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Abstract

We provide a game form which undertakes a public project exactly when the total
benefit of the project to individuals in a society outweighs its cost. The game
form is simple, as well as balanced and individually rational. The game form
can be adjusted to distribute cost according to a wide class of rules. For
example, it can distribute costs so that each individual pays a share of the
cost which is proportional to his or her benefit. We discuss the informational
limitations of our work (at least two individuals need to know the average value
of the project), and the relation of this work to the literature on mechanism
design and public goods.
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1) INTRODUCTION

Several agents must decide whether or not to undertake a project that
will benefit them all: it is efficient to do so if and only if the sum of
individual benefits outweighs its total cost. The project is called "public”
because 1t is consumed without rivalry by all agents.

We propose a family of mechanisms achiéving an efficient and equitable
outcome. The social planner (who designs the mechanism) tries to achieve two
goals, a normative goal of equity and a positive goal of inducing the agents
to achieve the desired outcome even though the planner chooses a mechanism in
ignorance of agents' personal characteristics. The positive goal is usually
referred to as the implementation 1issue.

In this paper we follow one stream of the implementation literature which
looks at "universal" mechanisms: that is, the mechanism uses no statistical
information about the distribution of agents' characteristics. It places the
burden of acquiring information about the preference profile upon the agents
themselves: once agents know enough about each other's preferences, the
unique "reasonable” non-cooperative equilibrium implements the desired
outcome. In other words, the implementation property requires the agents to
know at least some summary of the overall preference profile. This is
admittedly a strong assumption, but it appears necessary if we wish to use
simple, intuitive mechanisms such as the Divide and Choose method. The
alternative route, relying on the existence of Bayesian beliefs about mutual
preferences, has a stronger claim to realism as a model of individual
behavior, but its mechanisms are pegged to the Bayesian characteristics of a
particular group of agents (see e.g. the bilateral trade mechanisms of Myerson
and Satterthwaite [1983]).

The literature on non-cooperative implementation under complete






information has followed two directions; it has produced general
characterization theorems and designed simple mechanisms for specific
problems. The general results are technically impressive, but generally
impractical for producing plausible mechanisms. The early results on
implementation in Nash equilibrium (Maskin [1977] and [1985]) and in strong
equilibrium (Peleg [1978] Moulin and Peleg [1982]) demonstrated that
implementability imposes severe restrictions, 1in particular if one wishes to
implement a single valued solution. In sharp contrast with those fairly
negative conclusions, stand the recent characterization results on
implementation by subgame perfect equilibrium (Moore and Repullo [1988], Abreu
and Sen [1987]), undominated Nash equilibrium (Palfrey and Srivastava
[1986]), and undominated strategies (Jackson [1989]). They reach the striking
conclusion that virtuall; anything (any social choice function) is
implementable. However, the mechanisms used to prove those broad possibility
results are distastefully complex, in part because the theorems cover an
enormous array of collective decision problems (applications include anything
from voting rules to the exchange of goods). In fact, if we restrict our
attention to "reasonable" mechanisms, then the striking results are mitigated
(Jackson [1989]). Only strategy proof social choice functions are
implementable in undominated strategies, while for undominated Nash
implementation some social choice functions are ruled out - but the extent of
this restriction is not yet known. (For subgame perfecﬁ implementation the
issue is more subtle. The definition of implementation does not account for
mixed strategy equilibria which may exist in "reasonable" mechanisms. This
issue 1is largely unexplored, and is discussed with reference to Nash
implementation in Jackson [1989].)

The inapplicability of the general results to simple collective decision



problems is compensated in part by several papers dealing with the
implementation issue in specific contexts. Examples include voting (McKelvey
and Niemi [1978], Moulin [1979 |, Herrero and Srivastava [1989]), fair
division (Crawford [1979], Demange [1984], Glazer and Ma [1989]), bargaining
over lotteries (Moulin [1984a], Binmore, Rubinstein and Wolinsky [1986],
Howard [1988]) and public decision with monétary transfers (Moulin [1981]
[1984b]).

In this paper, we focus on the very simple (and often studied) model of
provision of an indivisible public good. The normative goal 1s captured by a
cost sharing rule (e.g. costs are proportional to benefits) and the positive
goal 1s taken to mean implementation in undominated Nash equilibrium (or
subgame perfect equilibrium: See footnote 1).

The mechanisms which we propose i) undertake the project in equilibrium
when its collective benefit outweighs its total cost, and only then; ii)
collect costs from individual agents that exactly balance the cost of the
project; 1ii) do not force any individual to participate in the decision
making process against his will and iv) accomodate a-large class of cost
sharing rules.

The more formal definitions of these properties are as follows. A
mechanism translates agents' valuations of the project into a level of the
project (0 or 1) and a cost to be paid by each agent. Transfers among the
agents may be incorporated in the specification of the costs. A mechanism is
successful if it always chooses the first best level of the public good. It
is feasible i1f the sum of the costs of the agents is at least c when the
project 1s undertaken, and at least 0 otherwise. It is balanced if the sum of
the costs of the agents 1s c when the project is undertaken, and 0 otherwise.

A mechanism is individually rational if the benefit each agent obtains from



the project (times 0 or 1) outweighs the cost that agent pays.

Our mechanisms allow for a family of cost sharing-rules for which each
agent's cost strictly decreases in the other agent's valuations for the
project (and which must also satisfy another monotonicity property: see (4)
below). For each such cost sharing rule we construct a simple two stage
mechanism in which the agents report an estimate of the collective benefit
accruing from the project in the first stage, whereas 1in the second stage they
report their own benefit for the project. It does not rely on "doomsday"
threats, is budget balanced (for all strategies) and individually rational (in
equilibrium and in the sense that every agent has a strategy which guarantees
a "no loss" outcome). It is reminiscent of the auctioning the leadership
mechanism originally proposed by Crawford [1979] for the division of resources
problem, and later applied to public decision with money by Moulin [1981]
[1984b].

To put our mechanism into perspective we recall the classical results on
direct revelation mechanisms (whereby an agent's message is a report of his or
her valuation for the project). It is well known (see Green and Laffont
[1979]) that a mechanism which is successful and balanced will not be dominant
strategy incentive compatible. There is a non-trivial trade-off between
efficiency and dominant strategy incentive compatibility. Groves mechanisms
(Groves [1973], see also Vickrey [1961] and Clarke [1971]) are dominant
strategy incentive compatible, but fail to achieve balance. The difficulty is
more acute 1f individual rationality is considered. Every successful,
individually rational, dominant strategy incentive compatible mechanism will
fail to be feasible (see Green and Laffont [1979]).

One way out of the efficiency/incentive compatibility trade-off (for

direct revelation mechanisms) is to allow the social planner to use



statistical information about agents' valuations, and to replace dominant
strategy equilibrium by Bayesian incentive compatibility. Of course those
mechanisms are not very meaningful among a few agents, and are much more
demanding on the social planner. D' Aspremont and Gerard-Varet [1979]
demonstrate a mechanism which is Bayesian incentive compatible, successful and
balanced. However, individual rationality is not satisfied (an ex-ante
individual rationality constraint is satisfied, but the appropriate interim
individual rationality constraints are not). Mailath and Postlewaite [1988]
show that if individual rationality is required along with Bayesian incentive
compatibility, then it is generally impossible to achieve efficiency (see also
Myerson and Satterthwaite [1983] and Myerson [1985]). Moreover, Mailath and
Postlewaite show that as the number of agents involved grows, the probability
of ever undertaking the project goes to zero.

The restrictiveness of our analysis, and of the non-Bayesian
implementation literature in general, is in terms of information held (or
acquired) by the agents. As mentioned earlier, this is the price to pay for
dealing with "universal" mechanisms. The same remark applies whether we deal
with voting, division of private goods, etc. In our problem, we must assume
that individuals know their own valuations, and at least two agents know the
average of all the agents valuations. It is interesting to note that this is
the minimal informational requirement which needs to be satisfied in order to
achieve ex-post efficiency and individual rationality with any mechanism!
Essentially, for any coarser information partitions, a Bayesian incentive
compatibility condition needs to be satisfied. Our information structure
satisfies NEI (non-exclusivity of information as defined by Postlewaite and
Schmeidler {1986]). That is, any agent's type can be figured out by pooling

the information of all the other agents. The NEI condition identifies the



situations in which Bayesian incentive compatibility will fail to bite (see
Blume and Easley [1988] and Jackson [1990]).

The rest of the paper is organized as follows. Section 2 presents our
mechanism in the simple context with two agents and the proportional cost
sharing rule (cost shares are proportional to benefits). In Section 3 we
define our family of cost-sharing rules and discuss a few examples. Section &4
defines our mechanism and states our main result, the proof of which is given
in Section 5.

2) AN EXAMPLE WITH TWO AGENTS

In this section we provide an example which illustrates the general
structure of the game forms we consider. The game form described below
implements the correct public project decision and distributes costs among two
individuals in proportion to the benefits they receive from the project.

Let ¢ be the cost of the project (which is common knowledge), and let b,
and b, be the benefits the agents receive from the project if 1t is built.

In the first of two stages, agents simultaneously submit bids. These
bids v, ,v, are interpreted as the agents' estimates of the joint benefit from
the project. If the highest bid is less than or equal to c, the project is
not undertaken. Otherwise a second set of (simultaneous) bids are solicited.
These bids B,, B, are interpreted as the agents' reports of their own
valuations for the project.

Without loss of generality, say that agent 1 had the highest first stage
bid v, (ties can be broken according to any rule). If the sum of the second
stage bids 1s greater than the winning first stage bid, then the project 1is
undertaken and agent 1 pays (B,/v,).c, while agent 2 pays ((v,=B,)/v )c. If
the sum of the second stage bid is less than the winning first stage bid, then

the project is not undertaken and agent 1 transfers v -8 -((v, -8 )/v )c to 2.



If the sum of the second stage bids is equal to the winning first stage bids,
then agent 1 can decide to follow either of the above prescriptions.
This game form 1s represented in the figure below.
Stage 1
Each bids v,
wlog say v =zv,

N

If v, =c Do not build If v,>c go to:

Stage 2

Each bids Bi

L

(a) . (b) (c)
If B +B,>v, If B +B,<v, If B +B,=v,
Build. cost to 2 Do not build. 1 chooses
is (v =B )c/v, 1 transfers to 2: either (a) or (b)
cost to 1 Vl—Bl—(vl—Bl)c/vl

1s B c/v,

In the unique Nash equilibrium in undominated strategies, each agent bids the
correct total valuation of the project in the first round and their own
valuation in the second round. The formal proof of this is presented in the
next section. The analysis of the game form is made easy by the fact that
agent 2 has a dominant strategy in the second stage which 1s to bid his or her
true valuation. (The second stage is essentially a pivotal mechanism for
agent 2.) This determines a best response for agent 1 in the second stage,
which depends on the winning first stage bid. Namely, Bl=(vl-b2)+ and build
(where z'=max(z,0) and b, is agent 2's true valuation). It then remains to
verify that the first stage equilibrium bids are the true total valuation (if
it is greater than c, and any bids not higher than c otherwise.) This follows

since agents prefer not to win with a bid higher than the true total



valuation, but do prefer to win with a bid lower than the true valuation. To
see this, first notice that the winning agent's cost c(vl-b2)+/vl is
increasing for v, >b, and non-decreasing otherwise. Thus the "winner" would
like to win with as low a bid as possible. However, also notice that if (and
only if) v<b +b,, then an agent is better off as the "winner (1 pays
c(v—b2)+/v as opposed to c(v—(v—bl)+)/v if 1 loses). Thus, no agent will wish
to "lose" when v<b,+b,. In sum the only equilibrium bids are v ,=v_=b +b,.

The cost (or transfers) are balanced by design. The unique equilibrium
results in the first best level of the public good, and shares the cost
proportionally. It is also clear that the particular cost function is not
critical in the analysis of the equilibrium. Thus, the game form will work
for a whole class of cost sharing rules which are non-decreasing in own
benefit and non-increasing in other's benefit. The equilibrium outcomes are
clearly individually rational (in fact bidding the true total valuation in the
first round and the true benefit in the second round is individually rational,
provided that no agent plays a weakly dominated strategy), but we can go
beyond that to say that each agent has a strategy which guarantees him or her
a utility of at least 0 even ignoring the other agent's actions. That
strategy is to bid 0 in the first round and to bid the true benefit in the

second round.

3) A FAMILY OF COST SHARING RULES

Denote by c the positive cost of the project and assume that n agents
share this cost. Denote by b, agent i's benefit for the project. The domain
of b, contains all non-negative numbers.

n
If the profile (b ,..,b ) is such that'E b, < c, the project will not be

1=1

undertaken and (by individual rationality) no transfer of money among players



occurs. Thus we need only to define a cost sharing rule over the domain B:
n
B={(bl,..,bn) : b,20 all i, and T bizc}
i=1

All rules discussed in the literature (see e.g. O'Neill [1982], Aumann and
Maschler [1985], Young [1987]) can be written as a mapping 7 associating
to every profile (b,,..,b_ ) in B a vector of cost shares Vi(bl,..,bn),

i=1l,..,n, and satisfying:

n

budget balance: X ¥ (b,,..,b )=c, and
1=1

core bounds: OsVi(bl,..,bn)sbi.

The "core" here refers to the possibility for any coalition to build the
project at its own cost,
Another primitive assumption is anonymity: the rule discriminates among
agents only on the basis of their benefit level. Formally, this says that by
switching b, and bJ in the profile, we exchange 7, and VJ and leave every
other 7 _ unchanged. This in turn allows us to represent the cost-sharing rule
by a single real valued function (b ;b,,...,b_).
Definition

A cost-sharing rule is a mapping 7 defined over B and with range [0,c]

and satisfying:

anonymity:  ¥(b ;b,,..,b_ ) is a symmetrical function of b,..,b

n’

budget balance: Y(b,;b_,)=c, and

1

M3

1
core bounds: 057(bi;b_i)sbi.
In addition to these three primitive properties, the two following
monotonicity properties are typically true:
(b

b .,b ) is non-increasing in b ,i=2. (1)

l; 29"
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Note that in view of budget balance and anonymity, property (1) implies that
V(bl;b_l) 1s non-decreasing in b, . The second monotonicity property 1s as
follows:

(b, =A;b,+A,bo, .. ,b )2Y(b b ,..,b )-A, for all A>0 and all beB s.t.b zA. (2)

Property (2) says that when a unit of agent l's benefit is shifted to
agent 2, agent l's share does not reduce by -more than the amount transferred.

These two properties are satisfied by the proportional cost sharing rule:

V(bl;bz,..,bn)=c bl/(bl+"'+bn)'

They also hold true for the two methods: equal cost under the core bounds
(agent i pays either a common cost-share ab,, or whichever is less), and equal
benefits under the core bounds (agent i pays either zero or b.-B, whichever is
more). They can also be checked for the talmudic solution of Aumann and
Maschler [1985], and forﬁall the examples of parametric methods discussed by
Young [1987}.

In the theorem stated in the next section, we will in fact require a
strict monotonicity version of the properties (1) and (2), thereby eliminating
some popular methods, such as equal cost and equal benefits (under core
bounds). However, a straightforward approximation argument shows that every
cost-sharing rule satisfying (1) and (2) is arbitrarily close to a rule
satisfying the following properties (3) and (4):

(b 3b_,) is decreasing in b, if b >0, and (3)

n

,)>7(b 5b_)-A for all A>0 and all b s.t.b =\ and = b >c. (4)
y < .
1=1

7(b,=A;b+A,b_,

Notice that (3) implies that (b ;b_ ) is increasing in b, if ¥ b,>0. Hence
122

Y(b =A;b,*A,b_ )<¥(b ;b_,) for all A>0 and all b in B s.t. b =A. (5)
< ’

We remark that the proportional cost-sharing rule satisfies (3) and (4),

indeed.
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4) THE MECHANISM AND THE THEOREM

We are given a cost sharing rule 7 satisfying properties (3) and (4).

In

order to construct a mechanism to implement the efficient project decision and

distribute costs according to 7, we define an auxiliary function 6 over RT.
We use the notation

XN/i='2‘xj.
J=1

We now define 6 for all vzc, b, =20, 1= 2:

9(v;b2,...,bn)=7(v—bN/l;b2,..,bn) if bN/ls v, and

6(vib ,...,b ) = (v-b ) —— if v<b .
2 n N/ 1 v N/ 1

Note that 7(c;b_l) = 0 by the core bounds so 6 is well defined at bN/1=v.

Also, check the following properties:

6(c;b_,) = c-b for all b_,, 8(v;0)=c for all v=c, and

N/1? 1?

8(by;b_,)=c for all b such that b =c.

™Mz

i=1
In view of the monotonicity properties (3), (4), and (5) for 7, we get the
following properties of 6:

8 1s increasing in o if b >0,

N/1
6(v;b_,)>8(vib,+A,b,,..,b )>6(v;b_ )-A for all A>0 and all v>0, and
§(v+A3b,+A,b ;.. b )<B(vib_ ) if by, <v.

We are ready to define the mechanism.

THE MECHANISM

Stage 1: Agents simultaneously submit v, =0
If all v, =c then do not build. Otherwise let i* be one of the agents with
highest bid. Denote v, .=v and go to stage 2.

Stage 2, given 1% and v

Agents simultaneously submit S, =0.

(6)

(7)
(8)
(9)

the
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If B,>v the project is built. Agent i, i=i*, pays 6(v,B_;) and agent i*
pays the balance (namely c-Z 8(v,B_,)). Note that agent i actually
1=1%
receives money if V<BN/1'
If By<v the project is not built. Agent i, i=1%* receives

).

ti:v_BN/i_G(o’B—i) from agent i* (so agent 1i* pays Cy,i%
It By=v, agent i* chooses either one of the above two outcomes.
THEOREM

Suppose the cost-sharing rule 7 satisfies properties (3) and (4). Then
for every profile (bl,..,bn) in RT consider the game induced by the above
mechanism at every Nash equilibrium in undominated strategiesl, the correct
decision is taken (the project is built if by>c and not built if bN<c) and the
cost-sharing rule 7 is implemented (nobody pays anything if the project is not
built; agent i pays Y(b ;b_ ) if it is built).

Moreover, if at least two agents derive positive benefits from the
project (bi>0), then in equilibrium the highest first stage bid is equal the
joint surplus, and the second stage bids reveal the agents’ true benefits.

Finally every agent can guarantee a non—-negative net utility by bidding
zero in the first stage and reporting truthfully in the second stage.

We remark that to sustain the equilibrium it is required that each agent
knows his or her own benefit, and that at least two agents who derive positive
benefit, and that at least two agents who derive positive benefits know the

total valuation.

'The mechanism can be altered so that the theorem is true for subgame perfect
equilibrium. The change would be to have agents announce B, one at a time in
stage 2, with i* moving first.
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4) PROOF QOF THE THEOREM

a) We analyze Stage 2 first.

Say that agent i* "won'" stage 1 and consider the mechanism from the point
of view of a different agent i=i%¥,
Set a=v—BN/i.
If B, >a, then agent i's utility is b -6(v,B_, ).
If B,<a, then agent i's utility is a-6(v,B_,).
If B,=a, then agent i's utility is one of these two.
Thus the truthful report B.,=b, is a dominating strategy (and the unique
undominated strategy).
Next, consider agent 1%. Given that the other agents report truthfully, agent
1%'s best reply B,, is as follows:

If by ,,w=v, then send B, ,=v-b

N/ and build if by=c, or don't build if

N/i¥
b_<c, and
n
If bN/1*>V’ then send B, =0 and build. (10)
Notice that agent i* needs only to know the joint benefit (not each and every

benefit of the other agents) to compute the best reply. We prove (10) by

checking agent i*'s payoff. We distinguish two cases.

Case 1: bN/i*SV.
Set a=v—bN/i*

If B,*>a then agent i* gets: b ,-c+Z 8(v;B, wsb_ sy i) (11)

jgi‘}:
If B, ,.<a, then agent i* gets: (n-1)(B..-v)+(n-2)b,, .+% 8(v;B.. b_.. :).
i iw N/i¥ & 17, 1%, ]
J=1
If B,: =a, then agent i* gets the best of the two above numbers.

In view of (8) (applied to the variable Bi*) the best strategy for agent 1% is
to set B,.=a. Notice that property (6) implies that:

¥ 6(v;v-b

. wrboyse )me8(vib_ ).
j=1i

N/1

Thus agent 1i* decides whether to build or not by comparing the payoffs:
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If the project is built: b _,-8(v;b_ ), and

If the project is not built: c-b, . ,=68(v,b_ ).

N/

Clearly agent i* will build if b >c and will not build if by<c, and so the
efficient decision will be implemented.

Case 2: b

LV
N/i%

As a<0, we have B .>a no matter what, so agent 1%*'s utility is (2) which
decreases in B,,. The best reply is B,,=0 and to build. Agent i*s final
payoff is then

b ¥-c+Z Q(V;B‘J)’ where Bj=bj and Ei*=0.
jgi‘:\‘

b) We analyze Stage 1

To analyze the Nash equilibrium bids in stage 1 we take care first of the
easy case in which by=c.. Since every agent can guarantee a no loss and the
joint utility is non-positive (there is no surplus from building the project)
the game is inessential (see Moulin [1986] chapter 1) and its unique Nash
equilibrium outcome is zero utility for all.

Now we assume, until the end of this proof, that b >c. Let us first take
care of the case in which all b, are zero except for b ; and b ,>c. Then in
any equilibrium, agent 1 "wins" stage 1 with a bid v,b,zv>c and in the second
stage the project is built and agent 1 pays its full cost, as the core bounds
command.

From now on we assume that at least two agents have a positive valuation
for the project (and know the total valuation.) We know from the analysis of
stage 2 that in any equilibrium the winning bid v is greater than c¢ and the
good will be produced. Note that the outcome where all bids are less than or
equal to c in stage l cannot result from an undominated Nash equilibrium
because any agent would gain by bidding v.>c given the strategies which must

be played in any undominated Nash equilibrium in stage 2.
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We now prove the following claim by contradiction.
Claim a: There is no undominated Nash equilibrium for which the winning bid v
is such that v<bg.

Suppose there is one, and call agent 1 the winner of stage l. We can
pick another agent, say agent 2, such that b >0. Agent 2's final utility at
the resulting equilibrium in stage 2 1is:

bz-e(v;BT,b ) where BT=(v—b . (12)

-1,2 N/ 1

Case 1i: vabN/l.
By sending the bid v'=b,, agent 2 wins and sends B:;=b2 in stage 2 and obtains
finally utility:

b,~6(v',b_,). (13)

2

To see that (13)>(12), we check that:
8(b ;b ,b,..) > 8(v;B b, ..).

Set 6=b,-v so that bl=BT+5, and the above inequality reads:
9(v+5,5f+5,..) < 9(v;Bf,...),

which follows from (9) and b,>0(since b +b_+..+b <(b -c)+c).

. <
Case 11: Vv bN/l.

By sending the bid v'=b agent 1 still wins and still sends the bid B =0 in

N/1’°

stage 2 to get

b,-8(v'3b,,b,,...).

2773
By contrast, with the bid v and B,=0 in stage 2 he gets
b, —c+Z Q(V,E_i) where b =0,Bi=b.1 i=1,
i=1

Check that: 6(v';b_,)+2 8(v;b_ )<c.
1=1

This follows from v'=b_, formula (6), property (7), and v<v'.

N’
The next claim is also proven by contradiction.
Claim b: There is no undominated Nash equilibrium for which the winning bid

s v, v>b,.
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Proof: Suppose that agent 1 wins stage 1 with v>b  and assume that bN/1>O.
His utility will be

bl-G(v;b_l).
If he is sole winner of stage 1 he would like to lower o a bit because 8
increases in v ((7)). So somebody else (agent 2) must have bid v as well.
Suppose that agent 1 lets agent 2 win stage'l. He gets:

b,-6(v;B,,b,..), where Bz=v-bN/2.
This is better, since 6 decreases in b, ((8)) and B >b,.
The case bN/1=0 is an exception: here 9(v,0)=c so any message b ,=zv ,>c yields
an equilibrium (as discussed previously). But they all have the right payoff.
Conclusion: All equilibria have v=b . Hence in stage 2, everybody reports
truthfully and agent 1i's final utility 1is

bi-B(v;b_i)=bi-7(bi;E_i), as required.
Finally, to complete the proof of the theorem, we need to show that the
(myopic) strategy v.=0 in stage 1 and B,=b, 1in stage 2 guarantees a non-
negative utility to agent 1, no matter what other players do.
This is easily checked. For instance, if the projecF is built, agent 1i's
final utility is b -6(v,B_) (14)
If vsBN/.1 the "cost share" 8 is negative so that agent i's final utility is
positive. If szN/i then the cost share 6 is bounded above (in view of the
core bounds):

6(v,B_)=Y(v=By , 3B )=v=By
thus the utility level (l4) is worth b, +By,,~ v which must be non-negative

when the project 1is built.
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