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Abstract. Often 1t is tacitly assumed for decision procedures that if the
parts agree, then that is the outcome for the whole. If two subcommittees
reach a common decision, then that should be the outcome when they join as a
committee of the whole. 1If statistical tests conducted in two different
locales reach the same conclusion, then that conclusion should hold for the
agcregated data. It is shown, however, that this consistency propertyv does
not hold for larde classes of standard statistical and decision procedures.
Alsc, it is shown how the properties of this concept of "weak consistency”
are re=lated to guestions of manipulability and to certain classes of decision

paradoxes.



"The sum of the parts exceeds the whole.” This often used cliche is
intended to explain wny certain procedures are successful. This success, of
course, is predicated on a lack of conflict between the parts and the whole.
Unfortunately, as 1 show here, such consistency need not accompany manv standard
decision procedures. Instead, even though each of the "parts” agrees with one
another, the "whole” mayv disagree. For instance, it mav be that each of two
subcommittees prefers Ann for President, vet when they join as a committee of the
vhole, hav 1s elected. It mav be that when a statistical test 1is conducted in two
different locales the results indicate that the new test drug is superior to the
standard treatm=nt, vet the aggregated data supports the superiorityv of the
standard treatment. There are related manifestations of this phenomena. For
instance. by veting for a candidate, we expect to improve her chances of winning.
Yet, by voting acainst his top choice, or by staving home on election dayv, a voter
mav be rewarded with a personally more favorable outcome. Whyv? These and many
other evamiles of the same kind assault our sense of fairness and common sense.

We expect election and statistical procedures to be monotonic; we expect the
direction of the whole tc asree with that of the parte.

The purpnse of thie paper 1s to explain this conflict between the parts and
thie whole. 1 do so by defining a concept of "weak consistency” and establishing
sepe- of 1t surprisingly eiementary but most useful properties. Then. these
properties are used to identify those procedures that fall victim te the kinds of
anti-monotonicity mentioned abeve. A major conclusion is that manyv decision
procesces fail to satisiy weak consistency. Indeed, by using the properties, it
becomes easy to construct several new examples that violate the consistency
the parcs and the whole.

Most of the results given here are illustrated with commoniy used election
procedures and with som= simple statistical methods. The election procedures are
n=ed to jllustraie how & specif:c theory can be created by combining the simple
general properties developed here with tne more specific structures of a given
class of procedures. The statistical methods are used to indicate the generality
of the approach. To introduce some of the procedures, as well as to provide

concrets 1liustrations of the above comments. 1 start with evamples.

y

Example 1. 2. Suppcse trestment "X is belineg compared with the standard

arproach of chickhen soup to cure the common cold.  Both in Evanston and in

n

(Licage, the data supporte treatment X over chicken soup. Indeed, 11 Evanston,
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33% (100 cut of 300) of the "X" people regained health compared to only 30% (30
out of 100) of the chicken soup subjects, In Chicasgo, 50% (20 out of 100} of the
A people regained health compared te the 46% (140 out of 300) of the chicken soup
subjects. Although it appears that treatment X is superior, the aggregated data
clearly supporte the reversed outcome of chicken soup. (A higher fraction of the
chicken soup people, 170/400, recained health than treatment X subjects, 150/400.)
Thie disturbing feature is known as Simpson’s Paradox. For a description of some
of the history of this paradox, see Cohen [3] and the references he cites. For a
description how to extend this paradox in several different wave and for a
mithemat ical explanation that differs from the one offered here, see Saari [3,(].

b, Twoe subcommittees meet separately to recommend a new Dean from the
final candidates of Alice (A), Barbara (B), and Cathy (C). Eacl committee uses a
run-off election where, after a piurality vote is taken {each voter votes only for
his top ranked candidate), the bottom ranked candidate is dropped. Of the two
remaining top ranked candidates, the winner is the one wvho wins a majority vote,.
With this procedure, Alice 1s the top choice of both subcommittees. Yet, when the
voters join todether as & full committee that uses the same selection procedure,
not only does Alice fail te win, but she does not even qualify for the run-off.

The rankings of the 13 voters in the first subcommittee are split in the
foilowing manner: 4 have the rankine A>B»>C, and three each have the rankings
Eoasl, UrASE, CoBsA,  For this subcommittee, A beats C in the run-off by a vote of
7 to 6. The rankings of the 13 voters in the second subcommittee have the
followine spiit: 4 have the ranking A>BE>C while 3 each have C-A>E, B>(C>A, and
Bei>c . Here, 4 beats B oin the run-off by a vote of 7 to 6. So, althcugh A wins
in both subcommittees, she 1s bottom ranked at the end of the first vote in the
icint committee of all 26 voters., In the run-off. E is the decisive winner over C
by a vete of 17 to 4.

Notice that the phenomenon illustrated by this example is not based on
difierenes in subcommittee s1zes or on wild disparities in the rankings. PBoth
groups have the sam~ number of veters with an almost identical split in the
preference rankings. In fact the only difference is that the counterparte of the
three members in subcommittee-one with the ranking C>B>A are the three members in
subcommittee-twe with the slightiyv different ranking E-C>A.  Because of these
strong ¢inilarities in the rankings. 1t is clear that the esplanation for this
behavior must rely upon the structure of the procedure.

A commrittes of three 1s formed to grant a tenured position to one of
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the three candidates Ann (A), Martha (M), and Lil (L). This committee uses a
sequential vote where thev first compare M and L, and the winner of the majority
vote 1s advanced to be compared with A. The rankings of the three voters are
L>M>A, M>A>L, and A>L>M. According to this procedure., the group’s sincere winner
is A, (L beats M in the first vote, and A beats L in the final vote.) However,
during the firet ballot, voter one votes against his top choice of L by voting for
M. This forces the second ballot to be between M and A where M emerges as the
winner. So, by voting against his top choice, voter 1 gains a personally more

favoralle outcome.

2. Weak Consistency

To provide a general model for the above kind of behavior, let (% =
feyvooyc, | be a given set of n22 candidates (alternatives, etc.). Let P((")
dencte the set of all 2"-1 non-empty subsets that can be constructed from Cn;
P{C"} serves as the range for the procedures discussed here. The domain 1is
represented bv a set S on which there is defined a closed, associative, binary
operation called "addition.” An element of S is called a profile. The binary
operation represents how profiles are combined.

Example 2. a. A tvpical choice of S is the positive orthant of Rk,
denoted by R¥ | where the binary operation "+" ie vector addition. For instance,
consider a voting problem with n candidates. There are n! different kinds of
voters where each kind is determined by the voter’s linear ranking (without ties)
of the candidates. Let S be the lattice of integer points in R"' | and let each
coordinate axis of R"* be identified with one of the n! rankings of the
candidates. In this wayv each component of a vector from R"‘ specifies the number
of voters of that particular type. Vector addition characterizes the change in
the number of voters.

b. For a statistical method, let S represent the integers in k? . For
) € Ri

BN let x| and X5 represent, respectively, the number of subjects

returning to health using the new and the standard treatment, while X, and x

4

g
4
represent, respectively, the number of subjects that did not return to health.
The vector sum corresponds to the agsregation of data from different experiments.

. Let 8 = R xSi(k! = {x = (uin;,...x, ) € R, xR¥ | x, 20: Zx =1and u a

k
positive number). Thus Si1(k}) is the unit simplex 1n Rk’. One can view X € S as

being the 11 polar coordinate representation of a vector X € Rk*. The scalar u
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represents the l1 length of X - the sum of the magnitudes of the components of X -
while the Si{k) term represents the directional component - the vector X/u. (If X
has integer components, as in part a, then u is a positive integer representing
the number cf voters. In this setting S = Z xSi(k).) The binary operation for
the 11 polar coordinates is defined to conform with vector addition in Rk’.
Namelv, define the binary operation "+" of x = (u;xl,..,xk) ¥y = (Vi¥ysee,v, ) as
the (utviz,,..,z, ) where z, = (u/(u+v))xi + (v/(u+v))yi. Notice that the
directional outcome is the convex combination of original two directions in Si(k)
where the scalar multiples are determined by u and v. Also notice that because p €

Si(k) can be viewed as being a probability distribution, Si(k) can be treated as a

discrete probahility space.

Definition. A mapping
2.1 f:S --> P(Cn) is called a choice function.! A choice function satisfies
the weak consistencv condition if

i. f 1s non-constant valued; i.e.., the image of f contains at least two
elements of P(CP), and

ii. 1f p, p’ € S are such that f(p) = f{p’), then f(p+p’) = f(p).

In other words, a cheice function is weakly consistent if when the parts
agree (f(p) = f(p')), then this common conclusion is the outcome of the whole
{(tf{p + p’) = fip) = f(p’')). <Consequentlyv, this definition captures the class of
cholce functions that are spared the potential inefficiencies and indignities
1liustrated v Example 1. For manv., 1f not most procedures, the pctential of a
conflict bitween the parts and the wholie is sufficient reason to examine this
concept,  There exist. however, many other reasons; an important one is that weak
consistency subsumes "strong versions' of several other concepts that have been
widely studied. For instance, a choice function is manipulable if a voter can use
a ranking that differs from his sincere cne in order tc change the outcome to a
personally more favorable one. Call a choice function strongly manipulable with
respect tc a voter t (or a small group of voters) if the following conditions
hold: There exist a, [ € P{(CP), a # B, and profiles so that the group’s profile
1. 1 concentrate on cheice functions only for convenmience. Indeed, because the
emphacte of my analyvsis ig on the relaticnship between the binary operation and
the geometry of sets 1n the domain §, one can replace the range set P{(C") with anyv

cther sety the basic ideas still hold. A< one natural substitution. P(C") could
be repiaced with the set of all linear rankings of the n candidates.
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without vcter v is p where f(p) = B. The sincere profile for voter t {(or for the
small group) 1is p, where f(pl) = a. There exists another profile, p’, for voter t
so that f(p') = f and f(p+p’) = a.

According to the definition, if f is strongly manipulable, then not only
can the strategic voter manipulate the svstem (byv using p’ instead of the sincere
p,) to attain his top choice of a, but, because f(p') = B, he can do so in a
manner that preserves the appearance of cooperating with the group choice of
attaining . It follows immediately from the definition that if a procedure f is
strongly manipulable, then f 1s not weakly consistent. Conversely, if f is not
weakly consistent, then it i1s reasonable to suspect that not only is f
manipulablie, but 1t is strongly manipulable with respect to some small group.
(This 1s demonstrated in the examples of Section 3.)

Another interesting voting feature is the "Abstention Paradox"?¢ where if a
voter or a small group of voters abstain from voting, then outcome is more
favorable to them. An extreme situation, the strong abstention paradox, is when
the voter {or a small group of voters) does not vote, then the outcome is not only
more favorahle, but it 1s their top choice. To express this definition in a
mathematical formulation, let p be the profile of the other voters, and let p, be
the profile of the single voter. For the strong abstentiorn paradox to hold, it
musi. be that f(p):f(pl) and (because when the group modeled by p, votes they
obtain a less satisfactory outcome) f(p+p,) # f(p). Therefore if the strong
abstention paradox 1s admitted by choice function f, then f does not satisfyv the
weak consistency condition. Again, for many of the processes that are not weakly
consistent., it is possible to create examples that exhibit the strong abstention
paradox.

I'n much the same manuner as used above, one can conceive of all sorts of
other 1nterpretations to describe consequences when the parts are in coenflict with
the whole. Weak consistency is a central unifving theme for this wide class of
paradoxes,

1 label weak consistency as a "weak” requirement because no conditions are
imposed on what should happen if the "parts” are only in partial agreement. As

such, weak consistency admits large classes cof choice functions. In particular.

P

2. This oceurs in run~off elections ranked by the plurality vote. That this 3¢
truc was poted by Smith (Y and developed by Brame and Fishburn {1)1. This feature
is related to other election behavior in Moulin (4], In Saari [7,8]). 1 extend
hese resulte to all votine methods and to many other procedures. In Theorem 5 of
thie current paper, the stronger result, related to weak consistency. 1s obtained.
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1t admits many of the statistical methods which would be excluded with a stricter
definition. (For instance, differences in "confidence regions,” "levels of
significance,” or "indifference regions” mayv preclude a procedure from satisiving
a stronder consistency condition.) The three choice mappings described in the
next example satisfyv the weak consistency conditions, but each handles partial
agreement in a different manner.

Example 3. a. A plurality election, where the top-ranked candidate(s) is
selected, satisfies the weak consistency condition. Suppose that f(p) # f{p’),
but that f{p)nf(p') # @§. (For this to occur, the election outcome for at least
one of these profiles had to end in a tie vote for the top place.} It 1s easv to
show that f{p+p’) = f(pinf(p’). It is reasonable to use this condition to define
a stronger form of consistency that specifies what should occur when the parts are
oniy 11 partial agreement. However, as shown in Young [10], such a definition
imposes severe resirictions on what choice functions are admissible. For
additional discussion about this definition, see Moulin [4], where it 1s called
the "Keinforcement Axiom."

b. Let fip) be the set of all candidates who are top ranked by at least
one voter. For example, if p represents the two voters with the rankings
¢, 0,0, ¢yoc, e, then fip) = {c

10 C . It is obvious that f satisfies the weak

consistency condition, and that f(p+p

- W

) is the union f(p) U f(p’).

¢. Let n 23, and let f(p) = {c,,c } € P(C") iff these two candidates are

J
the two tep ranked candidates for each voter represented in the profile p;
otherwise let f(p) = TP, This choice function is weakly consistent, but unless

fipr = fip’). the union f{p)Uf(p’) is a proper subset of {(p+p’).

Definition A set C in S is algebraically closed with respect to the binary

operation if whenever p, p' € C, then p + p’ € C.

Theorem 1. A choice function f:S ---> P(C") satisfies the weak consistency
condition iff for each a € P(C"), f-1(a) is algebraically closed with respect to

the binary operation.

The proof of this theorem is almest a tautology, so 1t is left to the
reader, But, even tnough Theorem 1 1< easy to prove, it has important
conseguences.  As T chow, this theorem completely explains the above examples.

The ctrength of Thecrem 1 derives from the geometry of the algebraically
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closed sets. For instance, 1f B i1s a set in S then define the cone of B, tc be
Co(B) = {npl+mp2:n,m € Z,, p,»p, € B, and np is the n fold sum of p with itself}.
1t is clear that B Is algebraically closed iff Co(B) = B.? So, by emphasizing the
geometry of the cones, one can determine whether a choice method is weakly
consistent.

Simpson’s Paradox.

To demonstrate how to use Theorem 1, 1 use it to expiain Simpson's
paradex. I do so with two different representations of the statistical model. One
of them leads to (what appears to be new) necessary and sufficient conditions to
avold Simpson’'s paradox in the design of statistical experiments. A second feature
of this discussion is to show how the choice of a mathematical representation
significantly effects the analvsis. For instance, the first representation admits
a simple binary operation, sc the emphasis is on the geometry of the inverse
images of the choice function., The second representation admits simple inverse
images, so the emphasis 1s on the geometry of the cones generated by the binary
operation,

For the first representation let S = {x = (xl,xz;xa,x4) € Rﬂ:xl is a non-

negative inteder} where the binarv operation is vector addition. The range space

is based on the two alternatives (¢ = {CI,CZ}. As a typical example, c,
represents a test group where X, and X, are, respectively, the number of successes
and failures. Similariy, c, represents the control group where x; and x, dencte,

respectively, the number of successes and failures. The choice function, f,

selects the group with the largest fraction of successes, so

2!

ﬁ
5
"

. : ! . .
) if xl/\xl+x > xa/(x +x

3 4)’

N
i~
)
¢
"

), and

).

c, if xl/(xl+x2) < x3/(x3+x4

-+
¢
"

{cyacy b0t X/ 0x 4%, ) = Xy /(x4x,

According to Theorem 1, this procedure is weakly consistent itf each of

the three sets f“(cl), t-1{c,), and f‘l({c],c ) are algebraically closed with

2 2}

respect to vector addition. To analyze these inverse sets, 1t suffices to examine

the boundary set f-!({c .c,}).

1f f were defined over all of B , rather than just the 1nteger Jattice

3. Suppesc f 1s net weakly consistent, but there are choeices of o € F(U") so that
Ceif-1{ay) = £-i{a). This condition ensures that the conflict between the parts
and the whoie will neot occur 1f th= parts asree on a.
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peints, then f‘l({cl,cz}) would be a three dimensional surface. As the binary
operation 1s vector addition, a three dimensional surface is equal to its cone
(1.e., 1t 1s algebraically closed} only if 1t is a portion of a three dimensional
linear subspace. This is not the case for f'l({cl,cz}) as 1t is the non-linear

surface x x = 0. Indeed, this highly non-linear surface is given by the

L Xg TN X3

union of the products of the two hvperbolas X,X3 = C = XX, &5 C varies over the
positive values. Thus, 1t follows immediately that when restricted to the integer
lattice points, this surface is not algebraically closed. Moreover, by using the
"bulge” caused by the nonlinearity of the product of the hyperbolas, one can
construct many different examples of this paradox. To do so, simply select twe
pcinte that are on one side of the surface (so thev are in the same f‘l(cJ) set ),
but where the vector sum penetrates the bulge tco emerge on the other side.

In my second representation of this problem, the focus of the analvsis is
en the geometry of the cone defined by the binary operation. Thig representation
uses the ]l polar decomposition, (u;x,v), of the data from each samplie group where
u € Z‘ is the total number of subject, x20 is the fraction of the u subjects
jude¢ed successful, and v = 1-x20 is the fraction judged unsuccessful. With two
groups. say a4 contrel and a test group, the data can be represented as

Cuaoviny o, sxg oy, ) where (u;x, X

RV SRR and (V;x3,x4) represent, respectivelv, the data

\
2 1
from each of the two groups. The three regions defined by P(C¢) are in the unit

square U = {0,1]x]0,1) defined by the (X)X coordinates where f‘l(cl) is the set

3)

N, 2 X

\ 3 f‘l(cz) is the set x, < x

1 30
These three convex regions in U are defined and separated by the diagonal x

and f'l({cl,cz}) is the line segment X, = Xy,

I:XB'

It remaing to show whyv these convex regions are not algebraically closed with
respect to the binary operation.
The binary operation "+", defined by the ]l pclar coordinates, is
) ) : ’ . L] ,!) )

(U,Y;X],XZ;XS,Xq) + {(u’',v PX] Xy 3Xg Xy M)
]

sx2+(1-s));2;tx3+(1-t)x3’,tx4+(1—t),\'4 ) where s = u/{u+u’) and t = v/{v+v’),

= (u+u’,\+v’;sx]+(1—s)x

bBecause s and t are determined bv different independent variables, their values
are independent of each other. This means that the cone defined by two pecints
(xl,x3), (xl’,xa’) € U is the unique rectangle (with edeges parallel to the
coordinate axis) where these peints serve as two of the vertices. (See Figure 1.)
Tt immediately follows that for anv set B, Co{B} 1s the union of all! of the
rectangles defined by pairs of points in B,

lsing the above., 1t now follews that Co(f‘l(cl)) = Co(f"(cz)) =

Czif"(ic].CZ}) = U. Thus, these regions are not algebraicaliv closed, so { is
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not weakly consistent -- Simpson’s Paradox holds.

Creating and avoiding Simpson’'s Paradox.

Suppose no restrictions are imposed on the values of u and v -- the number
of subjects assigned to each locale or group. Such a situation 1is typical when
analvzing statistical data from cohort groups from different countries, or when it
is morally wrong to assign subjects to a particular group as true for, sayv,
certain medical experiments. In such situations there are no restrictions on the
{rational) values of € and t in the unit interval (0,1). Therefore, for a given
set B, the (rational) points in Co{(E) define all attainable outcomes. Using this
fact, it becomes easy to construct examples i1llustrating the paradox. To do so,
cselect two polints (xgony) and (xl’,x3’) in the same triancular region where the
bulge of the rectangle CO({(xl,xs),(xl’,xa’)}) extends into the other triangular
region. (See Figure 1.) By choosing a peint in the bulge that is in the second
region, by finding the corresponding value of (s,t) for this point. and by
translating the (s,t) value into (u.,v) (u’,v’) values, an example is created.
Moreover, 1t follows from this construction (and Figure 1) that examples can be
created whereby boeth subgroups reach the same decision, but the reversed decision
wins in the agerecate by as large of a fraction (smaller than unity) as one
desires,

Conversely, there are many situations where it 1s appropriate to assign

the values of (s,1). When such a situation applies, the (s,t) variables can be

used as contrel parameters that are selected to avoid the paradox. The idea is to
recognize that avoiding the paradox is equivalent to battling the bulge of the

cone. A bulge does not occur iff the only attainable points are on the straight

’

line connecting the iwo base peints (x,x and (x,’,x,’). A necessary and

3)

1
sufificirent condition for this to helid is that s = t; namely, there 1s a
restriction on u and v so that the binary operations only admits convex
combinations. Thus, if no restrictions are imposed on u+v, u’+v’, then a

necessary and sutficient condition to avoid Simpson’s paradox 1s to reguire

. '

usluru') = v vev ) e.go, u'/u = v'/v . This means that in both locales, if the
same ratio of the subjects are in the test group, then the paradox cannot occur.

1{f the base points are bounded away from the line X;=x, and if it as

ressible to 1imit the size of the bulge, one can derive alternative, weaker
conditions to avoid this paradoxical behavior. For example, suppos: there 1s an

upper bound, M, on the magnitudes of u+v and u’+v’. This requires the

)

denominators of the fractions in (xl‘xx) and ST '} to be no larger than M. 1f

3
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botli points are in the same regien, sav f"(cl), then these points are bounded

away from the line x,=x, by a fixed value 6§ that depends on M. Thus, any

1 3
condition limiting the bulge to be bounded by 6§ avoids Simpson’s paradox. For
instance, if the inequality Is - t1< 1/{M-1) is satisfied, then the paradox does
not occur. In turn, this leads tc more relaxed bound
2.5 Flu’/u)=(v'/v) 1 [1+(u’ /u) J[1+(v " /v ) )/ (M-1)
on the assignment ratios of subjects to groups.

Comment on statistical procedures

The second representation of Simpson’s paradox explains why one must
expect that many of the statistical procedures are not weakly consistent. After
all, manyv statistical procedures are based on probability distributicns where the
combinaticn of probabilities, according to Baves’ rule, is similar tc the one
given above, But this non-linear combination of probabilities defines the binary
operation on S; an operation the leads to the bulge in the cone. The next example
1ilustrates another class of non-linear operations of the kind found in statistics
and in 1oting.

Generalized majority voting

Simple majority voting between a pair of candidates i1s where the winner is
determined by which candidate receives the highest percentage of the votes cast.
Mujority voting is defined only for pairs of candidates, but there are wave to
generalize this procedure in order to rank several candidates. For instance, to
define the pure majority voting scheme, let Pi 5 be the fraction of all voters
t

x The winning

hat prefer ¢, te S and assign tc ¢, the point total I, D,

candidate 1s¢ the one with the largest point total.

There may be reasons to assign points to candidates in a manner that
differs from the above., For instance, one might wish to reward a candidate who
recelves more than 2/3 of the total vote in a palrwise comparison by assigning the
candidate more than 2/3 points. One such criterion might assign zero points for

I « 1/3, 172 pointe for 1/3< p <2/3, and 1 point for | SR 2/3. Here the

1,2
ascignment of points ig established by a non-decreasing step function. A related
scheme, developed to aveid some of the cyclic effects of pairwise voting, is

described in Capplin and Nalebuff {2]. The following definition is a mcre general

reprecentat jor that includes most commonly used versions,

Definition. Let

a8

he & non-constant, non-decreasing function from [C.11 to (0,1}

sucl that
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2.1 gip) + gti-p) = 1.
A generalized majority vote is where the number of peints assigned to c, 1s
< g(pi i)' The candidate with the largest point total is declared the winner. If

g(p} = cp, ¢>0, the procedure is the pure majorityv vote scheme.

It is not overly difficult to show that a pure majority vote scheme 1s
weally consistent. Are there any other weakly consistent generalized majority

voting methods?

Theorem 2. A generalized majority vote scheme satisfies weak consistency iff it

is a pure majority vote scheme.

Az shown in the cutline of the proof (Section 4), the procedure saticfiec
weal, consistency 1ff ©C g(pj'J) is a constant vector. This requirement forces ¢
to define the linear procedure of pure majority voting. So, as true for Simpson’s
paradox and many other statistical procedures, it is the nonlinearity that creates
the gap between the parts and the whole. Incidentally, pure majority voting is the
only generalized majority voting scheme that can be represented as a "positional
voting procedure;” the clasgs of "linear” voting methods described in the next

section.
3. Convexity and Election Paradoxes.

To effectively illustrate Theorem 1, 1 now concentrate on a single topic.
Mv goal 1s to demonstrate how the general principle of Theorem 1 can be combined
vith the structures of a specified class of procedures to characterize which of
those procedures satisfy weal consistency., To do this, 1 emphasize those decision
procedures based on the voters’ positional voting rankings of the candidates.
This large c¢lace includes run-off electiong, sequential ballets, tournaments, etc.
1t is necessary to introduce some of the technical structuree for voting in corder
{0 state the main result of this section. The main result, however, is quite easy
1o use. (S2e¢ Evample 53 to get an indication of the kinds of possible results.)

To ¢et a loose but Intuitive flavor of my main result, consider a run-off
clection for % where the top twe ranked candidates at the end of the first vote
are advanced to the ran-off. If this procedure satisfies weak consistency, themn,

according te Thecrem 1, f“(cl) = Co(f-Y{c, i), 1 = 1,2,3. To determine the
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structure of this set, note that the possible wavs c¢. could be elected are if at

1
the end of the first stage [she and c, are the two top ranked candidates and she

beats c.

, in a majority vote] or [she and c, are the two top ranked candidates and

she beats Cy in a majority vote}. Loosely speaking, it follows from Theorem 3

that a run-off is not weakly consistent becauce f‘l(cl), cannot be described
without using the word "or." The connection “or"” is what violates the algebraic
closure of f-1(c ).

Similarly, consider the sequential election where the majority winner of

)

beats C2] and [Cl beats Ca]. As I show, 1t is essentially

an election between ¢, and c Here f-1{c

1 is advanced to be compared with c

2 3° 1

has the description [Cl

becaise this description uses only the connection "and” and no "ors', that

Co(f"(c])) = f'l(cl). Consequently, at least for those p’s where f(p) = c, f(or

\

¢, !, if the parts agree, then this is the outcome of the whole. However, f is not

weakly consistent because the description of f'l(cq) is {c, beats ¢, and c, beats

3 1 2 3

'

¢,] or lc, beats ¢, and c, beats c¢,]. Again, the needed connection "or" causes

1 1 3

weak consistency to be violated.

For the kinds of election procedures discussed in this section, a set of
prefiles 1s algebrically closed 1ff it 1s convex, It 1s well known that the union
of two convex sets need nol be convex. Thus, the connection “or', which
cerresponds to the union of sets, 1s what violates the algebraic clesure for the
above examples. A word of caution; one can construct weakly consistent examples
where the outcome i1s defined with the word "or;"” these examples are identified
with situations where the union of sets is convex. (Most of these examples,
howewer. admit other representations that avoid this conjunction.) The following
technical description develops simple conditions te check this comexity
condrtion.

Fositional voting methods

To start I review some definitions and some recent developments about

peeitional veting., Recall that a positional voting method for the n candidateg Cn

is defined by a voting vector W = (wl,..,wn) vhere, without lose of denerality,
w 2w fer 1 = 1,..,n-1, and w, ow =0. In the tabulation of each voter’s ballot,

w_ polnts are assigned to the ith ranked candidate. The ranking of each candidate
i determined by the sum of the pcints che receives. In this manner, the vector

{(1.0...,0) Corresponds te the plurality vote while B = (n-1.,n-%2,..,0) defii the

n

n

i

e s
Bords Count (BC).  (More generally, a BC vector is any voting vector where the

diftercnces between successive welghte are a fixed constant value. The BC 1s
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equivalent to a pure majority voting scheme.)

The outcome for each of the procedures mentioned in the introductory
paragraph of this section is based on the positional election rankings of several
sets of candidates. Thus, for what follows, we need to understand what
relationships exist among the same voters' sincere election rankings of different
subsets of candidates. This relationship is characterized in Saari [8,9}, and 1
repeat those basic results needed here. To start, note that to have an election
we need at least two candidates. Seo, from C0 = {cl,..,cni list the 2v-{(n+1)

subsets of two or more candidates in some order as S,,.4yS For each

n .
2 -in1l)
subget Sn' assign a voting vector W that is to be used to tally the eiection for

S, . and let the syvstem vector be W0 = (wl,...,w n ). Let B® denote the

2 -in+l)
special case where a BC is used to tally the elections for all sets of three or

more candidates,
Let Rj be the space of all possible election rankings for S); namelyv, Rj
is the collection of all pessible linear rankings {(including those with ties)

admitted by the set SJ. (As an example, if 5, = {Cl,Cz}. then R, = {c]>c2, c,=cC

b, 1f Sj has three candidates, then Rj has 13 rankings; 3' are linear

1 2

c,2C,
rankings with no ties, 3! are rankings with one tie, and one is the complete
indifference ranking with a three wav tie.) Let UM, the uriversal set., be the

cartesian product Ryx...xk," By definition, an element of U™ 1s a listing

-(n+1)°*
of rankings where the 1'% ranking is for the set S,. MNctice that U" contains all
possible listings and that there is no assumption that any particular listing has
anvthing to do with election outcomes.

As described in Example 2a, with n candidates, there are n! linear
rankings without ties. Let each of these rankings be identified with a cocordinate
axis of R"', In the computation of an election outcome, we only need the fractior
of all voters that are of a particular tyvpe. This suggests using the l] polar
representation of the integer vectors where a profile, (u,p) € Z xSi(n!') and the
vector p specifies the fraction of all votere that are of each type. The bLinary
operation 1s as defined in Example 2¢, so the direction component (the Si(ni)
component) of (u,pl+(u’,p’) is a convex combination of p and p'. Once p and the
svstem voting vector WP are given, the election mapping F(p;W") 1is the listing in
U that egives the sincere election ranking for each subset.

Example 4. Cousider the prefile p where 6 voters have the ranking
o, 0, Tive voters have the ranking C,2C 2C, and four voters have the ranking

}, S, = {c

1
Ccyre,rep. Let §00= {ey,c 2 1.c3}, S; = {c,ycy}y 5 = {cl,cz,c3}, and let

2
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the system vector be W3 = (1,0;1,0;1,0;2,1,0). This choice of a system vector
determines that the rankings of the sets of two candidates by a majority vote
(1,0), while the ranking for the set of all three candidates is determined by
(2,1,0), the BC. A simple computation shows that F(p;W3) = (C2>C1’ Cy>Cyy C,0Cyq,
c2>c1>03).

The dictionary determined by a system vector W" 1s the collection of all
possible listings of election rankings that could ever occur with some profile.
Namely, D(Wh) = {F(p;W'), p is a profile of a finite number of voters}. An
element of a dictionary is called a word, and each of the 2"-(n+1) rankings in a
word 1s called a svmbol. In Example 4, the specified election outcome is a word in
D(W'), while the ranking C,7Cy4 is a svmbol for Sa’

By definition, D(W") is a subset of U". The issue is to determine how
large or small of a subset 1t 1s. For instance, if the dictionary 1s a "large”
csubset of UM then the svetem admits a wide class of paradoxes; if it 1s a small
set, then only a few unexpected outcomes can occur. My answer for this question
invclves the facts that W® i1s a vector in the positive orthant of an Euclidean
space and that an algebraic set is a small, lower dimensional subset of an

Euclidean space determined by the zeros of a finite set of polvnomials.

Theorem 3. (Saari [8,9]}). a. Let n23. There exists an algebraic set, a™, such
that if W ¢ a™, then D(Wn) = yn,.

b. For all n 2 3, B" € a". Indeed, for n = 3, D(B") is the only
dictionary that is a proper subset of U3. For all n23, if at least one component

of W" is nol a Borda vector, then D(B") is a proper subset of D(Wn),

Part a of this thecorem asserts that for almost all choices of a system
vector, anv listing from UM can represent a sincere election outcome. This means
that any 1ma<ined paradox actually can occur! As an extreme, this theorem permits
one Lo use a random number generator to choose a ranking for each of the subsets
of candidates. In this manner, a randomly generated listing from UM is created.
Fren though the rankings for each subset mav have absolutely nothing to do with
one anoather, the theorem asserts that there 1s a prefile so that the sincere
elactinn ranking for each et of candidates, as determined by W, is the
specified, randemly generated cne.

Part. b of the theorem means that the only method that could possibly
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provide anyv relief from permitting randomly generated election outcomes is the BC
- the Borda Count. This theorem also means that if a word from the BC dictionary
can be used te indicate a fault with the BC, then, because the exact same word is
in all cther dictionaries, the exact same criticism holds for all other svstem
vectors,

According to my earlier definition, a choice function is a mapping from
Si{in') te P(C"). 1 now consider those choice functions where the outcome is

determined by the voters’ positional vote rankinge.

Definition. A positional choice function based on the system vector W" is a
mapping f:Si(n!') --> P(C") that is that can be expressed as the composition f =
G°F where F is the election mapping and G 1s a non-constant mapping from D{Wr) to

p{Cn).

So, a profile and a svstem voting vector are used to find the election
ranking for all subsets of candidates, F(p). The winning candidate i1s determined
by these rankings as G{F{p)) € P(C"}. (In practice, not all subsets cf candidates
need to be ranked. Which sets need to be ranked depends upon the definition of
G.) Notice that the G function 1s a formalized version of the usual definition of
an positional choice function. This description explaine what sets of candidates
needs to be ranked based on what kinds of election rankinge result for other
subgsels of candidates; the formal definition, mapping G, has the same description
but i terms of the worde of a dictionary. {(Often such methods are described in
terms ¢f & tree structure.) For iInstance, consider a run-off election where the
twu top ranked candidates are advanced to the second stage. The G mapping uses
only the syvmbole of a word describing the ranking of the set of all n candidates
and the rankings of the pairs. The ranking of the set of all candidates dictates
which syvmbel (which pair of candidates) G should use next. MNamely, the two top
ranked candiduates for the total set determines which pair is to bhe evamined. So,
for the word (e, 2c,0cy; Cy2C,;
first and the second svmbols are used. On the other hand, for the closely related

Cy2Cy; cﬁ)ca), ¢, is the winner, where onlyv the
B <

word (c]>c3>cz: Cy2C,5 €320y c2>C3), Cy is the winner and only the first and
third svmbole of this word are needed.

Positional choice functions include tournaments. sequential voting. and
various kinds of run-off elections, so thigs large class includes manv (if naot

mostt of the commenly used choice functions. My concern 1s to characterize the
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positional choice functions that satisfy the weak consistency condition. This
involves two steps. The first is to find the inverse images of G. This involves
characterizing all words in the dictionary D(W?) that lead te the same outcome in
P(C"). Next, one must determine the properties of the set in Si(n') that leads to
these words; namely, one must characterize the sets

3.1 F-1(G-1(a)) for a € P(C").

Because the binary operation in Si{n') defines a point on the convex combination
between two points, a necessary and sufficient condition for these sets to be
algebrajcally closed 1s that thexy are convex.

The analvsis of which sets in Si{n!) are convex is greatly simplified by
the facts that Si(n!) is part of the affine space and that the taliving procedure
is & linear mepping. This leads to a natural decomposition of F in terms of an
election tally mapping, T, and an ordinal representation mapping, 0d, that
converts the election tally to the ordinal electien rankings. Both mappings are
described in the following section.

4 geometric representstion for election tallies

Before defining the election tally mapping, the appropriate range space

needs to be introduced. If there are n candidates, then candidate ¢, can be

identified with the coordinate axis X, of R* , 1 =1,..,n. A binary ranking on
k' ~can be defined by saying c; 2oy 1ff X; 2 X, and c, = ¢ iff X; = oxy. In
this manner, the n(n-1)/2 hyperplanes X TNy divide R"  1into cones, or ranking

regions. For instance, if A denotes the ranking Cl2C, >0 a2C it corresponds to

the ranking region A RS POEREPS W

One advantage of this K" representation is that it permits the tally of
ballote to be represented by vector sums. This is because the voting vector W is
in the closure of the ranking regicn associated with A, and it can be i1dentified
with how an "A" veter’s ballot would be tallied. 1In general, if n{(A) denotes a

permutation of A, then there is a permutation of W, W to represent how a n(4a)

neA)Y?

voter’s ballot would be taliied. Continuing, if I, ., represents the fraction cf

all voters with the ranking n(A), then the election outcome 1s given by the
ranking region that contains the vector sum
2.2 N T Li

o “aiar Mancay Mncoan

where the summation is over all n! permutations of A,

Betause {n 0} € Siin!), the vector sum isg a comex combination of the

veotors {H"lﬁ)}. Therefore this sum 1s on the simplex Ing = Swpn without lose of

generality, assume that Zw = 1. This has the effect of making the baricentric
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divieion (given by the ranking regions) of Si(n) serve as the space of election
outcomes. To i1dentify Si(n) with the set (", denote this simplex as Si(ICr}).
Extending the sum 1n 3.2 from the rational points in Si(n!} to all points leads to
my representation of the election tally mapping F(p;W,C")):Si{n!) --> Si(i("1) as
3.2 T(p;W,cry = A
where p = {p"‘A)}.

The definition of T(p;W,C(") holds for any set Sj of two or more candidates

to define T(p;WJ,SJ) as a mapping from Si(n!) to Si(ISjl). For a voting vector W

= (w1’°"w2n-(n+1)’ define the svstem tallyv mapping

3.4 TipsWed = (TOpsW,,S, ), oo T W, 98, gy )

where T: Si(n!) --> S10IS; )x vo x S1(IS,"_ .4, 1). Let ka represent the product
range space., Notice that there is an mapping Od:Ra --> UP, the ordinal

representation mapping, that takes the product of ranking regions in Ra to a
listing in t". This mapping converts the election tally for each of the sets to
the ordinal election ranking for this set. Therefore, F = 0d°T.

To 1llustrate the definitions, note that in Example 4, T(p) =
((6/15,9/15), (11/15,4/15), (11/15, 4/13), (17/35, 20/35, 8/353). So, for the
{cl,czi outcome, the image of 0d((6/15,9/15)) is c,>cy+ In general, 0d°T has the

outcome specified above.

Positional Choice Procedures
My first result characterizes all positional cheice procedures that
satisiyv the weak consistency condition. After 1 give a series of elementary

propositions and statements, I 1llustrate how to use this theorem.

Theorem 4. a. Let n2 2 and let f=G°F = G°(0d°T):Si(n!) --> P(C") be a positional
choice method thal is based on the system voting vector Wo ¢ a". The choice
procedure f is weakly consistent iff for each B € P(C") the set [G°0Od])-1(B) is a
convex sct in Ra.

b. If W» € a", then the image of T, T(Si(n!);W"), is a lower dimensional
affine hyperplane passing through the point of indifference of Ra. The assertion
of part a holds if [GeOd]-1(B)NT(Si(n!')) is a convex set. Moreover, if a
positional choice procedure f based on the system voting vector B" is nol weakly
consistent, then f is not weakly consistent when it is based on any other choice

of a syster vector Wn,
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As asserted at the beginning ¢f this section, it now becomes reasonably
strairghtforward to determine whether a procedure 1s weakly consisteni. FPart a
asserts that for most cholices of We, all that is required 1g¢ to take the verbal
description of a positional choice method and determine whether its geometric
description in ka is a convex set. According to part b, the general situation is
handled by considering whether a choice function 1s weakly consistent when i1t is
based on B". Such an analyvsis involves using the characterization of the Borda
Dictionary given in Saari [9].

Most procedures are defined in terms of what should be done if different

election rankings occur. This means that the set of werds 1 D(W?') that lead to

the cutcome a, G i{u), usually is easy tu determine for any given f. Moreover,
the mapping Od-' just identifies words in D{(W*) with the corresponding regions in
Rxy, s» this inverse set also 1s easy to compule. Thus the power of ithis theorem
i that 1t imoulves easily checked conditiens in ka rather than depending upon
cenditions for the far mere complicated space Si{n!). Indeed, 1n this manner, the
several new results given in Example 5 are easy to find. Example & is based on

the following seriee of simple technical propositions.

Proposition a. The T image of Sil{n!) into a get Si(|S]!) i¢ a conves set with
the complete indifference point 1s an interior point. For all Wo g a™, the T
1mag: of the interior of Sii{n') to Ra 1s a convex open set where the point giving
the ranking of complete indifference for all subsets 1s an interior point.

L. The Od inverse image of a syvmhel 1s a comvex set in Ra.

. As the Intersection of convey sete vieldse a convey set, the 0d inverce
imag: of & word 1s a conves set.

d. lel k represent a subset of L candidateg that are 1n SJ. The 0Od
inverse 1mage of all svmbols {(rankinge} for Sj where the k top ranked candidates
are from K 1s a convex set. Similarly, the Od inverse image of all svmbels for S,
where the k bottom ranked candidates are from Kk 1s & conves set.

. The direct product of two conver sete ls a convex set. The product of
two sete where one ie not convex is not convex.,

f. The union of two convex sets need not be convex., In particular, the 0d
tverss amace of all words where the svmpbole for S, IS}%ZE, have either one of

N

fwe ified candrdates as top ranked it not convex,

Example 5. a. Let S be a subset of at least three candidates. and jet f
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be the choice procedure that selects the top ranked candidate(s) from a positional
election, This choice of f is weakly consistent. This is because of part c of
the Proposition. Likewise, if f selecis the k top ranked or if it selecte the L
bottom ranked candidates from an positional election, { is weakly consistent. On

the other hand, if { selects the second ranked candidate., then f is not weakly

consistent. This is most easily seen for n = 8 by using Figure 2. Notice that
f“*(uz) are regions 1 and 4 from the figure; that is, the regions ¢y2c,%cy or
C32C,>C; . Quite obviously, the union of these two regions i1s not convex.

L. Consider a sequential, or agenda election where the winner of a

maiorlity vote beitween <, and c, is advanced to be compared with ¢,. The relevant
space representing this procedure involves the rankings of three pairs of
candidates. As $i{2), the space for a pair of candidates, i1s one dimensional, the
product space can be i1dentified with R®. Here, let the positive x, v and z axis

represent., respectively, the rankings c,>c¢ The negative axes

17C5s C2Cy, and Cy2C

1
reprecent the reversed rankings of c,0Cy c3>c2,and Cy2Cy.  Now, f'ltch) is the
union of the twe regions {c1>c2)ﬂ{c3>cl} and {c2>c1}ﬂ{c3>c2}. Although each of
these regions is convesx (according to the proposition), the union is not. To see
this, note that the first region corresponds to the region {x>0, z>0} while the
second region corresponds to {x<0,v<0}. This union consiste of 4 orthants of R%.
This union contains a "corner” where the positive x axis is the edge, so the union
i, most clearly, not convex.

Eyv mimicking the procedure used to desigr examples of Simpson's paradox,
it 1¢ easy to create an example for this procedure to illustrate that weak
consistency is not satisfied. Just cheocose twe points p and p’ - one in each cf
these twe regions - where the convex combination is outside of the union. The l1
radiue (the number of voters) for each group i1s selected so that the convex sum is
in a region outside of the union. (The convex hull of these regions meets all 8
orthants of R*. Therefore, this construction can be achieved to allow anyv desired
candidate to be the winner.) So, although each group chooses c, as the winner,
when they combine inte a single group, a different candidate wins. One of these
profiles could be selected so that it is in a region cy2c,>C, (x<0, v<0, z>0).
Therefore, if p’ is sufficiently close to the boundary of the union of the region,
p could be selected to be a single voter with c, as the top ranked candidate.

However, when p ls combined with a group, p’', that prefers c,

]
>]

, the outcome differs

from ¢ If p represente a sincere ranking, then this 1llustrates the strong

3

abstention paradox; if p represents a strategic ranking, then thie 11lustrates a



Consistency of Decision Processes Page 20

strongly manipulable situaticen with a single voter.
¢. Consider a run-off for C3 where the two top ranked candidates are
advanced to compete in a majorily vote election. the set G'I(Cl) is where [{C]

and ¢, are the two top ranked candidates}ﬂ{c]>c2}] or [{c, and cy are the two top

1
ranked candidates}n (cl >c3}]. Each bracketed region is the intersection of
convex regions, so it is convex. However, the union is not convex, so a run-off
is not weakly consistent. To see the non-convexity, notice that the region in the
space for three candidates, Si{(3), is [c] and c, are the two top ranked

candidates]) cor [c1 and ¢y are the twe top ranked candidates]}. In Figure 2, this

is evervthing except regions 4 and 5 -- a non-convex set. Notice that the lack of
comexity is manifested by admitting points p and p’' whereby for each profile c,
is one of the two top ranked candidates in an election, but the convex combination
forces ¢, to bottom place. This is how Example 1b was created.

d. How does one create a weaklv consistent procedure? To show how to use
Theorem 4 to do¢ this, 1 use the important choice procedure, fl, that selects the
Condorcet winner when one exists. (Recall, c; is a Condorcet winner 1f ¢, beats
all other candidates in pairwise elections.) Can one extend the definition of f,
sc that it applies when a Condorcet winner does not exist? 1 show for n = 3 the
kinds of restrictions that must be imposed on the extension if the extension is to
be weakly consistent. To skip some steps, extend f] so that it selects c, if C,
i a Condorcet winner, or 1f ¢ is the only candidate that beats one of the
candidates and ties with the remaining candidate.

Recall that the product space for the three pairs, Ra, can be represented
I'v B where the ~, v, z axis represent, respectively., the rankings of {cl,cz},
fc,vcqyby {eyycy ) and where positive values indicate that the first listed
candidate wins. To determine how to define f, when no Condorcet winmer exists, 1t
is necessary to compute what regions in K% remain unassigned to an outcome. These
are the regions corresponding to cvcles, such as {c]>c2, C,2Cq, 03>c]}, and to
thres sitnations where two candidates are tied and both beat the third candidate.
Thus, after computing the sets f'l(CJ), J=1,..,3, the remaining reg<ions are
given by the closure of the union of the positive and the negative orthant along
with the union of portions from the three ccordinate planes. The portion from
esgch coordinate plan- 1s that guadrant of the plane corresponding to where twe
candidates are tied, but both beat the remailning candidate. This defines five
reciobs,

ned to sets of P((n; that differ from

2}

If these five regions are to be ass:

i o]
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singletons, then five different sets from P(C") are required. However, only four
sets remain in P(CP). Consequently some of these regions must be combined into a
single convexs region. However, the union of any of these regions does not form a
conver set. This means that at least one of these regions must be assigned to a
singleton. Morecver, the assignment must allow the region associated with this
singleton to be convex., The eonly wav this can be done is if one of the portions
ol a coordinate plane is assigned to a singleton; for instance, the region
corresponding to Cy=Cyy Cy2C, C,2Cy could be assigned either to ¢, or to Cye
(Thice flexibility in ascsignment is a general fact. Each of the two other
gquadrants of a plane also could be assigned toc one of two possible singletons.)
Now, because only four regions remain, each can be assigned to one of the
rem=ining sets in P(Cn). Alternatively, the two remaining quadrants of planec
could be assigned to singletons, and each orthant to one of the four remaining
sets of P(CMY,

As the above construction shows, certain assignments of the regions of R?
ar« forced upon us in order to achieve weak consistency. An unfortunate side

effect i1s that whatever choice is made, the extension of f1 must viclate

neutrality,  Namely, for n = 3, 1t Is impossible to extend the Condorcet winner
inte a procedure that is both neutral and weakly consistent. Here, neutrality

means that i1f o i1s some permutation of the names of the candidates, then f(o(p)) =
glfi{p)). 1In other words, the outcome does not depend upon the names of the
candldates. but rather on how the voters rank the various candidates.

e. The extension of f, in part d may be objectionable for reasons other
than neutrality,  Therefore, it 1s reasonable to wonder what happens 1f a choice
function is a combination of two weakly consistent procedures. For instance,
define [ to select the Condorcet winner if one exists., If no Condorcet winner
exisie, then the selected candidate(s<) ie the top ranked candidate(s! in a
plurality electicn. Is f weakly consistent?

This choice of f 1s not weakly consistent. 7To see this., note that U’l(c])
i given by the words ([(Cl>cz, Cy2Cqyy =y = 0, [(—,-,—:cl>c2>03), (=y=y—;
c1>c2>ca)]] where a "-" means that any symbol can be substituted for the missing
ranking. The words in each of the brackets do define convex sets, but the union
does not. Here the relevant geometry is in a five dimensional space, but one of
the dimensione - the one for the ranking of {C:’Ca} - plave ne role in thne
snalyele,  So, let {n,v;u,v,w), u+v+w =1, represent the variables in the remaining

four dimensional space. The first bracket corresponds to the region (x>0,v>0,-,-,
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-) while the second bracket defines the region (-,-;u>v,u>w). One way to see the

Tachk of convexity in the region is to envision a three dimensional representation

where the traditional "z" axls represents the two dimensional (u,v,w) space. The

first set defines the "quarter space’” passing through the first quadrant of the x-
v plane., The second set is in a region in the upper half plane. Thus, the union

forms a "corner” so it cannot be convex. From this description, it now is easv to
construct examples where weak consistency is violated.

This construction reinforces a notion already suggested by the run-off
examjple 11 part b. If a procedure involves rankings of several subsets of
candidates, then the redgicns in Ra involve the product of regions from different
subspaces,.  Becauvse products of regions are used, the uniong runs the risk of
admittine "corners” that violate convexityv. In both part b and the above, the
cornere arise because there are situations when the rankings of a particular
aubset of csndidates are needed for the final outcome, and then there are other
cituat rons where the rankinge of this subset are not used at all. (This is where
= =" occurs in the licting of rankings.) As the next siatement asserts,

procedures admitting such situations usually are not weakly consistent.

Corollary 4.1. Suppose the outcome of a positional choice procedure is based on
the ranking of one of at least two different subsets of candidates. Suppose that
the selection of this final set is determined by the rankings of other subsets of
candidates. Furthermore, suppose there is a candidate that could be chosen with

more than one choice of the final set. The procedure is not weakly consistent.

Thie corollary includes run-off elections, tournaments, sequential
proo-dures and mauy olher processes ag special cases,

o 3¢ myv last example, I outline why for n 2 4 one cannot extend
Condureet’s method te define a weakly consistent choice method. This construction
<hoild be compared with the example given in Mcoulin [4]. For the stronger
definition of consistency given in Example 3a, Moulin obtailne a similar assertion.
Th=refore, the construction given here extends Mculin’s theorem, it sudgests how
teo construct examples that de not satisfy weak consistency, and it offers a
ceametric exnplanation why results of thie kind must be expected.

I first outline the ldeas for no= 4. Here, there are 6 pairs. so the
represertation of Re is R, Fach of the 20 = €4 orthante corresponds to a

+

particular eirict renking of pairs. The idea is to follow the lead of part d.
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S, for fl, find which orthants are assigned to the Condorcet winners. (In part
d, most of the analvsis involved the assignment to a set in P(C®) of the portion
of the coordinate planes that did not define a Condorcet winner. I ignore this
extra complication for n24 because the negative conclusion already is forced by
the assignment problem for the orthants.) For n = 4, each Condorcet winner is
determined by the appropriate syvmbols in a word. For instance, ¢, 1is a Condorcet
winner for the words (cl>cz, € 2Cq, c1>cq.-,..,—). In each of the three blanks,
anyv ranking of the appropriate pair of candidates can be used. Thus, associated
with each Condorcet winner is the union of 23 = 8 of the orthants of Rt. There
are four possible choilces for a Condorcet winner, so the Condorcet winners account
fer 4(2%) = 32 of the 64 orthants.

To extend the definition of fl to a weakly consistent procedure, each of
the 27 remaining orthants must be assigned to a set in P{C?). 1t is not hard to
show that these orthants cannot be assigned to a singleton without creating a set
with corners -- hence the convexity of the inverse sets fl-l(cJ) would be
viclated, Therefere, these extra orthants need to be assigned to non-singleton
sete of P{{C?)., But, there are only 11 non-singleton sets in F(C?') - the 6 pairs,
1 triplets, and the full set of all 4 candidates. Conseguently, the only way
these 32 orthants can be assigned in a conven way to the 11 sets 1g by combining
the c¢rthants so that they define at most 11 convex units.

In order for the unions of the orthants to be convex. adjacent orthants
must be combined. Moreover, to aveid introducing a non-convex corner into the
unlon, the union must consist of 2F orthants where k is a non-negative integer.
Te see why this 1s so, ] start with the obvious situation where the union of three
orthants cannot define a convex set. Ncte that one can think of each pair of
adiacent orthants as defining a direction. (For instance, there is a unique way
tu place a unit cube 1n an orthant so that only one vertex 1s not on a coordinate
plane. The direction defined by two orthants could be the vecter difference
betwesn these vertes positions.) Therefore, a convex unit conegisting of two
orthants., denoted by 1 and 2, defines a direction. Adding a third orthant (3)
that is adjacent to orthant 1 introduces a second direction. There is a unique
orthant adjacent both to orthants 2 and 2 so that the direction defined by this
now orthant and 2 1e parallel to the second direction., If thie new orthant is not

i the union, then a non-convex set arises. In general, to avoid

¢orneres, all orthante ascociated with ar admitted direction and an evisting

crthant must be included in the union. This leade to the conclusion that 2F
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orthants are required.

By using the geometry of the above argument, it follows fairly easily that
k € 2. This 1s because 1f kK 2 3, the region must 1include some of the orthants
already assigned to a Condorcet winner. Thus the geometric location of the
orthants ascigned tc a Condorcet winner plavs an important role. At the other
extreme, 1f k = 0,1, then there are too many convex units for the assignment
process -- the best one can do is tc create 16 convex units. Consequently, if a
weakly consistent procedure is to be defined, some of the units must involve the
union of 4 orthants.

What remalns is a simple combinatoric argument. There are two different
wavs to create units of four orthants. Just by keeping track of which orthants
are used, and which orthante are assigned to the Condorcet winners, it follows
that one cannot create fewer than 12 convex units from the 32 orthants. 1In other
words, 1t is because of combinatorics that create a large number of orthants to be
assigned to elements of P(C") and because of the geometric positions of the
orthants assigned to the Condorcet winners that wealk consistency cannct occur.

For n > 4, the assignment procedure becomes more complex. This 1s because
the space Ka ie Enin-13/2 with 2ntn-13/2 orthants. The Condercet winners account
for p2itn-11in-2i/e of thew, This leaves 2in-liimn-c¢j/2(2n-1 - ) orthants to be
assigned, in & convex manner, to the remaining 2P-(n+l) entries of P(CP). It 1¢
this exponentially growing difference between the number of corthants of Ra and the
number of sets in P(C") that makes it impossible to extend f, to a weakly
consistent procedure. An important contributing factor is the geometric

positioning of the orthants assigned to the Condorcet winners.,

From the above 1t becomes clear that the appealing, vet seemingly
innocuous condition of "weak consistency” can be difficult to satisfy. A certain
theme 1g common for the above kind of argument. Wwhen a cheoice function depends on
the rankings of different sets - where the sets can change with the rankings -
then the corresponding gecomeiry in Ka will tend to have "corners.” These corners
are caused by the fact that the restrictions are in different components of the
product space Ra. As these corners violate convexity, the procedure is not weakly
consistent. Once more complicated positional cheice procedures are used, an
accompanying cost is the possibility of a conflict between the parte and the

whele.  Thus, one must accept the fact thsat 1t can be difficult to avoid problems

of manipulalility, abstention paradoxes and other behavior associated with the
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laclk of weak consistency.
4. Proofs

Proof of Theorem 2

As true in Simpson’s paradox, one can analyze the geometry of the boundary
situation where, for instance, there is a tie vote between c; and c,. The binary
operation combining p, and p, is the 11 vector addition where the outcome is on
the line combining the two points. Therefore, this forces the procedure to be
weakly consistent iff the boundaries of each region corresponding to the tie
outcome is a portion of a linear subspace., 1 show that this condition holds only
for the pure majority vote scheme.

First, consider the situation where ¢ is a smooth function and n = 3.
Using the notation suggested by Figure 2, let % denote the fraction of all voters
with a ranking given by the j'P region, where a profile p = (X1y-‘,l6)- A tie
outcome between ¢, and ¢, is givenr by the eguation
4.1 F(p) = I g(pl’j) - I g(pzlj) = 0.
To analvze the geometry of the level set of F, 1t suffices tc determine the
properties of ©F; in particular, in order for the level set to he part of an
affine space, it must be true that 9F(p)/!9F{(p}l is a constant vector on the
boundary of the reeicn F{(p) = 0. (If g'{p) # 0, then F(p} = 0 1¢ a codimension 1
surface. However, if ¢ 1s constant valued over an interval, then it turns out
that F(p! contains an open set.) A computalion yields
1.2 9b = D27 p, ) Olp; ) - L g'(p.zyJ

’(}"1 2)(1)171a0)010) + g,(p1’3)(131)05030v]) - E,,(P

¢ (p, ,)(1,0,0,0,1,1).

) V(}Jz,j) =
)(0,0,0,1,1,1) -

[ jo

2,1

—~

As p; o, =1 - p; and as ¢’ {p) = g’ {1-p) (see Eqg. 2.4), Eq. 4.2 can be
represented in the form
4.3 CF = (Q’(pl.2)+g‘(p
-2l p) L,i-27(p, )y g7 (py S)-gT(py )-8 (p, ).

The vector VF(p)/I9F(p)| does not depend upon p iff each component of the
vector in Eg. 4.3 is a scalar multiple of I9F(p)i. In turn, this means that each
component of YF{p) 1s a scalar multiple of each other component. So, by comparing
the fourth and the fifth compenents, 1t follows that Q'(plvz) must he a constant

0.

1

muitiple of ¢’ (p, ) for all p on the boundary of a region where F(p)
> 73 £

Similariy, it turns out that for each of the three variables, g’(p; ,), 8" (p; 4),
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and 9'(p2 4) all are fixed scalar multiples of the others for all choices of p so
that F{(p) = 0. As p; , are independent variables, this last condition means that

b

over the domain of definition of P, on a boundary where F(p) = 0, g’ must be a

v J
constant. However, this domain allows the variables to range over all values:; thus
the generalized majority vote is weakly consistent iff g’(p) is a constant. (To

see this, start by selecting X, = Xg = 1/2. This leads to a tie vote between c

1
and ¢, where P, 3 = 1. Now, by varyving the example, all values of p are
attained. )

If ¢'(p) 1s a constant, then VF is a constant vector, and the procedure 1is
weakly consistent. However, g’{p) is a constant iff g{p) = p; namely, g’ (p) is
constant corresponds to the pure majority vote scheme. The argument for n > 3 and
g a smocth function is much the same, where the only difference 1s that more Py
variables are involved. Therefore, I now turn to the setting for n = 3 where g is
not smootlh,

With the appropriate changes, the proof where g(p) is not smooth is
essentially the same as the one given above. Because g i1s monotonic, the
derivative is defined at many points. Here, the above argument holds. The
purpose of using the derivative 1s tc obtain a linear approximation for the
compiitat ion of the boundary of the set F{p) = 0. If g° 1s not delined at such a
boundary peint, then either ¢ has a discontinuity, or g ig continuous, but g’ has
a drscontinuity., A simple arsument shows that in the {irst setting, the boundary
i not centinuecus - it has a "jump” corresponding to the discontinuity of g. In
the second setting, the above argument can be used where limits of ¢’ are used.

Proof of Thecrem 4

The binary operation in Si(n!) forces a set to be algebraically clesed 1ff
it is conven. Part a of the thecrem is proved if 1t can be shown that the kinds
of sete considered 1n Ra have the feature that they are convex if{ their inverse
tmage under T:Sif{n') --> Ka is a comvex set in Si{n!). The proof strongly uses
Lthe fact that T 1s a linear mapping that maps the point of indifference T € Si(n')
to the peint of indifference, 1, in Ra. Alsce, T mape hyperspaces into
hype rspaces.,

If a set in Ra is defined by the intersection cf planes or half spaces
defined Ly planes passing through the peint of indifference, then i1t is convex.
dc the inmverse image of this set alse can be described as a similar intersection,
it toe is conves. All ranking regions can be defined in this fashion, so the

inverse image of any ranhing region in Ka 1s a conves set 1in Si{n!}. Suppose the
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union of ranking regions defines a set that is not convex. This means that there

are two polnts x, apd X, where some convex combination of them is outside of this
union. As T i1s linear, this convex combination defines a line in Si{n!') that

connects preimages of X, and x, where the line is not contained in the preimage of

the union. Thus, the preimage is not convex. This completes the proof of part a.
The same proof holds for the the first part of part b.

For part b, suppose that f is not weakly consistent when B" is used. This
means that the inverse imagse of G-'{(a), for some a € P{C"), defines a set of words
from the Borda Dictionary which correspond to non-cenvex regions 1n T(Si{(n');B").
Bul,, according to the assertion from Theorem 3, any word that is in the Bords
Dictionary also 1¢ a word in all other dictionaries. Therefeore, this same set of
worde is in all other dicticnaries.

Notice that (with the appropriate scalar changes - see Saari [3]!

is a affine space that includes T{(Si{(n!);B"). Therefore. if G '{(u) is a convex
set in T{Si{n');W*), then the section meeting T{Si{n');B") must alsc be convex.
This 1s neot the case, so the preef is completed.

Proof of the Proposition

Part a. The assertion that T maps the interior of Si(n!}) to an open set
in Ra i{f W* € a" comes from the fact that the linear map T has maximzl rank. This
is proved in Saari [7]. The rest of the statements are immediate.

Part L. This Imacge can be described in terms of the convex 1ntersections
of comvex regions (half spaces or planes). The conclusion folleows immediately,

The rest of the proposition is standard material.
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