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Abstract

We explore the various relationships between the limits of the values

of the discounted, or the finitely truncated dynamic programming problems

and the values of the undiscounted problems.
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1. Introduction. The following problem was suggested by J. F. Mertens at the Open
Problems session in the International Conference of Game Theory held in Columbus, Ohio
in June 1987. This is a particular case of more general problems to be found, with context
and motivation, in [2]. For a general discussion about dynamic programming the reader

is refered to [1].

The Problem. Let @ # I'(s) C S for all s € S. And let f be a bounded function defined
on S. Consider the dynamic programming problem where the decision maker on day ¢ has
to choose a new state s,,, € I'(s,), and recieves a payoff f(s,). Let V,(s) be the value of

the discounted problem:

Vilso) = sup  (1—2)) X j(s.).

ae41ET (8¢)
Assume V, (s) converges uniformly (in s € S) when A — 1, say to V (s).
Can the decision maker get V(s) in the liminf undiscounted problem ? That is, does

there exist for each s, and each £ > 0 a sequence s,,, € I'(s;) such that

liminf 7=

T
1
1 Zf(st) >Vi(s) —e.
t=0
In section 3 we construct a counter example , where V(s,) = 1 and the lower Cesaro

limit of any sequence s,+, € I'(s;) equals 0.
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In Section 2 we will show that (under the uniform convergence assumption) an ”opti-
mistic” decision maker can get V(s) in the limsup undiscounted problem. However, we
show that even an optimistic decision maker cannot get more than V(s) in the undis-
counted problem. Pointwise convergence of V, (s) is proved to be sufficient for the latter
result.

Section 4 is devoted to concluding remarks about the various relationships between the
limits of the values of the discounted, or the finitely truncated dynamic programming
problems and the values of the undiscounted problems. These relationships depend on the
type of convergence of V, , and on the type of covergence of V., where Vi is the value of

the T'th truncated problem.

2. The Upper Limit Value. In this section we prove that if V, — V uniformly then

V =V, where

T
— 1
V(so) = sup limsup E f(a).
9:41€T(8y) T— o0 T+1t=0 ‘

In Theorem A we prove that V > V', and in Theorem B we prove (under the assumption of
pointwise convergence only) that V > V. We now give an outline of the proof of Theorem
A.

Let s € S and let € > 0. Our task is to find a sequence s, < s; < s, < ... (where
8¢ < 8441 means s,,; € ['(s;)) such that the upper Cesaro limit of the payoffs’ sequence
(f(s))52, is at least V (so) —e. We define sequences A, — 1 and 6, — 0 with properties
that will be described later and proceed as follows:

A, is chosen sufficiently close to 1 so that V, (sy) > V(s,) —6,. We then find a sequence
So = ay < a, < a, < ... of states which is 6,—optimal with respect to the discount factor
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A.. That is, the A;—Abel series of (f(a;)). is at least V), (so) — 6,. However, for our
sequence (s,), we take only the first t; + 1 states, where t; > 0 is chosen in such a way that
both the partial average of the head up to ¢, and V, (a;,+:) are at least V), (so) — 26;.
Such t, exists because each Abel series can be written as a convex combination of the
partial averages (see (2.3)).

A; is chosen so that Vy, (a:,+1) > Vi, (a:,+1) — (61 + 62) (here we are using the uniform
convergence of V,). We then find another sequence a,, ., = b, < b, <b, < ..., which is
6,—optimal with respect to A,. We take the first ¢, + 1 states of this sequence to be the
next states in our sequence (s,),, where t, is chosen so that both the partial average of
the head up to t; and V,, (b;,+.) are at least Vy, (bo) — 26,. The next ¢3 + 1 states in (s;).
come from a sequence corresponding to A;, and so on. At the end of the induction process

we have an infinite sequence

So =Qp <) <+ <Gy, 41 =by <by <+ <b,11 =< € <<€y =do <...
This sequence has the property that the partial averages from the (7,, + 1)th state to the
T, ;1 th state are at least V (s,)—¢, where T,, = (3_1_, ti)+n—1. Hence, V(so) > V (so)—e.

THEOREM A. Let (S,T, f) be a dynamic programming problem as defined in the intro-
duction. Assume V,(s) converges to V (s) uniformly in s € S. Then, for every s, € S and

for every € > 0 there exists a path s,,, € I'(s,) such that

li L
msu

> f(s) 2 V(so) —e.

PROOF: Without loss of generality we may assume that 0 < f(s) < 1 for all s € S.

Let (6:), be a sequence of positive numbers such that 7 6 < £. Since Vy, — V

0 |o
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uniformly, we can find an increasing sequence (A¢)>, converging to 1 and satisfying the

following two properties:

(2.1) 1— X <6 forall k >1;
and
(2.2) WV, = V| < 6 forall k > 1,
where for £ € R® ||z|| = sup,c5 |z(s)].
Before proceeding to the construction of the sequence s, < s; < sz < ... (that is,

Se41 € I'(s;)) we need the following lemmas.

LEMMA 2.1. For every sequence b = (b,) of real numbers, for every 0 < A < 1, and for

everyT >0

(1—-2) S X6 = (1= TZ At + 1)S, (b) + (1 — \)AT (T + 1)z (b),

where S, (b) = 2-3"'_ b;, and E;lo = 0.

t+1
PROOF OF LEMMA 2.1: The proof is based on a simple direct computation, and therefore

will be omitted. B

Lemma 2.1 implies that for every bounded sequence b = (b,)

(2.3) (1-2) i Ath, = (1— \)? i X (¢ +1)S, (b).

LEMMA 2.2. Let 0 < A <1 and let b = (b,) be a bounded sequence. Then, there exists

T > 0 such that

Sr(b) > (1- ) i/\’bt.



PROOF OF LEMMA 2.2: To get the result Combine (1 — X)? Y77 ~A‘(t 4+ 1) = 1 with
(2.3). 1

We now construct the path s, < s, <s, <.

Step 1. Denote v, = s,. Take a path vy = ay < a; < a, < ... such that

Vi, (@) — 6, < (1= X)) Z,\gf(at),

t=0

By Lemma 2.2 there exists T > 0 with

Sr(f(a)) = (1= A) Y X f(a) = Vi, (v) — 61,

where f(a) = (f(a:))7Z,-
Let ¢, be the smallest t for which S,(f(a)) > Vi, (vo) — 6:.
Define s, = a,, 8, = a3, ... 8,41 = G, +,. And for use in the next step define

Vi = Q¢ +1-

Let t, > 0 be the smallest integer satisfying

se,(f(a)) 2 Vi, (v) = &

Define, s, +; = a;_, for2 <+ <t, +2,and v, = a, ;.

Step n. Denote g, = >_._, t;.

i<k
v, has been already defined in the (n — 1)th step (as s,, ,+n-1)-
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Take a sequence v,_; = ay < a; < a; < ... with

(2.4) Vi (1) — 6, < (I—A,L)i/\if(at).

Let ¢, > 0 be the smallest integer satisfying

(2.5) Si. (f(a)) 2 Vi, (V1) — 6a.

Define s,, _,4+i = @i—pi41 forn <:<t, +n,and v, = a;_ 4.

At the end of the induction process we have a path
So < 8; < Sy < ...,

a sequence (t,),>; of nonnegative integers, and a sequence (v,),>o of states such that
v, =S, +n,Where go =0andforn>1gq, =)  _ t.
We now need the following two lemmas. The first one asserts that by moving from v, _,

to v, and from A, to A,,, we may lose only a small payoff. In the second lemma we show

that V) (v,_,) is close to V (s,).

LEMMA 2.3. Foreveryn > 1,
V)\n(vn—l) - VAn+1(v1L) S 3671, +5n+1-

PROOF OF LEMMA 2.3: By the construction, and by Lemma 2.1 we have at the nth

step:

(2.6) Van(Wao1) = 6, < (1= 20) DN fla) =

(o]

(1= A) S0 X Fla) + X (1 2) S A f(a) =

t=t,
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2N A HDS + (L= M)A T S c AT (L= ) D AT f(al).

t=0 t=t,

The right-hand-side of (2.6) is a convex combination of all S;,, 0 < t < ¢, — 1, and

>, (1= A)A 7 f(a,). Since S, <V, (v,_1)—6,,forall0 <t <t, —1, we have:
t=t, n n

(1) S A (@) 2 Va (0ams) — 61

Hence,
Vi (vn) = Vi, (ae,41) = ( Z At £(g,) >
t=tp+1
ZA‘ “fla) ~ (1= X)f(a,) 2 Vi, (va-1) — 26,
Therefore,

Via(Wno1) = Vi, (va) <
Via (0n-1) = Vi (0a) + Vi, (00) = V(va) +V(0n) = Vi, (0a) <
36, + 6, 41.
This complete the proof of Lemma 2.3. }

LEMMA 2.4. Foralln>1

Vi(se) = Vi, (va-1) <4 6.

k<n
PROOF OF LEMMA 2.4:
n—1
V(so) = Vi, (vn-1) SV (so) = Vi, (s0) + Z(Vu(vk-l) = Viewa (o))
k=1

Therefore by Lemma 2.3

n—1
V(SO) _V’\n(vn—l) <é + 2(35k + bry1) < 4 Zék-

k=1 k<n



End of Proof of Theorem A. Denote T, =g, +n — 1, where g, = >_7_, tx (g0 = 0).

Then

n T

T
1 & t,+1 | 1 :
= >
Tn+1tZ:0f(s‘) ZTn+1 ti+1, 2 Tl

=T, 1+1

J=1

n

t,+1
E TJ _*_I(V)‘j(vj—l) _251') = V(SO) — €

j=1

by Lemma 2.4. Therefore

T

. 1
lﬂSiPT+1§f(St)ZV(So)—E- 11

THEOREM B. Let (S,T,f) be a dynamic programming problem as described at the in-
troduction. Assume V,(s) — V(s) for all s € S. Then for every sequence (s,)®., with

t=0

St+1 € F(St)

T
1
%4 > li .
(s0) 2 fimswp 755 2 15

T
PROOF: Without loss of generality assume 0 < f(s) < 1. Denote u = limsup 75 >_ f(s:).
t=0

Let € > 0. We can find a sequence 0 =T, < T, < T, < ... such that forall k > 1

9k —1

1 €
(2.7) A = > fls) zu- 1

t=qr_,

where ¢, = ¢ T..

1=0

Note that for all k > 1

Ty -1

(2.8) lim (=2 Til,\tb-iZb
) ,\1-.1 1— AT« £ T — ¢

t=0

uniformly in all sequences (b;) of numbers in the interval [0, 1].
Let (6:)5°_, be a sequence of positive numbers with ) 7~ /8 < £.
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Combine (2.8) with V, — V to form an increasing sequence ()%

k=0

such that for all £ > 1 and for all sequences (b;),

(2.9) 1““ be >_Tilb—5
. _ ,\f" k5

and such that for all k > 1

(2.10) Vi(ve) = V(ve)] < & for all A > A,

where v, = s,, for all k > 0.

Obviously, for all k£ > 1,

Vi (0eo1) 2 (1= X9)Be + A0 Va,  (vka),s

where

Tk'—l
By = (1_/\“) Z ALb,.

Therefore, by (2.9) and (2.10),

(2.11) Vi, (o) > (1 = AI)Ae + ATV, (Vs 1) — 36k

Combine now V(s¢) >V, (vo) — 6o with the inequalities in (2.11) to get:

(2.12) V(so)zi(n AT (1 — ATe)A —326k>u—€

with A, — 1

oo k-1
(Note: (2.7) and > (] AT*)(1 — Al*) = 1). As (2.12) is true for all € > O the result

k=1 t=0

follows. B §



COROLLARY C. Let (S,T, f) be a dynamic programming problem as defined in the intro-
duction. Assume V), (s) converges to V (s) for all s € S, and that the function A — V, (s)

is non-decreasing. ThenV =V.

PROOF: The proof goes exactly along the lines of the two previous theorems’ proofs and
therefore will be omitted. §

To conclude this section we remark that Theorem A, Theorem B, and Corollary C, as
well as their proofs, remain valid if the assumption V, — V is replaced by the weaker
assumption:

There exists a sequence A, /' 1such that Vy, — V (uniformly in Theorem A, pointwise

in Theorem B, and monotonicly in Corollary C).

3. The Lower Limit Value. In this section we construct a dynamic programming

problem in which V, — V uniformly, but V > V, where

T

V(so)= sup liminf L Zf(at).

8:41€T (8¢) T—o0 T+ 1 t=0

The following terminology and notations will be used in the construction of the example.

A numerical tree is a directed tree with a real valued function (called, the payoff function)
defined on the set of vertices. Every numerical tree can be naturally identified with a
dynamic programming problem:

The set of states is identified with the set of vertices, and I'(s) is the set of all vertices
t for which (s,t) is an edge.

We will denote by V., Er, sy, and f; the set of vertices of the numerical tree T, set of
edges, root, and its payoff function respectively. We will say that T, < Ty, if Vr, C Vi,

10



Er, C Er,, sr, = st,, and fr, is the restriction of fr, to Vr,. The union numerical tree
T = V;>,T; of the sequence T, < T, < ... is naturally defined.

Let T, T, be numerical trees with disjoint set of vertices, and let v € V., satisfy fr, (v) =
fr, (sr,); The numerical tree T, obtained from attaching 75 to T, at v, is defined as follows:
Identify v with sr,, and then define Vi =V, UVy,, Er = Er, UEq , and fr(u) = fr, (u)
ifue Vr,.

The tree T in our example will be the union of an inductively defined increasing sequence
T, <T, <T; <... of numerical trees.

A few more definitions will help to facilitate the description of the induction step.

Let (A™)>_, be a sequence of mutually disjoint copies of the set of non-negative integers.
The kth element in A™ will be denoted by a}. We identify all a} with a; = a;. We now
define a numerical tree T'(c,b) for every ¢,b > 0. The vertices’ set is UZ_, A™. The edges

are all pairs (a},a}, ), and the payoff function f is defined as follows: f(ao) = b, and

oy L . oy . . .
f(a}) = max(c \/l—o_g_n,O), if k € I,, and f(a}) = 0 otherwise, where I, is the interval

(n,n[log n]) of integers.

Stage 1. T, is T'(1,1).

Stage 2. Let D, be the set of all vertices v of T} whose distance from a, is 1 (i.e., there
exists a directed path with one edge from @, to v). For every v € D, let

c(v) = max{f(u) : u is a vertex of T} and u > v},

where u > v means that there is a directed path from v to u. The tree T; is obtained
from T, by attaching the tree T'(c(v), f(v)) to T, at each vertex v € D,.

11



Stage n. T, is obtained from T, _, exactly as T, is obtained from T,. That is, we define

D, to be the set of all vertices in T, _, whose distance from a, is n. For each v € D,, we

define

¢(v) = max{f(u) : v € T,,_,and u > v}.

To get T,, we attach the tree T'(c(v), f(v)) to T,,_, at each v € D,.

Finally, define T =\/__ T,. Note that ¢(v) is defined now for every v € V.

Few Observations.

(a). If v > v then f(u) < ¢(v) (where ¢(ay) = 1 ). Therefore V, (v) < ¢(v) for all

0< A<,

(b). Denote Am =1- ﬁ Then,

’\m(Im) = (1—Am) Z A:'n = ’\2(1 ~A:::[logm]-m+l) = TYm — 13

iel,,

when m — oo.

(c). Because of (b)

V()2 7 (elo) = s ) — (o)

(d). Forall A, <A< A4y,

Vi(v) = A(I) (c(v) - @) Z A (In) (%) (C(”) B \/lol?n‘>

> A (In) (%’f> (“(”) B \/liﬁ> '

(e). Since T2m+i — 1 we get from (a) ,(b) , and the last inequality that V, (v) — ¢(v)

as A — 1.

12



(f). Observe that if A, < A< A, 4.1, then by (d)

o(s) = Vo (0) < o(0) = ) (12522 ) (o00) - =)

(g). Set
1= dnss | A () (252

1—-A,. Viegm

Combining ¢(v) < 1 for all v and (f) yields that

c(v) = Vi(v) <enforall A, <A< A4,

(h). Since g,, — 0, V,(v) — ¢(v) uniformly in all vertices v of T'.

Averaging on Infinite Paths.

Every sequence ((rx,yx)) of pairs of integers defines a path in the tree T (starting from
a®) as follows:

v, paces on the r;th branch of T, up to a vertex v,. Then, y, paces on the r,th branch
of T,, (the subtree that was attached to v, at stage y,), up to the vertex v,. Then y;
paces on the r3th branch of T,, (the subtree that was attached to v, at stage y; + y2).

And so on.

Note that if a path @y < a;, < a; < ... cannot be described as above, then it actually

T
means that for some k y, = oo, and therefore limr ., 75 >~ f(a,) =0.
t=0

T
Therefore, if liminf —2~ 3" f(a,) > 0 then the path can be described as above.
=0

T+1
t

1

Suppose now that liminf

™M=

f(a,) > 0. Since

T+1
t=0
1 R
1-— > lim inf
k;{ Viegr, T i T+1§f(at)

13



for all K, we get that

In particular

< 0.

(3.1) > \/BIEE

W.l.o.g. we can assume that for all ¥ 1y, > r,. Otherwise y,, < r,, for some k, and we

can enlarge the lower Cesaro limit of the path by replacing it with the path ((rx,yx))xxx,-

PROPOSITION. If (3.1) holds then liminfy _ ., dx = 0, where

Z T 10g7‘k
dK — k< K
Tk

PROOF OF THE PROPOSITION: If the assertion does not hold, then there exists d > 0

such that
Y. 7 logry

k< K

>d for all K.
Tk

Define f(z) = Czlogz.

CLAIM 1. For C big enough Y rilogr, < fU5-1)(r,) for all K > 2. (fY) is the jth

k<K

iterate of f).

PROOF OF CLAIM 1: We prove the claim by induction on K.

For K =2

r, logr, < Cr,logr,.

Suppose Y 7. logr, < f(5¥ -1 (r,), then
k<K

Z e logr, < f(K—l)(Tl)+TI(+1IOg7'K+1 <

k<K +1

14



k< K k<K

FE-D(r)) + % (Z Tk logrk> log ((—11 Z Ty logrk> <
PR ) + 31 ) o (3177 ()) < 10 (n)

if C is big enough and f¥ ~!)(r;}) — oo. The latter is true because by the induction

hypothesis

f(K‘”(rl) > Z re logr, > drg

k< K

and by (3.1) rx tends to co. 1§

CLAM 2. If f(r;) < A*" for some A > 0, then for all K > 0
f(K+1)(r1) < (A+K)(A+K)’_

PROOF OF CLAIM 2: The proof can be obtained by a simple induction and therefore

will be omitted. [}

Using claims 1 and 2 we deduce:

Y=, >
K=1 log rx K=1 \ﬁog(i Y relogr) ko \/log(if(x_l)(rl))

k< K

>3 =

K=1 \/log(i-(A+K~2)(A+K—2)=)

> ] e
T = V(A+ K)?log (A+ K) —logd

This contradicts (3.1) and the proposition is established. K 1

We now return to our example. Observe that the average of the payoffs after taking
rk — 1 zeros in the K'th step (before walking into the nonzero zone of the rx th branch) is

15



bounded from above by
O(rgk —1)+1 > rplogry

k<K _ dk
re — 1+ > relogry 1—;1~+dK.
k<K a

This is because at each former step k the path goes through at most r,[logr.| positive

numbers which are smaller than 1.

T
Now, if liminf 2— > f(a.) > 0, then (3.1) holds, and therefore, by the proposition,
:0

T+1
t

T
liminfdx = 0. This in its turn implies that liminf -+ > f(a,) = 0. A contradiction.
=0

This shows that the lower Cesaro limit of any path equals 0 while V(a,) = 1.

4. An Overview. In this section we describe the various relationships between the
limits of the values of the discounted, or the finitely truncated dynamic programming
problems and the values of the undiscounted problems. These relationships are described
in connection with the type of convergence of V, , or with that of V;, where V; is the
value of the T'th truncated problem.

Let V and V be the values of the undiscounted problem. That is,

T
1
V(sg) = sup liminf E flas);

(50) cesrel (s T T+ 14 (@)

and
T

V(sy) = sup limsup L Zf(at).

3:4+1€0(sy) T—o oo T+ 1 t=0

It is obvious that V > V. Combining V > V with theorem B yields:
(4.1) V, —V (pointwise) =>V >V >V,

Any of the inequalities in (4.1) may be strict. The example of Section 3 shows that
V =V >V is possible. The numerical tree T'(1,1) (defined in Section 3) is an example to
the feasibility of V >V =V, and a slight modification of 7(1,1) yields V >V > V.

16



Theorem A yields:

(4.2) V, —V (uniformly) =V =V

I<

As we showed, strong conditions are necessary to ensure V < V. Several such sufficient
conditions were given by Mertens and Neyman (3, 1981]. E.g., V <V if the vector valued
function A — V, has a bounded variation with respect to the Supremum norm on R®.
Finally, for every T > 0 denote

Velso) = sup =" f(a).

$¢41ET (9¢)
It can be easily seen that Theorem A, Theorem B, Corollary C, the counter example of
Section 3, (4.1), and (4.2) remain valid (with the necessary notational changes), if V, — V

is everywhere replaced by V; — V.
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