~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Gilboa, Itzhak

Working Paper
A Note on the Consistency of Game Theory

Discussion Paper, No. 847

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Gilboa, Itzhak (1989) : A Note on the Consistency of Game Theory, Discussion
Paper, No. 847, Northwestern University, Kellogg School of Management, Center for Mathematical
Studies in Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/221206

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/221206
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 847
A NOTE ON THE CONSISTENCY OF GAME THEORY'
by
Itzhak Gilboa™™

July 1989

*I wish to thank Philip Reny and Cristina Bicchieri for the discussions
which motivated this note, and the encouragement to write it down. I am also

grateful to Robert Aumann, Ehud Kalai, Dov Samet, Moshe Vardi and Lenore Zuck
for helpful discussions.

**KGSM/MEDS, Northwestern University, 2001 Sheridan Road, Leverone Hall,
Evanston, Illinois 60208,



Abstract

It has been claimed in the literature that classical game theory is
inconsistent, since it (implicitly) assumes that all players are rational
and that this is common knowledge among them, while these two assumptions
seem to be contradictory. The purpose of this note is to suggest a
framework which allows the formalization of these implicit axioms in a
consistent way.

The main idea is to distinguish between conceivable and possible states
of the world, while both exist as formal objects in the theory. Thus we may
require that the players would make rational choices only at possible states
of the world, and that this fact be common knowledge at all (conceivable)
states, where the impossible ones are present in the model for the sole
purpose of formally presenting the players’ reasoning.

It seems that the new concept of possible states of the world is an

analytical tool which may have further (theoretical) applications.









1. Motivation

Let us consider the two-person game given in figure 1. Reny (1988),
following Kreps, Milgrom, Roberts and Wilson (1982) claimed that one cannot
assume that rationality is common belief, let alone common knowledge, at
every node of the game, since should player II arrive at node 2 his/her
belief that player I is rational would be inconsistent with player I's
actual behavior at node I, if rationality of both were indeed common belief

at this node.

1 (1)
/
(1,0) 2 (IT)
/
(0,2) 3.(D)
/ N\

(3,0) (0,3)

Figure 1

(Arabic numbers denote decision nodes, Latin ones - players)

Bicchieri (1988a,b,c and 1989) has carried this argument one step
further to claim that traditional game theory, implicitly assuming common
knowledge of rationality, is inconsistent. (See also Bonanno (1988).)

While game theorists seem to be willing to admit that common knowledge
of rationality is not a very likely assumption in certain contexts (see

Selten (1978), Rosenthal (1981), Kreps et al. (1982), Aumann (1988), Aumann-
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Sorin (1989) and the literature on bounded rationality), most of them would
probably find the claim of inconsistency rather disturbing, partly because
there are situations in which these assumptions are quite reasonable, and
partly because being unrealistic is hardly as strong a flaw of a
mathematical model as being inconsistent (in fact, the former sometimes
seems to be a merit.) We are therefore challenged to come up with a viable
mathematical model that would solve the problem explained above.

We introduce here two possible answers; the first, which we find
somewhat unsatisfactory, is along the lines of traditional game theory,

while the second uses the new concept of "possible" states of the world.

2. The Traditional Reply

We can simply write down the axioms of rationality being common
knowledge at any state of the world--following Aumann (1974,1976,1987) in
some formalized form as suggested, say, in Gilboa (1988) or Kaneko (1987).
The meaning of "rationality" here may be somewhat unclear, but let us
assume, for simplicity, that it consists of a set of axioms specifying what
would each player do given any possible knowledge, and that this
specification is, indeed, what we expect it to be (Later on we will present
a slightly more sophisticated version of this axiom.) Then we can translate
the well-known backward-induction argument to a theorem stating that in the
game above there is a single state of the world at which player I plays left
at node 1, thus terminating not only the game but also the discussion. The
questions of why did player I play that way, what he/she thought player II
would think should I play right and so forth are meaningless in this model;

they may be very interesting as questions about the model, suggesting the



3
unreasonability of its assumptions, but they cannot imply that the model is
inconsistent.

The difficulty with'this answer is that the model one ends up with does
not seem to capture the players’ reasoning, even if the scenario dictated by
it is actually followed by them. It is somewhat disturbing that there are
no states of the world corresponding to the other nodes of the game tree;
after all, it seems conceivable that they would materialize, even if we
ended up convincing ourselves that this cannot be the case. Indeed, one has
to think about those possibilities in order to exclude them. Without having
a state of the world as a "name" for each such possibility we cannot claim
to have formalized the implicit assumption of game theory; in the model
presented above it was only the outside observer who reasoned and understood

the backward induction; the players themselves did not.

3. A Digression: Counterfactuals and Proofs by Negation

Noting that the (standard) model described above, flawed as it is, was
rich enough to allow for a proof of the "rational" outcome, we may ask what
distinguishes this perfectly valid proof-by-negation from the counterfactual
argument we would like our players to conduct. The answer suggested by the
discussion above is quite simple: both a counterfactual argument and a
proof by negation may be described as considering a statement (not p) in the
presence of the statements (not p implies q) and (not q), from which p is
deduced. However, we may distinguish between them as follows: if the
latter two statements are tautologies, that is, if they are true at each and
every conceivable state of the world--then this is a mathematical proof by

negation; if, on the other hand, there are conceivable states of the world
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at which this argument does not hold--this is a counterfactual reasoning.

4. An Alternative Reply

The obvious reply which the above discussion seems to suggest is the
following: we have to begin with a set of conceivable states of the world
S, which is large enough to describe any outcome of the game. Thus, if we
analyze a game in an extensive form, there will be at least as many states
of the world as there are terminal nodes ("leaves"), and in a normal-form
analysis--as many as entries in the (super-)matrix of the game. (In fact,
one would have to have more states of the world, since for each player a
state of the world has to specify what would occur as a result of every
possible action of this player, and not only of the one actually chosen at
it. However, for simplicity we may ignore the counterfactual elements in
the states of the world.) Events, surprisingly enough, will be subsets of
states of the world, and in particular, every node in the game tree will
correspond to an event containing all the leaves that may be reached from
it.

The main novelty is the following: we will use a non-empty subset P of
S, interpreted as the set of possible states, as a formal object in our
model, which may be an object of players’ knowledge. Thus, in a model such
as Gilboa (1988), it will be meaningful to ask, say, whether at a certain
state of the world a certain player considers another state (or the same
one) to be possible or not, and so forth. Adhering to Savage's (1954)
principle of a state-of-the-world "resolving all uncertainty,” the answers
to all such questions will be a part of the description of a state,

including states which are conceivable but not possible according to some



states (possibly - not even in the possible set according to themselves.)

We will also find it useful to extend the definition of possibility to
events. Again, in a very general model each state may define each event to
be possible or not, without any relationship to the possible states of the
world. However, we will extend the consistency assumptions in Gilboa
(1988), which say, for instance, that every pair of states of the world
define any third one in the same way, to include the following:

1. According to every state of the world, an event is possible if and
only if it has a non-empty intersection with the set of possible states.

2. The definition of the set P is identical across states. (Note
that this assumption also implies that the definition of P is common
knowledge.)

3. The event P is common knowledge at every state in it. (One may
require that P be common knowledge over all S, thereby making the states of
the world outside it inconsistent since what players know at those states
need no longer be true at them; this inconsistency should not pose a
problem: one simply has to modify the axiom saying that what a player knows

is true to apply only to possible states of the world.)

A set P with the above properties still does not enjoy the special
status we would like it to have: so far, "possible" is just a word that we
--the game theorists--and the players can use in the same way. The meaning
of this word will be given to it by the actual behavior of both the players
and ourselves. (Although, to a certain extent, assumption (3) already says
something about the set P beyond its mere definition.) As we will shortly

see, the set P will be incorporated into game-theoretic axioms to make it



meaningful to the players; however, we, as outside observers, will have to
be interested in this set P as well. Namely, a fact that is proven to hold
at each state of the world in P would have to be construed as "true," i.e.,
as an implication of the theory.

Assuming that the players are endowed with a reasonable reasoning
ability, which is also common knowledge, we deduce that whatever we can
prove to be impossible (namely, whatever state of the world we can prove 1is
not in P) can also be proven by the players, and has to coincide with their
knowledge of the definition of P. However, the definition of P--as known to
the players--may be more restrictive. There may be sets satisfying our
axioms, the occurrence of which cannot be proved from game-theoretic axioms.
To avoid unwarranted exclusion of states we have to explicitly assume that
all players consider as possible every state that cannot be proved
impossible by game-theoretic assumptions. (Which are also assumed to be
common knowledge, as in Gilboa-Schmeidler (1988).) We will assume that these
assumptions are parameterized by an event A: for every A (to be thought of
as a candidate for the set of possible states P) each axiom may have a
different meaning. (This will hopefully become clearer in the example of
the "common sense" axiom below.)

We are therefore led to the following axiom on the set P: there is a
finite sequence S = A0 DA, D> ...D Ak = P such that Ai can be proven from

1
Ai-l and the game-theoretic assumptions for Ai-l (1 =i < k), and this chain
is maximal with respect to this property. (I.e., no proper subset of P can
be proved from P and the game-theoretic assumptions corresponding to P.)

We can now describe a notion of rationality which may be common

knowledge without leading to a contradiction: this assumption is close to



the "common sense" assumption in Gilboa-Schmeidler (1988), and it basically
says that players do not choose dominated strategies. We have to be more
specific here and understand domination in the following way: an action x
(of player i) is dominated by an action y (of the same player) at a decision
node n with respect to a set A if at n player i knows that at every state of
the world compatible with n (i.e., contained in the event associated with
n), which is also in A, the action y guarantees him/her a strictly higher
payoff than x. With this definition in mind, let us now define the axiom of
common sense with respect to A to be the following: for every player i, and
every node n, if (the event associated with) n is A-possible (namely,
intersects A) and if an action x is strictly dominated by an action y at n
with respect to A, then if i1 reaches n, i will not choose x.

Let us assume that the only game-theoretic assumptions are common
sense and common knowledge (of all the model’s assumptions, hence also of
itself.) Then it is quite straightforward to translate the well-known
backward induction arguments to show that the undominated solutions dictated
by them constitute a valid P. Moreover, in the game given above, as in
every finite game, P is unique. (In perfect-information extensive-form
games without "ties," the unique P is a singleton.)

Thus, we are able to reconstruct the backward induction argument by
proving (outside the model, but if you will--also inside it) that the only
consistent set P is the singleton at which player I plays left at node 1.
The main point is that the contradiction disappears since nodes 2 and 3 are
impossible, (and this is common knowledge,) so that the rationality
assumption is vacuously satisfied at these nodes. Finally, the advantage

this admittedly more cumbersome model has over the previous one is that it
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is rich enough to describe every relevant and conceivable aspect of each
player’s decision problem, and thus to formally describe the players’

reasoning.

5. Possible Applications of the Possible Set

5.1 Weak Domination

Let us consider weak domination, instead of strict one, in the

definition of "common sense." This will serve as another example of the

possibility set, showing that it may not be unique, and suggesting a certain

refinement of it. The following discussion can also be viewed as another
theoretical application of the notion of the possibility set, in which it
provides some further insight on the elimination of weakly dominated
strategies.

Consider the following normal-form game:

player II

T (1,1) (1,1)

player I

B (1,1) (0,0)

Figure 2

Obviously, player I's B is weakly dominated by T, and similarly player

Il's R is weakly dominated by L. There are three valid possibility sets:



Pl = {(T,L),(T,R)}, P2 = {(T,L),(B,L)} and P3 = {(T,L)}. (In all three
cases the chain of reasoning is of length 1. However, one may decide at the
first stage whether to use the common sense assumption to eliminate both B
and R, or only one of them. At any rate, after the first elimination the
resulting strategies define a possibility set.)

At first glance, P3 seems to be the most appealing one, as it is the
only symmetric set (which is a natural choice for a symmetric game,) and the
outcome it predicts seems plausible. However, upon a more careful scrutiny
its validity as exhausting all that may possibly occur appears somewhat
dubious: precisely if the players know (as opposed to "believe with a high
probability") that (T,L) should be the outcome of the game, this knowledge
cannot be justified: 1if player I, for instance, actually knows that player
IT is about to play L, there is no reason for him not to play B. 1In a way,
the very knowledge of the "theory" represented by P3 casts a shadow of doubt
on this theory. (Note that this is a considerably less fundamental flaw
than being a "self-refuting theory" in the sense of Bicchieri (1989): here
the theory is logically consistent; it only seems somewhat arbitrary.)

If we wish to avoid this type of problem we can, in general, propose
the following definition: a possibility set is maximal if it is maximal

with respect to set inclusion. Obviously, P, is not maximal, while P, and

3 1

P, are.

2

The fact that common knowledge of common sense--with weak domination
rather than strict one--does not yield a unique maximal possibility set, nor
a symmetric one for symmetric games, may be considered a theoretical
disadvantage of weak domination. Naturally, this is closely related to the

fact that weak domination is not inherited by subgames, which also implies
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that reduced games (with respect to it) are not unique. See Gilboa-Kalai-

Zemel (1989) for further discussion.

5.2 Imperfectly Rational Plavers

The framework described above may be used to describe other models,
and, in particular, ones which make less stringent rationality assumptions.
For instance, by relaxing the assumption that the possibility set is common
knowledge, one may assume that all players are actually rational, and even
that this fact is known by all to a certain degree, but that it fails to be
common knowledge. Introducing probability into the model may also allow us
to quantify the extent of irrationality by the subjective probabilities of
those states of the world (which are, in fact, impossible) and the level of
knowledge at which they occur. (For instance, one may argue that a system
of beliefs in which every player is actually rational, but suspects the
others of being irrational, is, on the whole, "more rational" than one in
which the players actually are irrational.)

These ideas have, of course, been suggested before (see, for instance,
Aumann (1988)), but it seems it would be difficult to formally capture the
distinction between violations of rationality occurring at different levels
of knowledge without having the distinction between "possible" and

"conceivable" states of the world as a basis.
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