A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Gilboa, Itzhak; Monderer, Dov

Working Paper
Quasi-Values on Subspaces

Discussion Paper, No. 855

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management

Science, Northwestern University

Suggested Citation: Gilboa, Itzhak; Monderer, Dov (1989) : Quasi-Values on Subspaces, Discussion
Paper, No. 855, Northwestern University, Kellogg School of Management, Center for Mathematical
Studies in Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/221214

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/221214
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 855
QUASI-VALUES ON SUBSPACES
by
Iizhak Gilboa'

and
*ox
Dov Monderer

September 1989

" Department of Managerial Economics and Decision Sciences, J.L. Kellogg Graduate School of
Management, Northwestern University, Evanston, IL 60208.

" Department of Industrial Engineering and Management. The Technion, Haifa 32000, Israel,
visiting Department of Managerial Economics and Decision Sciences, J.L. Kellogg Graduate
School of Management, Northwestern University, Evanston, IL 60208.



Abstract

Quasi-values are operators satisfying all axioms of the Shapley value
with the possible exception of symmetry. We introduce the characterization
and extendability problems for quasi-values on linear subspaces of games,
provide equivalence theorems for these problems, and show that a quasi-value
on a subspace Q is extendable to the space of all games iff it is extendable
to Q + Sp{u} for every game u.

Finally, we characterize restrictable subspaces and solve the

characterization problem for those which are also monotone.



1. Introduction

Quasi-values are solutions of TU cooperative games that satisfy all the
axioms of a value, except possibly the symmetry axiom. A complete
characterization of quasi-values was given in Weber (1988): "¢ is a quasi-
value iff there exists a probability distribution over the set of orders of
the players such that yv(i) is the expected marginal distribution of player
i to its predecessors."”

Here we deal with quasi-values defined on subspaces of games. Two main
questions are discussed:

(i) The characterization problem. Given a subspace of games Q,

find a finite number of linear conditions on operators
¢: Q » R (where n is the number of players) that are
necessary and sufficient to ensure that ¢ is a quasi-value.

(ii) The extension problem. Given a quasi-value on a subspace of

games, find a finite number of linear conditions that are
necessary and sufficient for its extendability to a quasi-
value on the space of all games.

This work was motivated by our attempt to solve the binary stochastic
choice problem, which has drawn the attention of many economics and
psychologists in the last five decades. For a description of this problem,
many of its interpretations, and additional references, the reader is
referred to Fishburn (1988). The technical description of the problem is
the following.

Find a finite number of linear conditions on vectors 8 = (p%). that

i#j

are necessary and sufficient for the existence of a probability distribution

Pr on the set of all orders of N = {1,2,...,n} such that



P, = Pr(i >» j) Vi=#3j,

where > denotes a generic order on N.

Monderer (1989) pointed out that the binary stochastic choice problem
is equivalent to the extension problem for quasi-values on 02’ where Q2 is
the space spanned by all unanimity games on at most two-element sets. He
also showed that the characterization problem for quasi-values on the space
of all games turns out to be equivalent to another problem arising in social
choice and psychology, the stochastic choice problem. This problem was
formulated by Block and Marschak (1966), and was solved by Falmagne (1978).
Monderer (1989) gave an independent game theory-based proof utilizing
Weber's characterization mentioned above. Lately, Gilboa and Monderer
(1989) used the game theoretic approach to obtain additional partial
progress on the binary stochastic choice problem.

Our main results are the following: we formulate a condition c(u) for
every game u. [t turns out that a linear operator ¢ on a subspace Q is a
quasi-value iff it satisfies c(u) for all u € Q. Furthermore, every quasi-
value ¢ is extendable to a quasi-value over the space of all games iff it
satisfies c(u) for all u ¢ Q.

Using the above, we also prove that a quasi-value on Q can be extended
to a quasi-value on the space of all games iff it can be extended to a
quasi-value on Q + u for all u ¢ Q, where Q + u is the linear space spanned
by Q and u. These results are to be found in Section 2.

Next we solve the characterization problem for monotone restrictable

subspaces. (Restrictable subspaces were studied by Neyman (1989) and Gilboa
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(1989); monotonicity of a restrictable subspace is defined in Section 3.
(The definition makes sense only in view of Lemma 3.1, which characterizes

restrictable subspaces.)

2. General Subspaces

We start with some preliminaries. Let N = {(1,2,...,n} be the set of
players. The set of all TU cooperative games on N will be denoted by G.
The subspace of all additive games will be denoted by A. A will be
identified with the Euclidean space R" jn the usual way. Por x,y € R" we
will write x 2 y, if X4 > A Vie€N.

The set of all one-to-one functions 6: N - N (i.e., the set of all
permutations) will be denoted by R.

x
For each v € G we define two vectors, v, and V in R" as follows:

Vel(l) = ninsQN\i (vis U i) - v(s)), ¥V i €N,
and
v¥(i) = maxsgN\i (vis U i) - v(s)), ¥ i € N.

Throughout this paper, Q will denote a linear subspace of G. An

operator, $: Q - A is called a Milnor operator if

1A

Yv < v¥, ¥ v €Q.

A quasi-value on Q is a linear efficient Milnor operator $: Q - A. If Q
contains the additive games, then by Monderer (1988), a linear operator ¢:

Q - A is a Milnor operator iff it is a positive projection. So, for
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subspaces Q 2 A, and in particular for Q = G, our definition coincides with
the usual definition of quasi—values.1
Let Pr be a probability distribution over the set, R, of permutations.
Following Weber (1988), define the random-order value wPr on G as follows:
[v(si U i) - v(si)lpr(e),
e <]

YppV(i) = Lgeg

where

i

Se

{j € N: 8j < 8i}.
Weber (1988) proved that $: G - A is a quasi-value iff it is a random-order
value.

Given a function ¢: Q - A and u € G, we say that the condition c(u) is
satisfied by ¢ if

1_ u)*(i) + u(N), Vv vl,...,v € G.

cw: T win) < g (v

We now state the following:

Theorem A: Let $: Q - A be a linear operator. Then ¥ is a quasi-value iff

c(u) holds for all u € Q. //

Theorem B: Let $: Q - A be a quasi-value. Then ¢ can be extended to a

quasi—vaiue on G iff c(u) holds for all u ¢ Q. //

Theorem C: Let y: Q = A be a quasi-value. Then ¥ can be extended to a

1 . .
Quasi-values are called also nonsymmetric values.
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quasi-value on G iff ¢ can be extended to a quasi-value on Q + u for all

u ¢ Q. //

Note that Theorem A cannot be considered as a solution to our

characterization problem because c(u) involves infinitely many linear

inequalities. Similarly, Theorem B does not solve the extension problenm.

Proof of Theorem A: Let $: Q - A be a quasi-value, and let u € Q. As ¥ is

a Milnor operator, we have:
(2.1) wivl - u)(i) < (v} - w*(i) ¥ i € N.
Summation of (2.1) over i € N yields:

(2.2) £, wi) o ol - o)+ 1 v,

By the efficiency axiom,

L., Yu(i) = $u(N) = u(N),
and whence c(u) holds.

As for the converse, let $: Q - A be a linear operator s.t. c(u) holds
for all u € Q. We have to show that ¢ is a Milnor and efficient operator.

Substitute in c(u): vl - v, vj =0V j# i, and u = 0. This gives us:

Yv(i) < v¥(i) YveQand V ie€N.



Applying the same arguments to -v instead of v, while observing that
(-v)* = -v,, yields (i) > v (i) Vv eQand ¥V i € N. Therefore, ¢ is a
Milnor operator. To establish efficiency, substitute in c(u): vi = v

¥V ie€eN, and u = v. This yields:
WN) = I¥_ . w(i) < v(§).

Applying the same arguments to -v instead of v proves that ¢ is efficient,
which completes the proof of Theorem A.
The following lemma will be used in the proof of Theorem B. It is,

however, interesting in its own right.
Lemma 2.1: Let ¢: Q - A be a quasi-value, and let u € Q. Then ¢ can be
extended to a quasi-value on the space Q + u spanned by Q and u iff c(u) and

c(-u) hold.

Proof: The "only if" part follows from Theorem A. Suppose now that c(u)

and c{(-u) hold. Define y = (yl,yz,..,yn) and z = (zl.zz.....zn) as follows:
Vi = suP,eq (yv(i) - (v - u)*(i)) vV i € N,
and
o £y _ . .
zZy 1nfVEQ ((v + u)*(i) yv(i)) Vi € N.

Claim: y and z are well defined, v < z, and



n
i=1

n
< <
vi S ull) =Ly 2.

X

Suppose we have already proved the claim. Choose any x € R" that satisfies

y £ x <z and x(N) = u(N), and define wu: Q + u=A by:

wu(v +oau) =¢yv + ax ¥V v € Q, and V real number a.

We will show that wu is a quasi-value. Obviously, wu is linear and

efficient. To prove that wu is a Milnor operator we have to show that

(2.4) (v +au), Syv + ax < (v + au)* V a,v.

Obviously, for all w € G: (-w)* = w, and (aw)* = aw* for a > 0. Therefore,

(2.4) is equivalent to the following two sets of inequalities:

(2.5) yv - x € (v -u)* ¥vveaq,
and
(2.6) v + Xx £ (v + u)* ¥ v eqQ.

Equation (2.5) holds because x > y, and (2.6) holds because x < z.
Therefore, yu is a quasi-value.
We still have to prove the claim.

Proof of Claim: For each v € Q substitute in c(u): v1 =v, and v- =0
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V j # i. Therefore, yv(i) = (v - u)*(i) < g"

j=1'j$i ("U)*(j) + U(N). Hence,

y is well defined. Similarly, z is proved to be well defined (using the

condition c(-u)). To prove that y £ z it suffices to show that for every

(2.7) wli(i) - (v! - ) € (v8 « wr) - wii).

Indeed, because ¥ is a Milnor operator,

(2.8) wivl + v3) (i) < (v o+ vE)*(d)

= ((vh o) s (v R < (v - wx) + (v s u)x(D),

by the obvious property of the * operator: (v + w)* < v* + w*¥ ¥ v,w € G.
Rearranging terms in (2.8) yields (2.7). Finally, substituting vi = v
for all i in c(u) and c(-u) yields Ei[wV(i) - (v - u)*(i)] € u(N) <

Zi[(v + u)*(i) - yv(i)] for all v, whence Ziyi < u(N) < Zi zi follows. This

completes the proof of Lemma 2.1.

Proof of Theorem B: The "only if" part follows from Lemma 2.1. As for the

converse, suppose c(u) holds for all u € Q. For 8 € R, denote by We the

quasi-value defined on Q by the permutation 6. that is,

wev(i) = v({j € N: 8j £6i}) - v({j € N: 8] < 8i}).

By the characterization theorem of quasi-values on G (Weber (1988)), it

suffices to show that ¢ belongs to the convex hull of {we; 8 € R}. By
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standard convex analysis arguments, ¢ belongs to the convex hull of
{we: 8 € R} iff it satisfies every linear inequality satisfied by

{wele € R}. These may be summarized in:

n i, . n i, 1 2 n
. <
(2.9) Zi=1 yv (i) < maxg o Zi=1 YoV (i) ¥ v ,v5, ..., v € Q.
Let then vl,vz,...,vn € Q. We will show that (2.9) holds. Define u € G by:

u(S) - max wev;(i), ¥ScHN,

8€R Z:iGS

where v;(T) -vi(SNT)V¥TECN.
If u € Q, then c(u) holds because of our assumption. If u € Q, then
c(u) holds by Theorem A. Thus, we may use c(u) to prove (2.9). Note that
it suffices to show
(v - u)*(i) S0V i €N,
or, equivalently, to show that

(2.10) u(S U i) - u(s) 2vi(sui)-vi(s), vieN, VS cN.

Let then i € N and S € N\i. Denote s = #S. Let 8 € R satisfy:

u(s) = Ijeq $evi(3).

Denote by T the element of R for which
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8(S U 1) = Tyequy wpvgy; ()

and let © be a permutation such that

ek > 8i, Yk ¢ SU i
8i > 8j, ¥V jes
and

8j > 8k <=> 8j > 8k, V j,k € S.
Then

L J
u(s U i) = zjeSUi - SU1(J) 2 ZJGSUl vau; (3)

)

=L

jes ¥ vy () v vg, ().
()

e

However, for j € S, ¢ vj

_ J
SUi(j) = wévs(j), so that

J -
Noting that

= v(S Ui) - v(S)

¥ Ve (i)
8 SUi

completes the proof. //
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Note that Theorem B and Lemma 2.1 prove Theorem C.

3. Restrictable Subspaces

Recall that for each v € G and S € N the game v_ is defined by vS(T) =

S

VISNT) YT €N. Q is restrictable if Vg € Q ¥V S €N whenever v € Q.
Let {wT: T # §} be the linear base of G consisting of all unanimity

games. That is:

1, SOT

T -
w (S) = {
0, otherwise.

For each £ ¢ 2N\{ﬂ) let Q; be the linear space spanned by {wT: T € £}. Note

that

(3.1) w., = {
Therefore, QZ is a restrictable space.

Lemma 3.1: Q is restrictable iff Q = Q. for some L C 2N\(¢}.

L

Proof: The "if" part is true by (3.1). As for the converse, denote
Y = {T: w € Q).

We will show that Q = QZ’

all v € Q, if the representation of v in the base {wT}T

For this purpose, it suffices to show that for

T
N is v =% W,

then wT € Q whenever aT = 0.

We will prove the latter claim by an induction on the number k of sets
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T for which GT # 0. Por k

1 the claim is trivial. Suppose the claim

H

holds for k < p, and let v L aTwT satisfy v € Q and #(T: . # 0} = P. Let
T0 be a minimal set (w.r.t. inclusion) such that o # 0. By (3.1) Vp =
T0 T0 T. 0 0
aTOw , and hence w € Q. Denote v0 = v - aTow Then v0 € Q, v0 = ZT:TO
aTwT, and #{T # TO: aT # 0} = P - 1. Therefore, by the induction hypothesis
T

w €Q, YT # T, for which o # 0. //

0
We now turn to formulate the characterization problem for restrictable
spaces, and to solve it for the class of monotone restrictable spaces. Let
N i .
c =
L c2\{@}). Let g (B (T))tez;ieN be a vector of real numbers. Define a

linear operator $_: Q. -+ A by defining it on the base {wT: T € L} as

g L

follows:

waT(i) -gl(1), vien.

The Characterization Problem on QE

Find a finite number of linear inequalities on g that are necessary and

sufficient for ¥_ to be a quasi-value on QZ'

B

Obvious necessary conditions are:

]
o

(3.2) gl(T) WigTect,

(3.3) gl(1)

v
o

VieTe¢eTL,

and

(3.4) Lier ﬁi(T) =1, VTEe€E.
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In some trivial cases the conditions (3.2)-(3.4) are also sufficient. E.g.,
if forall S2#T €L, SZTand TZS. Aclass E < 2M(g) is monotone if
Tekand SOT imply S € £. A restrictable subspace QE is said to be
monotone if £ is such. Let E be a monotone class. For each i € T € L

define:

i
(3.5) CB(T) = Ek
where t = #T.

Theorem D: Let ¥ be a monotone class, and let B = (Bi(T)) Then ¢

TeLr;ieN’ <]
is a quasi-value on QZ iff B satisfies (3.2)-(3.4), and the following

conditions:
(3.6) c;('r) >0, VieTer,
and
i .
(3.7) Z(Tei:ieT) cB(T) < 1, for every i € N.
Proof
Necessity

Suppose WB is a quasi-value. We have to show that (3.6) and (3.7)

hold.

For each T # N define the game vT as follows:
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(where c denotes strict inclusion).

It is well known, and also easily verified, that for every B c N

B _ «n o k-t+l A

(3.8) VU Ly D) ZlAl=k;AgB wo

Fix Te £ and i € T. Then by (3.8) vT\1 = vI’l + vg'l, where
T,1i k-t+1 A

i _ «n
Vit T By (D) Z{AIIA|=k;A§T} w

and
vl = gy, (D L(A|)A|=k; i€ADT\i) W,
Note that
vilsun - vithes) = vMs U - T s
for all S € N\i, whence (vl)*(i) > 0. Since Q is monotone, v$’i € Q and the

Milnor condition yields wgv¥'i(i) > 0. However, vaI’l(i) = c;(T), and
(3.6) follows.

To prove (3.7), let there be given i € N. Denote

- v =T vT.i
{TeL:i€eT} "1

By linearity,
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(3.9) L.

Yev(1) = Lirer.ier)
On the other hand, for each i € S € £, v(S) - v(S\i) = 1 (because

vI'l(S) - vI’i(S/i) =1 iff S = T), and by monotonicity of Q for each
iesS ¢k, v(S) - v(S\i) = 0. Therefore, v*¥(i) £ 1. Combining this with

(3.9) and the Milnor condition yields (3.7).

Sufficiency

Y is obviously linear and efficient. We proceed to prove that it is a

Milnor operator. Fix i € N. Denote

™
i

{Tek:ie€T)

i
and
ii ={Tek:1i¢T).
Obviously,
Q- = Q- + Q_
T Zi Ei

As va(i) = v¥(i) = 0 for all v € Q_ (by (3.2)), it suffices to show that

L,
i

WBV(i) < v¥(i), Vv e in.

It is easily verifiable that {vﬁ'i: i €T e} is a linear base for QE .
i
_ T,i
Let v = ZieTeE dTv1 Then
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®( 3 =
v¥(i) max{o0, max; ey dT}.

On the other hand,
L i i .
WBv(l) = ZieTeZ ch (T) < max{O,maxieTez dT} ZieTeE c (T) < v*(i)

by (3.6) and (3.7).

Therefore, ¥ is a Milnor operator. //
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