint

c
elements Al""’Ak in B such that A -U§=1A1'



Moreover, let v:B-R satisfy:

iv) v(9)=0, v(Q)=1, and v(A)20 for all A€B,

v) Vv(A) = Z§=1v(Ai) whenever A = U}i:lAi where A and {Ai} are in B, and

(Ai} are pairwise disjoint.
Then there exists an extension of v to a finitely additive measure on the

algebra generated by B.

Proof. Assume that the conditions of the lemma are satisfied. Let A be the
algebra generated by B. We first observe that any set A in A can be written

as a finite union of some pairwise disjoint sets in B. Indeed, by (iii) it
m

suffices to consider events of the type A=n? U 1

i=1 j=1Aij where {Aij} are in B.

By the distributive law we have

A=U,U... U, [A ,N...NA ] =U, U...U,B
3 iy 13y nj, g I Gqreeendy)
where B(j1""'jn) = Aljln"'nAnjn € B. 1t follows by induction that any A

in A is written as a finite union of some (not necessarily pairwise
disjoint) sets in B. To see that the sets may be assumed disjoint without

loss of generality, suppose that A=U§=1A holds where A is in A, and {Ai}

i

are in B. For each i=1,...,k, consider a partition 91={Ai, E ., E. }

i1’ in,
i

of Q where {Eij} are in 8. Such a partition exists by virtue of (iii).
Then let P be the join of 91""’?k' Each element in ? is in B by virtue of
(ii). Then A may be written as

A B.
k

Now, for any A=Uli<=1Ai with {Ai) being pairwise disjoint sets in B, we

= Ypeo, BcA,U. . .UA

let

k
v(A) = Zi=1v(Ai).

First, we claim that v(A) is well-defined. To see this, suppose that



A=U91‘=IBi holds where (Bi) are again pairwise disjoint sets in B. Take the

join of (A .....A_. A%} and (B,.....B,. A®): denote it {c,.....C. A%} with

k
{Ci} in B. Then we have, by (v),

k m _ <R
Z1=1V(Ai’ = Zi=1v(ci) = zi=1V(Bi)'

2

Next, note that v(A)20 for all A€eA. Finally, for Al’ Azeﬂ with AlﬂA2=¢, it
immediately follows that v(A1)+v(A2)=v(A1UA2), which completes the proof of

the lemma. Q.E.D.

Next, we construct for our space Q=[[0,1)XNXN]N a collection of sets B
and a function v satisfying (i)-(v) of Lemma 1 as well as P-1 and P-2. Some
additional notations will be needed. Let Nj (resp. N;) be the set of states
of the world such that the j-th player of type 1 (resp. type 2) is selected

either not at all or more than once, i.e.,

Nj = {we?| either wz(k)¢j for all keN, or wz(k)=w2(k')=j for some k, k'€eN

with k=zk'},

=
"

{we?] either ws(k)¢j for all keN, or w3(k)=w3(k')=j for some k, k'eN
with k#k'}.

Next, let Bl bé'the class of sets of the form:

1 _
M = {wel] wleE, wz(k)eAk, us(k)GBk for keK},

for some KON with |K|<e~, E€&, and Ak,Bng; let %2 be the class of the sets

of the form:

10



M™ =N {weq| w(k)GTJX{j}XCJ. wz(k')zj for k'zk},

jeJUkeN
for some JcN with |J]|<e, Tjeﬁ([o,l)), and CjSN; let 83 be the class of the
sets of of the form:

3

M =N {weQ| w(k)eTjXCjX{j}, ws(k')ij for k'zk},

jesYken
where J, Tj’ and Cj are as above; and let 84 be the class of the sets of the
form:

4

MT o= [ NIT N[0 NS

r)jeJ' jeJ i
Then let B be a family of sets of the form:

wirml o

where MQG‘BQ (2=1,2,3,4). Note that each QQ is closed under intersection,

hence so is 8. Let v:BR satisfy v(ﬂ:=1Mg)=H:=1v(Mg) where v(Ml), and v(Mz)
and v(Ms) are defined by P-1, and P-2 respectively, and v(M4)=0 if M{#),

. , T _~4 Q4 e ']
i.e., if J'#0 or J"#p. Note that if M-ﬂﬂle =ﬂQ=1M ' and v(M7)>0 for all

2=1,2,3,4, then M#¥ and v(MgAMQ')=O, whence M and v are well defined. The
proof is provided in the appendix.

Now, we have the following lemma.

Lemma 2. Y and v defined above satisfy i)-v) of Lemma 1.

11



Proof. Notice that (i), (ii), and (iv) are immediate. As for (iii), note
that it suffices to show that for all MQ“E“B;l (2=1,2,3,4) (MQ“)C is the union
of pairwise disjoint elements of B. Moreover, we can restrict our attention
1 2 3 4 "

to sets M~ generated by |K|=1, M~ and M --by |J|{=1 and M --by |J'}|+]J"|=1
and for these the claim is straightforward. All we have to prove is,
therefore, that v(A)=Z?=1v(Ai) holds whenever A and {Ai} are in B, and {Ai}
are pairwise disjoint. For each i=1,...,n, Ai can be written as the

intersection of Mi and Mi where

Mi = {we| wleEi. wz(k)eAik

with IKi[<m, and

and wS(k)eB.

ik for keKi)

My = [nJGI!UkGN

n [N

{wel} w(k)eT!

ij
{weR) w(k)eT"ij" X{j}, 3(k');ej for k'xk}anJ;LJ]

with |I'|+II |+|J ]+lJ" <, and Mi=Q if Ii=I;=Ji=J;=¢. Then consider the

: : N ] " " "
partitions {Ei'Ei } on [0,1), {T } (JeI ) and {T1J TlJ} (JeI ) on

c 1 1 " "
iJ } (Jel}), and {ci clJ}

(jGI;) on N. Now, consider the join of {Ei'Ei } (i=1,...,n), henceforth

X{J)xCij, w, (k')#j for k'sk}n, ]

JGJ'

JGI" keN

C

{0,1), and {Aik Aik }, {B. } (keK R (C'

1k'

denoted by ¥, that of the partitions on [0,1), to which we refer by T, and
that of the partitions on N, denoted by I'. Also consider ®={§,ﬁ} with a

measure & such that 6(ﬁ)=0 and 6(ﬁ)=1. Since ¥, T, ', and ® are finite, (¥,

29’ Ao, (T, éT, Ml ), (T, 2r, Ml ), and (O, 2@, ) are measure spaces.
2? G 2T F

, 1=

Let K=U]_ /K 1oql

. L IM=UT_ T, J'=UT_L(13U3Y), and 37=UY_ (T5W37).

Consider a product measure space:

~ 1 " ] "
& = (wr?) Kl opupy 1T 11T gl 11071
To each atom of €}, there corresponds a unique event in £. Also, A and (Ai}

are associated with events X and {Xi} in 20, which are rectangles in this

product space, and v(A)=v"(X) and v(Ai)=v"(Xi) hold where v" is a product

12



measure defined by

2,1K I+ J+]J"
2 2 2 2
Therefore, v) follows, which completes the proof of the lemma. Q.E.D.

These lemmata imply that v has an extension to a finitely additive
measure on (Q,Z) by the Hahn-Banach theorem, which completes the proof of

the theorem.

Proof of the proposition. First of all, we have, for every t€[0,1),

v({we] u({k] wl(k)st})=G(t)})=>\((w1€[0.1)Nl H({k] w (k)<t})=G(t)})=1
where the second equality holds by virtue of the law of large numbers. Let
Q denote the set of rational numbers between zero and unity and T denote the
set of discontinuity points of G, which is a countable set since G is
monotone. Then

v({we] u({k| wl(k)St))=G(t) for all teQur})

AN o 91600, DN #((K] 0] (K)5t1)=6(2)))

teQuUT
A(Q) - (U

cequet®@r €10 YT LRI 0 (K)$E))#6(6)))

21 - Epqur({0,€00, DN p((kl ) (K)st)#6(8))) = 1
holds where the inequality holds by virtue of o-additivity of )\. Note that
at each wel, both u({k]| wl(k)St}) and G(t) are monotone functions of t.
Should they equal for all teQUr, they would also equal for all te€[0,1).

Hence we have

v({wed] u({k| wl(k)St))=G(t) for all te[0,1)})=1. Q.E.D.

4. Finitely Additive Measures -- A Discussion

13



Finitely additive measures were not introduced into economic theory for
the sole purpose of having the benefits of the law of large numbers with
many i.i.d. random variables. They were also used in other economic models,
for instance, Armstrong and Richter (1984) and Weiss (1981). Yet one may
wonder why should we deal with these somewhat unconventional mathematical
tools, and are we not better off with a countably additive measure on
uncountable sets. Without any claim to originality, we would like to draw
the reader's attention to the following points:

a. A finitely additive measure is, of course, a weaker notion than a
countably additive one. Hence, the question should rather be: How can one
justify countable additivity? As is well known, countable additivity is
equivalent to continuity of a measure (with respect to chains of inclusion,)
and while continuity is a nice property to work with, in many cases it is
simply a matter of mathematical convenience, rather than a fundamental
axiom.

De Finetti (see, for instance, 1949, 1950) was a strong proponent of
finitely additive probability measures, and Savage (1954) and Dubins and
Savage (1965) followed in this vein. As a matter of fact, Savage, which is
often considered to provide the most satisfactory axiomatic justification of
Bayesian decisign'making, suggests axioms which only guarantee a finitely
additive probability measure.

For the sake of honesty we should admit that one can relatively easily
supplement Savage's axioms so that they be equivalent to a continuous
measure. (See, for instance, Gilboa, 1985, 1989.) However, these continuity
axioms fail to be as compelling as the more basic ones (such as the Sure

Thing Principle.) Needless to say, almost all axiomatic models have some of

14



these (such as an archimedian and/or a non-atomicity axioms;) however, the
less technical restrictions one imposes, the happier should one be.

b. Though a finitely additive measure may be a somewhat unintuitive
construct, it should be compared to its viable alternatives. We feel that it
fares quite well, at least if the alternative is a continuum of agents, of
encounters and so forth. One should recall that countable additivity is
typically obtained at the cost of restricting the sigma-algebra of
measurable events, whereas finitely additive measures allow for every subset
to be measurable. Put differently, to avoid discontinuity problems we have
become accustomed to say that the problematic entities do not exist, a
solution which can hardly be suggested as the more intuitive.

Once we swallow the pill of finite additivity, there seems to be little

point in modeling intuitively discrete entities -- such as agents -- by a
continuum. As opposed to points of timq, quantities or prices -- all of
which are naturally modeled as continua -- agents, encounters etc. do not

necessarily make one think of the real line.
c. It has been suggested quite often (as in some of the papers mentioned
in the introduction) that an alternative to infinite populations, countable
or not, is simply to consider finite large populations and study their
asymptotic beha&idr. Many authors seem to believe that this would be the
"right” thing to do, and only appallingly complicated mathematical
computations, if anything, should allow us to use infinite, simpler models.
We would like to propose here a different viewpoint, according to which
infinite models are sometimes conceptually "better” than finite ones. Of
course, we are interested in finitely many agents, so that a finite model is

a more accurate one objectively. However, when a very large population is

15



considered, it may often be the case that individuals, being boundedly
rational, perceive the situation as if the population were infinite, as if
their behavior had no effect on aggregate variables and so forth. For these
cases an infinite model would be a better subjective description of reality
unless we succeed in incorporating bounded rationality in a finite model.
Until then, the validity of the infinite model's results does not depend on
the limit behavior of the finite model; should the latter differ from the
former, it is the infinite model we should expect to better approximate

reality.

16



APPENDIX

Claim. If M=n® M2n , and if v(M*)>0 for all 2=1,2.3.4, then

4
=1 Q=
QanR (

VIMTAM™ ') = v((M \Msl

o ady) - o

holds for %=1,2,3,4.

Proof. Assume that the provisions of the claim hold. First of all, observe

that v(M)>0 implies that M4=M4'=Q. Next, M1 may be written as

1

M™ = {(we| wleE, wz(k)eAk, ws(k)eB for keK},

k

where E€g&, Ak,Bng, and KN with |K|<=. Likewise, M2 and M3 are written as

2 - 2 " "
= ﬂjGIaUkeN{weﬂl w(k)GTjX{J}XCj, wz(k )#3 for k"zk},

where IaCN with |Ia|<m, Tjeﬁ([o,l)), and ngN, and

3 — " 2 "
M” = njelbukeN{wte w(k)estDJ.X{J}, wa(k")#j for k"#k},

where IbCN with IIb|<w, Sjeﬂ([o,l)), and ngN, respectively. Ml', Mz', and

M3' are assumed to be represented in the same way with primed symbols. 1In

the following, we shall prove A(EAE')=0 only. The proofs for other sets are

similar.

Assume the contrary, i.e., that A(EAE')}>0. We assume without loss of

generality that A(E\E')>0 holds. We now construct w* which belongs to Ml,

Mz. and M3, but not Ml'. For keK, let w;(k) and wg(k) belong to Ak\Ia and

Bk\Ib respectively where Ak\Ia and Bk\Ib are nonempty since |Ial+|Ibl<m,
while IAk|=o and !Bk|=m hold as v(M)>0. Next, it is claimed that there

exist w*, (k.)

1 j jGIa and {kj}

jel such that wIeE\E'. w;(kj)eTj, and
b

w;(kg)esj. Indeed, if not, for any wleE\E', there exist either ja=ja(w1)ela

or jb=jb(w )€l , and E=E(w1) with |E|5|Ia|+|1b|<m and KNK=¢ such that for

o

jb - Let E(ja.ﬁ) and

all k"¢KUK we have either w, (k") €T € or w, (k") €T

Ja

17



E(jb,ﬁ) denote the set of such wl's. Then we have

ENE'cU, ~ . E(ja,K)}U{U ib K
R <11y Ygaer BU2KDU (0K

where the right hand side of the relation is a countable union of E(«)'s.

Jjbel

Observe that A(E(ja,i))=0 holds since {wl(k): keN} are i.i.d., and ﬂG(TjC)<1
and yG(SjC)<1 hold for all jeIa and all jer, respectively. Thus, by
countable subadditivity of A, we get A(E\E')=0, which is a contradiction.
Next, for each kj (jeIa), let w*(kj)eTjX{j}XCj, and for each k3 (jer), let
w*(k})eSjXDjX{j}. Finally, let w;(k)éla for kéKU{kj:jeIa}. and let wg(k)élb
for kéKU{k}:jer}. Then w* belongs to Ml, Mz, and M3, but not Ml', which is

a contradiction. Q.E.D.
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