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INFINITE HISTORIES AND STEADY ORBITS IN REPEATED GAMES

Abstract

We study a model of repeated games with the following features:

(a) Infinite Histories: The game has been played since days of yore,

or is so perceived by the players;

(b) Turing Machines with Memory: Since regular Turing machines

coincide with bounded recall strategies (in the presence of infinite
histories), we endow them with "external” memory;

(c) Nonstrategic Players: The players ignore complicated strategic

considerations and speculations about them. Instead, each player uses
his/her machine to update some statistics regarding the others' behavior,
and chooses a best response to observed behavior.

Relying on these assumptions, we define a solution concept for the one
shot game, called steady orbit. The (closure of the) set of steady orbits
payoffs strictly includes the convex hull of the Nash equilibria payoffs and
is strictly included in the correlated equilibria payoffs.

Assumptions (a)-(c) above are independent to a large extent. 1In
particular, one may define steady orbits without explicitly dealing with

histories or machines.



INFINITE HISTORIES AND STEADY ORBITS IN REPEATED GAMES

"The thing that hath been, it is that which
shall be; and that which is done is that which
shall be done: and there is no new thing
under the sun. "
Ecclesiastes 1:9

1. Introduction

Multi-period decision problems in which the decision maker is faced
with uncertainty are prevalent both in the scientific literature and in what
is sometimes referred to as the "real world.” 1In fact, it is difficult to
give examples of "real world" problems faced by individuals or organizations
which do not involve the time dimension or some uncertainty. Many models
dealing with such problems may be found in the classical literature on
statistical inference, dynamic programming, and repeated games. The
strategies devised in these contexts tend to be very complex. Indeed, in
many cases it became unlikely to assume that decision makers do use such
strategies. Following Simon (1972, 1978), who introduced the idea that
decision makers are only boundedly rational, game theorists have recently
suggested models in which computational models such as finite automata and
Turing machines are used to capture the intuitive notion that the decision
maker can implement only strategies with a bounded complexity (defined in
the appropriate sense). (See Aumann (1981), Rubinstein (1986), Neyman
(1984), Ben Porath (1985), Kalai and Stanford (1985, 1986), Megiddo and
Wigderson (1985), Binmore (1986), Gilboa (1986), Gilboa and Samet (1987),
Abreu and Rubinstein (1987), Stanford (1987), and others.)

The paper studies three new assumptions.

a. Infinite History. In many cases of interest, there is no

"stage 0." Organizations and individuals alike have to solve problems for
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which a certain history is already given. Even if an initial stage did
occur somewhere in the past, the decision makers tend to perceive long
histories as infinite ones. This is especially true for organizations,
where a certain decision maker has typically assumed his/her position long
after the organization was founded. (See also Schwartz (1974) for a

discussion of and results on repeated games with infinite histories.)

b. Turing Machines with Memory. A very simple model presented in the
sequel shows that in the context of infinite histories, a decision maker's
strategy which is implementable by a Turing machine which always halts is no
more than a finite recall strategy, i.e., each choice is determined by the
last k periods for some k > 0. We therefore suggest strengthening the
computational model by allowing some memory to be carried over from one
stage to the next.

c. Non-Strategic Players. We introduce a behavioral assumption that

captures a different dimension of bounded rationality: each player
considers the behavior of all other players as a Nature phenomenon, rather
than strategic players. Observing a certain history, each player assumes
that the others are about to play in the same way they have played in the
past after similar histories. This assumption, which may also be made in a
repeated game with "stage 0," is supposed to express a somewhat simplistic
approach of an individual player: not knowing the other players' repeated
games strategies, rather than getting involved in sophisticated reasoning
about them and probability distributions on these huge spaces, the player
simply assumes that they are as close to constant as possible. Of course,
it would be silly on the part of the player to assume they are actually

constant when he/she has contradictory evidence. However, the player
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chooses to believe in the simplest theory that explains his/her
observations, namely, that the other players' behavior after each
sub-history this player can remember is governed by a fixed distribution
function. Based on past experience, the player would compute an estimate of
this distribution and choose a best response action (or mixed action) with

respect to it.

Applying these three assumptions, we consider "steady orbits" that are
defined, roughly, as follows: given a one-shot game and an integer for each
player, indicating the memory length of this player, each player is allowed
to choose a (possibly different) mixed strategy (in the one-shot game) for
every possible sub-history he/she may observe. Given these choices, we can
compute, for every history, the probability of each play of the game in the
next stage. Thus, we have a Markov chain, the states of which are (finite)
sub-histories.

Assuming that the game is played long enough with these strategies,
each player would have the chance to estimate the distribution over the
other players' moves (given his memory) quite precisely, and should his/her
strategies fail to be best response, he/she would change it. A steady orbit
would therefore be defined, loosely, as a selection of strategies that are a
fixed point of this process.

We continue to study the set of payoffs that correspond to steady
orbits. We prove that the closure of this set strictly includes the convex
hull of Nash equilibria payoffs and is strictly included in the correlated
equilibria payoffs.

We note that the defintion of steady orbits in repeated games is
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independent of the preceding analysis. Thus, one may study steady orbits by
themselves, where a conceptual basis may be given by assumption (c) above
and the assumption of bounded recall. (In this context, see also Lehrer
(1988a,b) and Aumann-Sorin (1989).)

In Section 2 we present the basic model. This includes only one
decision maker who confronts uncertainty (modeled as "nature's choice”"). We
also suppose that the same decision maker has lived since days of yore and
will live to eternity, and that both he/she and nature choose their actions
without randomization. This very primitive model captures some of the
important features of a model with infinite history and these are discussed
in this section.

Section 3 introduces bounded rationality into the model by defining,
discussing and studying the implications of recursive strategies. Its main
point is that the standard model of Turing machine is not powerful enough to
implement some intuitively simple strategies in the presence of infinite
histories.

Section 4 briefly comments on the extension of the basic model to mixed
moves. The definition of "Turing machine with memory" is given in Section
5. We also prove there that there are €-optimal Turing machines with memory
for a decision maker facing a Nature phenomenon that does not "remember”
more than he/she does.

In Section 6 we apply these results as a conceptual basis for the
analysis of games. We define steady orbits in repeated games and prove the
results mentioned above. This section may be read separately.

Finally, Section 7 contains some concluding remarks.
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2. The Basic Model for One Decision Maker

Let A be a finite and nonempty set of actions available to the decision
maker (henceforth, DM) at each period. Let S denote a finite and nonempty

set of possible environments or states of nature which may occur at each

period. Define C = A X S to be the set of possible circumstances. A

history (of circumstances) is a function c: {(-i|i > 0} - C. A circumstance
c(-i) will also be denoted by C and, when no confusion is likely to arise,

c.). The set of

by c . Thus ¢ may also be written as (""C—i""’C—Z’C—l' 0

._l'

all histories will be denoted by c™®. A future (of circumstances) is simply

an element c of c®. We will write ¢ = (c .) or, when possible,

(c

1,02,...).

It will prove useful to define the natural projections of the set of
circumstances C on A and S: let a: C - A and s: C - S be the unique
functions satisfying ¢ = (a(c),s(c)) for all ¢ € C. The projection
functions a and s are extended to C ® and C% by the natural pointwise

definition. I.e., a(c) = (...,a(c

c _1),a(co)) and s(c) = (...,s(c_l),s(co))

for all c € ¢'®, and a(c) = (alcy).alc,)....) and s(c) = (s(cy).s(c,),...)

2
for ¢ € C®.

We now define some operations on histories and futures:

(1) For a history ¢ € ¢"” and n > 0, define the n-truncation of c,

-n* -
denoted by ¢ ™", to be the history (""C—(n+1)’c—n) ec®

(2) For a future ¢ € C° and n > 0, the n-truncation of ¢, denoted c"*,

is the future (c ,...) € C

n+1'n+2
(3) For a history c € C ~ and n > 0, let the n-suffix of c, denoted

-n o n -
c , be the finite sequence (C—n+1’c—n+2' .,co) € C. (Forn

- 0
0, c M is always the empty string, henceforth denoted by c .)
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(4) For a future ¢ € C* and n > 0. define the n-prefix of ¢, denoted

by En, to be the finite sequence (cl,c c ) € ch. (For n = 0,

el s always the empty string co.)

(5) For a history c € C'® and a finite sequence ¢ = ( c

cl,cz,..., n)’

define *he concatenation of c¢ and c", denoted Q-En, as the history

(...,cC c.,c,,cC ..,c_) €C

-1'%0' %17 %2 %n

Next we turn to define strategies. A DM strategy is a function

—®

o: C - A. A set of all DM strategies will be denoted by £. Nature's

—®

strategy is a function 8: s(C ") - S. Let ® denote the set of all nature

strategies. The future function f maps C® x ¥ x® into C*: for

(c,0.8) € C© x £ x ®, the future determined by (c.o,8), i.e., f(c,o,8). is

the element ¢ € c% such that for all n > 1, ¢ = (c(g-En)

n ve(s(9°6n)))-

Given a triple (c,0,0) € c® x I x ®, we say that c is consistent with

-n

o and 8 if for every n 21, c = (o(c ), B(S(g_n))). A history c is

-(n-1)
possible if there exist (0,8) € I x ® such that ¢ is consistent with o and

0.
—k*
C

A history c € ¢ is said to be cyclical if, for some k 2 1, = c.

In this case c will also be said to be cyclical of order k and g_k will be

called its cycle. Likewise, a future c e C® is cyclical if for some k 2 1

ke c, ¢ is cyclical of order k and K is its cycle.

We can now state two observations (the proofs of which are immediate).

Observation 2.1: Suppose that ¢ € ¢~ is consistent with g € £ and © € ©,
and that ¢ is cyclical of order k for some k > 1. Then f(c,0,8) is also

cyclical of order k and its cycle equals that of c.



Observation 2.2: A history ¢ € ¢~ is possible iff one of the following two

conditions holds:

(i) c is cyclical;

(ii) For all k > 0, g_k is not cyclical.

These observations show that our very definitions of strategies already
entail some assumptions. These assumptions deserve comment. Let us first
consider the definition of a DM strategy. In the bulk of literature in
dynamic programming and repeated games, the decision maker's strategy is
also defined as a function from histories to actions. However, in the case
of finite histories, this definition constitutes no loss of generality:
finite histories differ in their length. Hence, a strategy which depends
only on the history also implicitly depends on "time," i.e., the stage at
which the process is in. In our case, on the other hand, the same
definition of a strategy does not allow the DM's choices to depend on
"time," or on some "extraneous clock." The "clock," that is, the specific
enumeration of stages from -« to ® is only known to the outside observer
and, indeed, this enumeration may be shifted by any integer without changing
the model.

This implicit "no clock" assumption may also be represented as follows:
we assume that all those circumstances relevant to the DM's choice are
described in A and S. That it is say, the decision maker in this model is
not allowed to deviate from a certain behavior pattern "just because" time
has passed. In fact, given any model with a "clock," one may construct an

equivalent model without a "clock" by incorporating the state of the clock
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into the state of nature. 1If the original model's clock had infinitely many
states, e.g., all integers, then S would not be finite. However, no problem
would arise for finite-state clocks. (Consider. for instance, a good
old-fashioned clock showing only the time of day but not the date, and
so forth.)

Since our main motivation is to study some notions of "stage «," the
no-clock assumption can also be explained by stating that at "stage
infinity" there is no "sense of time"; put differently, o + 1 = o,

Let us now turn to nature's strategy. The only mathematical difference
between nature and the DM is assumed to be that nature's choices do not
depend on those of the DM (while the converse is, of course, false). Though
philosophically questionable, this assumption seems to be a reasonable one
for practical purposes. As regards the descriptive aspects of the model. it
should also be noted that in many cases of interest even if this assumption
fails to hold, it does describe the way the decision maker perceives the
problem. For instance, weather conditions are known to be affected by
people's actions; nevertheless, people tend not to take these effects into
consideration while facing a decision problem. Moreover, neglecting these
effects appears to give a rather good approximation to the real problem,
especially if computability and complexity constraints are considered.

The fact that nature's strategy is also defined as a function of
history alone (without dependency on a "clock") has a similar meaning to the
corresponding definition of the DM's strategy. The assumption may seem too
restrictive, since it concerns nature for which "bounded rationality”
arguments do not seem to apply (as opposed to a human being). However, this

assumption is equivalent to the following: if the states of nature were
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alternating in a given cycle from days of yore until today, we assume that
the same pattern will persist. If no cycle has been followed throughout

history, this assumption is trivially satisfied.

3. Recursive Strategies

We now turn to impose bounded rationality assumptions on the
strategies. The main assumption we will use is that these strategies are
recursive, i.e., that there exist algorithms which can compute the next
action of the DM and the next state of nature given the infinite history.
Before we turn to discuss these assumptions, let us first specify the
computational model we use.

Our model is basically a standard Turing machine with an assignment of
an action in A (or state in S) to each final state (an internal state at
which the computation may terminate). We assume that the input tape always
contains an infinitely-long input string. It seems more convenient to think
of two tapes--the (read only) input tape and the working tape (which is
always empty at the beginning of the computation). For the sake of brevity,
we omit the formal definition of such a machine. However, it is a
straightforward adaptation of the standard one. (See, e.g., Hopcroft and
Ullman (1979).)

We also assume that the Turing machines describing the relevant
strategies are such which always halt for every conceivable input. By
"conceivable" we mean that any history ¢ € ¢*® and its projection s(c)
should be considered as potential inputs to the DM's and nature's machines,
respectively. It should be emphasized that it does not suffice to assume

that the machines halt for every history consistent with them. For some
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cases, especially where the DM considers a change of strategy, we would like
the future to be well-defined for any history and any pair of strategies.

Let us then denote by Zo the subset of the set of all DM's strategies &
which are implementable by a Turing machine which always halts. Let @O
denote the corresponding subset of @®.

As for the DM's strategies, the restriction of allowable classes to ZO
seems almost innocuous, or, at least, a very weak assumption of bounded
rationality. It only states that the DM's strategy can be unambiguously
defined by a finite number of instructions. However, the corresponding
assumption imposed on nature may seem unjustified. 1In fact, it is
equivalent to the hypothesis that there exists a (finite) "scientific”
theory which is "true" in the sense of perfectly predicting nature's choice.
The philosophical grounds of such an hypothesis are beyond the scope of this
paper. Nonetheless, we will not adhere to the deterministic model for very
long. Once we allow for randomized choices this assumption would only mean

that the distribution over states of nature, rather than the specific choice

of one of them, is describable by a finite algorithm. It seems to us that
such an assumption is not too restrictive for many cases of interest.
(Consider, for instance, the concept of a Markov chain: there are several
states, to each of which there corresponds a distribution over the set of
states, and that distribution may be computed by an algorithm given the
history.)

In the literature of repeated games there are several notions of
bounded rationality. The most restrictive assumption seems to be that of

finite recall. In our terms, o € L (8 € ®) is said to be a finite recall

strategy if there exists a number n 2 0 and a function f: ch o A
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(f: s(C") - s) such that o(c) = f(c ") (8(s(c)) = f(s(c ™)) for all

A simple but somewhat surprising result is the following:

Proposition 3.1: The set of finite recall strategies in I (®) is exactly ZO

@) .

Proof: The fact that every finite recall strategy is recursive is trivial.
The converse is an application of Konig's lemma and may be proved as
follows: let o € ZO. (The proof for @0 is symmetric.) Consider the

infinite tree, (V,E), which describes the conceivable histories:

That is, the vertices are all finite sequences of circumstances

(c .,c ) includes the empty sequence co which is the root of the

-n+1'" "%
tree, and two such histories are connected by an edge if and only if the
first one may be obtained from the second by deleting the first component of
the latter.

For a given o € EO and a given history c € C_m, one may consider the
path in this tree along which the computation of o will proceed. Since o is
i

required to halt, this is simply a finite path generated by g_ for

0 <1 £k for some k. To prove that o is a finite recall strategy, we only

need to show that the length of this path k is bounded from above for all

conceivable histories c. Assume the contrary, i.e., that such a bound does
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not exist. Consider the root of the tree co, and the finite number of
branches emanating from it. 1If in each branch the computation paths of o
were bounded, the maximal bound plus 1 would have been a bound for all
conceivable histories. Hence there exists as least one branch (sub-tree)

for which there is no such bound. Continuing in this fashion one obtains a

conceivable history c for which the computation of o does not halt. [1

Observation 3.2: Suppose g € ZO and 8 € @O are consistent with the history

c € C”. Then c is cyclical.

Proof: 1In view of Result 3.1, both o and 8 are finite-recall strategies.
Ky K,
Assume o(c) depends only on ¢ and 6(s(c)) on s(c ), and let k =

max{kl,kz}. It is trivial to see that c is cyclical of order m £ k. []

The last two results show that our model is too restrictive, since it
can only describe cyclical phenomena. We are now going to generalize it in
two ways by introducing (i) machines with memory and (ii) randomized
actions. However, the main two assumptions, that of time stationarity and

that of bounded rationality, will essentially be retained.

4, Randomized Actions

As mentioned in Section 3, the assumption that nature has a recursive
strategy (with the "no clock" assumption) seem far too restrictive to
describe uncertainty. On the other hand, we would not like to drop these
assumptions altogether since we are interested in modeling situations in

which there is something the decision maker may infer from the past
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regarding the future.

The most natural thing to do at this point seems to be to allow
randomized actions (at least for nature), and to require that the
assumptions discussed above be satisfied with respect to these. rather than
the actual actions (or states of the world) chosen. Thus no conceivable
history will be ruled out and, in particular, the model will not be
restricted to cyclical phenomena--but there will still be enough regularity
for the DM to apply statistical inference techniques.

Let A(A) and A(S) denote the set of distributions over A and S,
respectively, and define £* = {g: C® o A(A)}; & = (8: s(C_m) - A(S)}. As
in the deterministic model, these definitions already impose the "time
stationarity” or "no clock" assumptions. In order to formulate the bounded
rationality assumption we will define Turing machines as before, save that
now a distribution over A (or S) will be attached to each final internal

state of the machine rather than a single element of it.

5. Machines with Memory

Result 3.1 may suggest that recursive strategies are too restrictive.
In fact, they cannot implement reasonably simple strategies. Consider the
following example: nature chooses whether it will rain or not. The DM
chooses to take an umbrella or not. A possible DM strategy is the following
"2-trigger strategy": if it never rained before, or if it rained exactly
once in the entire history, do not take an umbrella. Otherwise, take an
umbrella. This strategy is certainly not a finite recall strategy. Hence,
it is not recursive. However, such a strategy is implementable by a finite

automaton playing a repeated game as in Aumann (1981), Rubinstein (1986),
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Neyman (1984), Kalai and Stanford (1985), and others. (These models assume
that histories are finite, but the extension of the automaton notion is
straightforward.)

This apparently paradoxical result, namely that a Turing machine is
weaker than a finite automaton, is due to an abuse of terms: when a finite
automaton is said to "implement" a strategy in a repeated game, it is meant
that each stage of the game corresponds to one application of the
automaton's transition function. When a Turing machine is said to "compute"
a strategy, the role of the machine's internal states is quite different:
they are used for a "background" computation, and only when the whole
computation is completed is an action chosen and one single stage of the
game is over. In other words, the automaton may use its states to
"remember"” information from one stage to the next. The Turing machine uses
its states for the computation alone, and at each stage it is assumed to
begin at the same state. Thus it cannot carry information bits computed in
previous stages to the next one. 1In the context of finite histories, this
lack of memory on the Turing machine's part constitutes no loss of
generality: the machine can always simulate its computations in the
previous stages. (This is, of course, true if only computability rather
than complexity aspects are taken into account.) However, in the case of
infinite histories this is no longer the case. It therefore seems natural
to consider a larger set of machines which have another "memory" tape which
may written to and read from during a computation. This tape is kept
unaltered between the end of one computation and the beginning of the next.

We would therefore like to endow a DM's machine with memory, and it

would seem suitable to allow it to remember real numbers such as relative
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frequencies. However, if we do not impose any additional restrictions and
we consider a Turing machine with real-valued registers on which arithmetic
operations and comparisons can be performed, we make it significantly
stronger than we originally suggested: such a machine can use a real number
as a code and analyze it to determine its behavior. Thus, a very simple
machine may actually implement a non-recursive strategy. This is obviously
not what we had in mind. However, if we limit the memory to a finite number
of cells (each of which may contain one of a finite set of symbols) we may
be unduly restricting the machine's ability to compute numbers in a naive
way.

We have to distinguish between the memory the machine has for numbers
per se and numbers as encoding of information. We were unable to find an
elegant computational model which will draw this distinction by its
computational abilities. Rather, we suggest adopting a Turing machine with
several real-valued registers, but restricting its complexity. That is,
each computation performed by the machine may use the registers up to T
times for some fixed T (which will be a part of the machine's
specifications).

We therefore define an M-T-Turing machine (for M,T 2 0) as a machine
with M real-valued registers such that each computation may involve no more
than T arithmetical operations (+, - , X, /) and comparisons
(=, #, >, 2, <, ). The formal definition of such a machine, a computation
of it, and so forth, are omitted. They are straightforward adaptations of

the classical definitions.

Observation 5.1: Suppose M is a M-T-Turing machine which computes an action
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a € A (or a € A(A)) for every possible history. Then there exists a

constant k(M) such that for every history ¢ ¢ ¢™®, M does not consult

c_k(M)*.

Proof: Similar to that of Proposition 3.1. //

Therefore, we can conclude again that, apart from the memory the
machine carries. it is still a bounded recall machine. However, such
machines can already learn a stochastic process. That is, suppose that
Nature's strategy is a finite recall mixed strategy 6 € ®. Assume that ©
depends only on the last k stages, and that h: A x S - R is the DM's payoff

function. For every history C we consider
sup lim inf. _ 1/T T' . E(h(f,(c.0,8)))
O€L* T t=1 g€ '

A strategy o is (€-) optimal against © if it (e-) obtains this payoff

for all c.

Theorem 5.2: Given nonempty and finite sets A, S, a payoff function h:
A xS - R, an integer k 2 0 and € > 0, there exists an M-T-Turing machine M

with k(M) = k which is e€-optimal against every 6 with recall k.

Proof: Obviously, all M needs to do is to compute the relative frequency of

each state of Nature s after each history s ¢ (s)k_ Thus, ls1k+1

registers
is all that is needed. The problem is how to compute the relative

frequencies given infinite history and one additional observation. The
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solution is the following: for el > 0, let N > l/e?. It follows from
Markov inequality that if Xl,Xz,....Xn are i.i.d. random variables, each of

which is distributed over S, and u € A(S) is their expectation, then

P(1(1/n) TJ | x; - ui 2 €,) S ¢, for all n 2 N.

Hence, we will let the machine M have 2*(iS',k+1 + 'Sik) registers. For each

history s of length k the machine would have two relative frequencies: one

obtained over the last N, occurrences of s and the other over Ng * N last

occurrences, where 0 < NO <N-1. (Thus, it has {S! registers for the

distribution over S and one for the counter.) At each stage the machine
uses the statistics obtained over the longer history for choosing a best

response action, and updates both relative frequencies of the corresponding

S € (S)k. Correspondingly, it advances the counters NO and N0 + N by 1.

When NO + N = 2N, the machine sets NO to zero and ignores the relative

frequencies obtained over the longer history.
Thus, at each stage the machine has a relative frequency which is

el—close to the true Nature strategy, and it chooses a best response act

versus the approximated distribution.

Obviously, for small enough €., the machine obtains an e-optimal

1 ’
payoff. //

6. Steady Orbits in Games

. . - i i
Consider a one-shot finite normal form game G (N, (S )ieN'(h )ieN)
where N = {(1,2,...,n} {(n > 1) is the set of players, st is a (finite and

nonempty) set of moves of player i, and h': s » R is player i's payoff
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function where S = nieN st

We would like to define a solution concept for one-shot games which
would rely on the assumptions that G is an infinitely repeated game with
infinite history and that each player considers all other players (in
conjunction) as Nature. For brevity's sake we will not provide formal
definitions of the repeated game and its strategies. These definitions are
straightforward adaptations of the ones given above. However, bearing this
interpretation in mind and applying the previous sections' results we know
that a recursive strategy with a bounded number of memory registers is, in
fact, a bounded recall strategy (with the same number of memory registers).
Let ki > 0 denote player i's recall, i.e., the number of periods player i
remembers. Assuming that each player uses an €-optimal machine, we are
interested in the limit frequency of each s € S. Furthermore, we are
interested in those distributions over S which are sustainable by €-optimal

machines for all € > 0.

We first define the set of player i's (mixed) strategies to be

Given the recall bounds {ki}ieN we define k = max . ki’ We will be
interested in states which are the ;S:k k-tuples of one-shot plays which

summarize the relevant information of the history.

Some notational conventions which will prove useful are the following.

For a set X (such as Sl, S, etc.) and x € Xm, say X = (xl,xz,...,xm), we
define suf(x,Q) (1 £ @ < m) as the element of XQ defined by
(xm—Q+1’xm—Q+2""’xm)' Likewise, pref(x,®) will denote (xl,xz,. ,xQ) €
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XQ. For x = (x R

1,....xm) e X" and y = (yl,...,yg) € X” we define Xey to be

m+Q
the element (xl,...,xm,yl,...,yg) € X .

We also define ¥ = nieN r! and a typical element o € £ will be

understood to define 01 € El (for all i) such that o = (0”,0°,...,0 ). For

-i -1 j _ j
(o ) to be an element of S = Hj#i s’ (X = nj:i ).
-1

i € N we define s *

-1

LT (o 1),

the symbol (s o_l)J) will stand for player j's component in s

The symbols (s *,t') and (o ',t') would be elements of S and ¥,

respectively, with the obvious meaning.
Given o € £ we define a Markov chain whose set of states is (S)k with

the transition probability matrix A(og) defined by the elements:

nieN ci(suf(§,ki))(sk), if suf(s, k - 1) = pref (s', k - 1)

72
tn

o

otherwise.

[sY)

Q

0]
- —

In other words, a(G)S'S, is the conditional probability that the play
of the game will have a history (of length k) s' at time t, given that at
time (t - 1) it has a history s and the players are playing according to o.

The probabilities A(g) describe all the relevant information about the
play of the game given a certain history. However, we also have to
introduce the stationary distribution as a part of the definition of a
steady orbit.

i

Let there by given p € A((S)k) and o -1

k.
i

€ X We define a function

Ti(p,c): (S) - A(S_l), which should be interpreted as the list of values

of the statistics player i retains in his/her machine registers, by



i -1y . J J
T (p, = "o
(p 0)(§)(s0 ) z k_ki p(s') Hj¢i o” (suf(s §.kj))((s )7
S'€(S)
where
P(s') = p(s'es)/L K-k P(E'=s)
t'e(s)
if the denominator does not vanish. 1In case it does, i.e., p(t'es) = 0 for

k-k. .
! the definition of Tl is immaterial.

all t' € (S)
Note that in case ki = k, Ti(p,d)(§) is the actual distribution on the
next (n -~ 1)-tuple of the other players' moves. In particular, it is
independent of the stationary distribution p. However, if ki < k the
probability vector Ti(p,c)(§) kept in player i's machine registers is a
convex combination of several such distributions (for different histories).
Leas™

Given a distribution on the other players' moves q , and a

mixed move for player i, q1 € A(Sl), we say that ql is a best response to

q ' if it maximizes E(h') given q !

At last we can define a steady orbit of the game G with recall profile

{ki} to be a pair (p,g) such that:

i

(1) [A(G)]tp = p (where "t" indicates transpose);

(ii) Vi € N, Vs € (S)ki, ci(§) is a best response to Ti(p,c)(§).

The first condition states that p is indeed a stationary distribution
for the Markov chain defined by A(o). The second condition simply requires
that all players will choose a best response (mixed) move, given their
information, while their information is consistent with the stationary

distribution p and all players' strategies.

It is important to note that the interpretation we suggest for this
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concept does not assume that the players are aware of the stationary
distribution p, or even of the other players' recall bounds {ki)i' let alone
other players' strategies. Each player gathers information and computes
relative frequencies to the best of his/her ability, without knowing whether
his/her bounded recall is large enough or not. If the players choose a
certain strategy o, an outside observer could define the resulting Markov
chain and compute the stationary distribution. Should such an observer
compute Ti(p,c) as defined above (s)he would find that it coincides with the
statistics computed by player i, but this computation of {Ti} via p and ©
cannot be done by the players themselves.

The first question which arises at this point seems to be existence.
And indeed, a rather standard fixed-point argument ensures that the

following holds:

Theorem 6.1: Given a one-shot game G = (N,(Si) (hi)ieN) and ki >0 for

ieN’

i € N, G has a steady orbit (p,o) with recall profile {ki}ieN'

k '(ski)
Proof: Let B = A((S)") x Hi A(Sl) S| . Note that each element b € B can

be interpreted as a pair (p,o) where p € A((S)k) and o is an n-tuple of
strategies. Furthermore, B is a convex and compact subset of R" for some m

K B

n |S| 1ISll). Let f: B » 2~ be the following correspondence:

(= ISI* + £},

+ L
for (p,o) € B, f((p,o)) is the set of all pairs (p',o') such that: (i)

p' = [A(c)]tp, and (ii) (c')i is a best response strategy to Ti(p,c). (That
is, the first component of all points in f(p,o) is the same p'.) Note that

f is convex valued and upper semi-continuous. Hence, it has a fixed point

by Kakutani's theorem. /7
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Given a stationary distribution p € A((S)k) we define p to be the

induced distribution on S, i.e.. p(s) = ¥ p
. k-1

i~ s'€(S) | -

will also define for i € N h"(p) to be § (s)hl(s) and h(p) will denote

(s'es). We

ses P

~

the vector of expected payoffs (hl(p)) With a convenient abuse of

ieN’

notation, we will also use hl(p) and h(p) for p € A((S)k) referring to hl(p)
and h(p), respectively.

We will be interested in:

So(kl""’kn) = {(h(p)! (p,o) is a steady orbit of G with recall
profile {ki}ieN for some o € ¥}
and
SO = U n SO(kl,...,kn)
(kl,...,km)e(z+)

with Z+ = {0,1,2,...}.

Let us denote by NE (CE) the set of Nash (correlated) equilibria
payoffs (see Nash (1951) and Aumann (1974)). We will now state and prove
some results regarding the relationships between the set of steady orbit

payoffs and Nash/correlated equilibria payoffs. All these results hold for

. 3 _ , Si i
any given one-shot game G (N, ( )ieN’(h )ieN)'
Proposition 6.2: For all kl""’kn'
c
NE € SO(ky, ... k).
Furthermore, NE = S0(0,...,0), hence NE = N n SO(kl. ,kn)
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Proof: Given kl""’kn and a Nash equilibrium of G, define o to be the
n-tuple of strategies which play the given equilibrium regardless of the
history. Let p be some stationary distribution of A(o) and note that (p,og)

is a SO of G with {ki}ieN'

For the "furthermore" part, let ki = 0 for i € N, and assume (p,o) is a
steady orbit of G with (kl,...,kn). Note that ci is no more than a mixed
move in G (since there is only one zero-length history) and correspondingly,
the Markov chain has only one state. The best response condition implies

that o induces a NE in G. //

Proposition 6.3: Co (NE) € SO. (Co stands for convex hull, and the bar for

closure in the standard topology.)

i N

Proof: Let there be given m Nash equilibria of G denoted NEj = (rj)i_1

o

(i £j <m) wherer, € A(Sl). We will also denote by NEj the payoff vector

[

h(l'Ii r3) (where Hir, is the product distribution on S defined by the

.

distributions r} on Si). It suffices to show that all rational convex
combinations of {NEJ.}';.':1 are in SO. Let there be given, then, positive
integers {tj}?=1 with T = 2?:1 tj. We would like to show that
£5., (t;/TINE; € $0.

Let us first explain the main idea of the proof. The obvious way to
obtain the desired average payoff is to let all players have identical

recall k and play one of the Nash equilibria each stage. Since all players

would observe the same history, each one will know the exact mixed move of



24
every other player and the strategies will be best-response ones.

Let us first consider the case in which all the Nash equilibria are
pure. In this case it suffices to set k = T and let the players play NEj tj
times (j = 1,...,m) in a cycle. However, the same technique cannot be
directly applied to mixed equilibria since the history (i.e., the actual
realizations) does not identify the Nash equilibria that were played, and
one cannot uniquely define the next equilibrium which should now be played.

We note here that the difficulty could be avoided if one assumes that
each player remembers his/her own mixed actions. 1In this case the proof is
identical to the pure Nash equilibria case. However, one need not deviate
from our framework in order to obtain the result, and we therefore stick
to it.

The main idea, which is not very surprising, will be the following:
instead of a single play of an equilibrium (which does not identify it) we
should have a long sequence of plays, which will identify it with high
enough probability.

Thus, a history in which each equilibrium was played long enough
according to a certain cycle is likely to regenerate a similar history. We
should also verify that histories that do not correspond to the desired
cycle will not have too high a (stationary distribution) probability, and we
can guarantee that by deciding that the players would play an arbitrarily
chosen NE, say NE,, at those histories.

The formal proof is, naturally, slightly more delicate: let there be

. m . . . . m
given {NEJ.}J.=1 (without loss of generality, NEi # NEj for i # j), {tj}j=1
. _ oM
and 1 > eo > 0, with T = Ej=1 tj'

Let us define
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- : ] -
d mlniSiijSm ANEi NEjH > 0

Without loss of generality we will assume that for every s,s' € S
lh(s) - h(s')!! € 1. For x € A(S) and € > 0 denote

Ne(x) = {y € &A(S)] Hix - vyl < €}.

Let M be an integer satisfying M > 3/d. For such an M, if XI’XZ""

€ A(S) and h(xl),h(xz),...,h( ) € (NEj), then

Xy-1) € Ny/3

1/M Z?:l h(x;) € N (NE,) for i # j.

d/3
Next, let € = eo/3m(m - 1) and choose L to be an integer such that
L > 1/81.

Let KO be a large enough integer such that for all k 2 K, and every

0

1<j<m, if NEj is played k times, forming a sequence X, .X,,... X of
i.i.d. random variables on h(A(S)), then
Prob(ll (1/k) £X 1/ML(T+1)

i=1 Xi - NEjN < d/8) > (1 - el)

A "long sequence" of a certain equilibrium will be of length KOML’ and
thus we define the recall length to be k = KOML(T + 1). For each player
i € N, then, ki = k.
MK

C s 0 .
We need some additional definitions: a sequence s € (S) is an

M-j-sequence if

MK
(1/MK,) T

h(sr) €N (NEj).

d/3
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(Here and in the sequel we do not distinguish between an element of S

and its corresponding element of A(S).)
MLK

A sequence s € (S) is an L-M-j-sequence if it is the concatenation
of L M-j-sequences. We can finally turn to define what is a "nice" history,
in which the desired Nash equilibria seem to have been played according to
the correct order. Basically, it is a sequence of T L-M-j-sequences (with
the j's taking the value i exactly t. times), but we have to take into
account the following points: (i) the sequences may have some overlap (our
choice of M would guarantee that this overlap is no longer than MKO’ i.e.,
1/L of an L-M-j-sequence); (ii) the end (most recent part) of the sequence
does not have to belong to any L-M-j-sequence (but rather to a new one in

the process of formation); (iii) the order of the Nash equilibria in the

sequence is

L-M-1-sequence,...,L-M-1-sequence, ...,L-M-m-sequence, ...,L-M-m-sequence

t1 times e tm times

in some cyclical permutation.

We therefore define, for 0 < c < T - 1, a history, s € (S)k to be a

k-c-sequence if these are integers 0 < rl < r, < r3 < ... K< FT such that for

all 1 £ v £ T the subsequence (s ) is an L-M-j-sequence

v a Sy _
k r, k rV+MLK0 1

where

ZJ;I t, <v+c (mod T) < Zi=1 tQ.
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A k-c-sequence for some c is also called a k-sequence.

We can finally define the steady orbit by assigning a Nash equilibrium
to each history s € (S)k. Given such an s, apply the following algorithm:
start at the end, Sy (the most recent stage) and, going backward, look for
an L-M-j-sequence for some j. If no such sequence is found, attach NE1 to

s. Otherwise, assume L—M—jOASequence §1 is found. Continue the search from

S; (the M-th component of §1) backward (in s), this time looking only for an

L—M—jo—sequence. If there is none which beings at most MLKo stages before

1 . .
sy, play NE. if t. > 1 and NE. if t. = 1.
M g Jo J0+1(mod m) Jo

If, on the other hand, such an L—M-jo—sequence §2 was found, continue

with it in the same fashion. For t < tj , 1f exactly t such sequences are
0
found, play NE., . If t. are found. play NE,
J J J
(0] 0 0
We now contend that any stationary distribution p of this process

+1(mod m)’

induces a steady orbit as required. First, it is easy to see that for every

s € (S)k, if the process is in state s at time t, the probability of being

in a k-sequence at time t + k is at least (1 - ¢ which means that the

1);

stationary distribution probability of these states is at least (1 - el).

Furthermore, given any s € (S)k and every i £ j £ m, the probability that
NEj will be played at least (th - 1)MK0 times during the next TMLKO stages
is at least (1 - 81).

We now wish to show that the stationary distribution probability of all
states at which NEj is played, denoted p(NEj), is at least
(tj/T - eo/m(m - 1)). This would also mean that it is at most (tj/T - eo/m)
and then
m

H(1/T) L)ty NES - h(p)l = H1/T £y, tj NEj - I

NE.)NE.lI <
J J Jj=1 B J) J!
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<" it /T - p(NE.) 'NE.I < g

Let Aj be the set of histories s € (S)k at which NEj is played. Let Xt

be the random variable associated with the Markov chain. Then

€ A.) (for all t)

p(NEj) = Prob(X
TMLK

t

= 0 ~

1/TMLK0 Zi=1 Prob(Xt+i € Aj) =

TMLKO
= 1/TMLK . _ _
0 lel L k PI‘Ob(Xt+i € Ajlxt §)D(§)
se(S)
TMLKO

= Z K p(§) (l/TMLKO) 21:1 PFOb(Xt+j € Aj'Xt - §)

R€(S)

By the previous argument, for each s one can find a set of indices

I ¢ {1,...,TMLK0} such that {I| = (th - l)MK0 and that

i | = -
Prob(Xt+i € Aj' Vie IX, s) 21 €

Hence, for i € I

and

p(NE,) > T . p(s) (1/TMLKO) T. Prob(X

iel € A X
se(S) .

t+1
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> X K P(s) (1/TMLKO)(th - 1)MK (1 - €

)
se(S) 1

v

(tj/T - 1/LT)(1 - 81) =

t./T - 1/LT - e,t./T + €,/LT >
J J 1

1

> t . / - = - -—
J,T 3€1 tj/T eo/m(m 1),
which completes the proof. /7

Remark 6.4: It is obvious that for all k 2 0 SO(k,k,...,k) € Co(NE).

Hence, we have proved that

Ukzo SO(k,k,...,k) = Co(NE).

Proposition 6.5: Assume that k1 > k2 >k, > ... > kn' Then SO

3
(kl'kz""’kn) = So(kz'k2'k3""’kn)‘ (I.e., the player with the longest
recall may restrict himself (herself) to strategies which only depend on

histories of length equal to the second-longest recall.)

Proof: Assume (p,o) is a steady orbit with recall profile (kl'kz""’kn)'

Define a steady orbit (p',o') for the recall profile (k2’kﬁ""‘kn) as
ool Fori=1, o'l(s) (s € (5) }) is the
k. -k

p-mixture of cl(§'-§) (overall s' € (S) 1 2). Since player I's best

follows: for i > 1, ©

. . 1.
response strategies constitute a convex set, g'~ is also a best response to
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all other players' strategies given s. on the other hand, T’ for i # 1 has
not changed, so that o'’ is also a best response strategy. Finally, define

p'(s) as Y}
Se(S)

tes).  //

Corollary 6.6: For n = 2, SO = Co(NE). /7

Proposition 6.7: SO € CE.

Proof: Given a certain recall profile {ki}i and a steady orbit (p,o), we
will show that 5 is a correlated equilibrium. Hence, perforce, h(;) € CE.
For some s € S with ;(s) > 0 and i € N, and we have to show that si is a
best response move for player i while the other players are playing

according to

p(e,s") .
e A(STY).
~ooi i
Zt_ies_i p(t )
Note that
p(t i sh) - ¢ p(se(t 1 sh)) =
§e(s)k—1
=L p(s) a(o) .. =
§'e(5)k (s',se(t tsh))
=L X p(r,.r.)a(o) L
K. k-k, “'=2’=1 -i i
r &(s) | r,e(s) (Lperpese(t hs))
=¥ p(r.) T p(r,)a(o) ..
k. -1 k-k. 2 -i i
re(s) r €(s) (Cpery se(t 7os7))
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where

Plry) = T k-k, P(fp°ry)

and EZG(S)

I
o

P(ry) = plr,er;)/p(r,) or zero if p(r,)

By definition of T',

) Kok P(rylalo) I
re(s) (Lperyse(t 7s7))
= ot (e (sHedt oy (e (e
whence
AP T S ~ i i, i -1
p(t ",s7) = ¢ K, p(ry)o (ry)(sT)T (p,o)(r,)(t )
and r,e(s)
L, ptlsh =g o Blepatesh.
t “es i
r e(s)

Combining these equalities, the conditional distribution of player i on

the other players' moves (the ratio of the last two expressions) is a convex

k.

combination of {Tl(p,o)(gl)} € (S) ! for which

However, only r

k.’ 1

r,e(s)

01(51)(51) > 0 have a positive coefficient. Note that for such r, the move

s! has to be a best response to Tl(p,o)(gl). Hence s® is also a best

response to the convex combination of these distribution. //
Remark 6.8: SO is not necessarily convex.

Proof: Consider the following three-person game:
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Player II
F S

I I |
F| 0.1, 0.1, 0.1 | 10, O, 10 |
I I I
I I I
Player I | |
I I I
| I I
S| 0,110,100 | 0,0,0 |
I I I

|

F

(Player III chooses the matrix.)

Player II
F S

I | I
F|] 10, 10, 0 | 0,0, 0 |
I I I
I I I
Player I | |
I I I
| I I

S | 0,0,0 | 1,1, 1
[ I I

S

For a recall profile (9,9,0) (that is,

k1 = k2 =9, k3 = 0), the following is a (pure) steady orbit: Players I and

II play S if they have observed (F,F,S) in the last nine periods., and F

otherwise. Player III always plays S.

Thus, the steady orbit play consists of nine (F,F,S) and one (S.,S.S)

repeated cyclically. For players I and II the strategy is obviously a best

response one. Player III observes that the other players play (F,F) with 90

percent frequency and (S,S) otherwise.

Hence his/her strategy is also a

best response one. The average payoff vector is (9.1, 9.1, 0.1).

Similarly, (9.1, 0.1,

different recall profiles)

that (6.1, 6.1, 6.1) is also in SO.

Suppose, then, that (kl'kZ’k

9.1) and (0.1,

9.1, 9.1) are also in SO (for

If SO were convex, we would have to conclude

3)

steady orbit (p,o) such that h(p) = (6.1,

of generality, that k1 > k

extend H linearly to A(S).

2

> k.. Consider H(s) = hl(s) + h2(s) + h

- 3
Note that H(p)

Let us prove that this is impossible.

is a recall profile for which there is a

6.1, 6.1) and assume, without loss

3(s) and

= 18.3 and that the only three
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points s € S for which H(s) > 18.3 are (F,F,S), (F,S.F), and (S.F,F). For
those H(s) = 20. The maximal value of H(s) for other points s is 3, hence

p((F.S.F)) + p((F,F,S)) > 0.9. If ¢ satisfies p((S.F.F)) < €,
k

+

D((S,F.F))

then hl(p) > 9 - 10e whence ;((S,F,F)) > 0.29. Hence there must be s € §
such that the probability of (S,F,F) in the next move is at least 0.29.
Suppose that at this node (s) player II plays S with probability p and
player III--with probability q. Since k1 = k, player 1 knows these
probabilities. For him/her to play S with positive probability the

following inequality should hold:

(1 -p)(1 -q) 20.1pg + 10(1 - p)g + 10(1 - q)p.

Some algebra shows that this is impossible if pgq 2 0.29.

(The above inequality means that

20.9 pg + 1 > 11(p + q).

Since pg > 0.29 this means that (p + q) £ 7.061/11 £ 0.65. for such p,q

max pq < 0.11.) //

Remark 6.9: The above example can also be used to show that SO is not

necessarily convex. Hence SO is strictly included in CE.

7. Concluding Remarks

7.1. It has been argued that steady orbits, with the unavoidable

interpretation of repeated games, are not robust with respect to partitions
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of the time periods: the infinitely repeated game may be thought of as an
infinite repetition of k-repetitions of the one-shot game for some k > 1.
In this case the set of actions will be larger, and so will the set of
equilibria payoffs; in fact, one may get the Folk Theorem.

There is, however, a crucial difference between k = 1 and k > 1: for
k = 1 it is reasonable to assume that each player's action is observed by
the others. The strategy in a repeated game cannot be observed in the same
way.

Admittedly, by the same logic one concludes that steady orbits make
more sense for a one-stage simultaneous move game than for general extensive
form games. At least for this subclass of games, which may successfully
model a wide range of interaction situations, we find steady orbits to be a

viable solution concept.

7.2. The study presented above may be viewed as an attempt to
formulate the "repeated game" interpretation of Nash equilibrium in the one
shot game: a possible motivation for this concept (which is quite often
used) is that if the game is repeated, and should a certain play of it be
constantly chosen, this play must be a Nash equilibrium. Indeed, this
intuition is reinforced by our results if all the players have zero memory
length. However, the bounded rationality arguments only imply bounded (and
not necessarily equal) memory lengths. Thus, we have found that a larger

set of payoffs--namely, SO--may be justified on the same grounds.

7.3. In order to distinguish between real numbers as people seem to

perceive them and real numbers as encoding of extremely complicated
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strategies we used M-T-Turing machines, having finitely many real-valued
registers, and restricted to use them only a bounded number of times in each
computation. This sufficed for the bounded recall result to hold
(Observation 5.1), and then the behavioral assumption of non-strategic
players specified what the players actually will do with their memory
registers.

However, we are not quite happy with the computational model presented
here: while it restricts the complexity of each single computation, the
sequence of moves a player chooses in the repeated game may still be quite
complicated. For instance, a player may decide to encode his/her opponent's
moves during N periods and then play according to some function of them
(say, "tit-for-tat"”) for the next N periods. It is easy to see that this
strategy does not require any recall at all, and that only one register,
which is used once in each computation, suffices to implement it.

A natural way to solve this problem is to allow only finite memory
instead of real-valued registers. Thus, the memory may contain
approximations of real numbers, but cannot be infinitely complex. We
rejected this solution because it does not draw the intended distinction:
the precision of the approximation will also determine the complexity of the
strategy.

Another solution may be to simply define a computational model that can
do exactly what we want it to do, namely, update the appropriate statistics.
Of course, this is a very restrictive model.

It is therefore left as an open problem to find a general computational

model that distinguishes between the way man and machine think of numbers.
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7.4. Finally, we note that one may obtain similar results with various
versions of the assumptions: one may use a game with "stage 0" and
explicitly assume (rather than deduce) bounded recall strategies; one may
use Turing machines with finite memory, and so forth. However. we find the

version presented here the most satisfactory from a conceptual viewpoint.
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