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Different orders of eliminating dominated strategies in bimatrix games
may yield different reduced games. However. in the case of elimination of
strictly dominated strategies, and for the elimination of weakly dominated
strategies in zero-sum games, the order is irrelevant. This follows from a
general theorem about the uniqueness of the reduced game which unifies the
above two cases and illustrates other families of games in which the order

of elimination is unimportant.



A two person (bimatrix) game (a game for short) is a tuple G = (I,J,U)
where I and J are finite nonempty sets of actions (strategies) available to
player 1 and 2 and U =1 X J - R2 is the payoff function. Specifically, if
player 1 chooses action i € I and plaver 2 (simultaneously) chooses action
J € J. then the payoff to the players are Ul(i.j) and U2(i,j). respectively.
It is common to describe 01 and U2 by a bimatrix (a matrix with entries from
R?).

A strategy i € I of player 1 is said to weakly dominate strategy k € I

if Ul(i.j) > Ul(k.j) for every j € J. The strategy is said to dominate k
if. in addition, Ul(i,j) > Ul(k.j) for at least one index j € J. The
strategy 1 strictly dominates k if Ul(i.J) > Ul(k.j) for all j € J. Similar
definition applies to strategies of plaver 2 using the function Uz(-.-).

Common sense seems to indicate that playvers would not use dominated
strategies. Thus, one may wish to eliminate at the outset such strategies.
Clearly. the elimination of dominated strategles for player 1 may create new
dominations for player 2, etc. Continuing in this manner. one finally
arrives at a reduced game, i.e., one which does not contain any further
dominations. We refer the reader to Luce and Raiffa [LR] for general
sequential elimination and to Owen [Q0] for the zero-sum case. Also,
recently, Knuth, Papadimitriou and Tsitsiklis [KPT] studied the
computational complexity of this elimination process.

It has been known to game theorists, contrary to an observation in
[KPT], that different sequences of elimination of dominated strategies may
yield completely different reduced games (see, for example, Myerson [M], and
Examples 1 and 2 below). This dependence on the sequence casts some doubts

on the validity of the elimination process. However, we give conditions
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{Theorem 1) which ensure that the final reduced game is independent of the
sequence (up to a permutation). The conditions of Theorem 1 cover the

important special case of strict domination for any bimatrix game (in this

case the final reduced game is actually unique), and the case of weak

domination applied to zero sum games.

2. Examples
We first show that the order in which elimination takes place may
affect the final result. In the following examples the strategies of player
1 are represented by rows and those of player 2 by columns. The first entry
in each cell corresponds to Ul' the second to U, .

2

Example 1 (weak domination). Let

[
"

Then we can eliminate in the first stage either the first or second column.
These choices lead after the obvious further eliminations to single cell
bimatrices containing the entries (8,b2) in the one case, and (10,b1) in the

other,

Example 2 (regular domination): Let



1,0

0.0

with bl,b2 > 0, b1 # b2. Then eliminating the rightmost column first we can
then eliminate the top row and then the middle column. resulting with
(O,bz). On the other hand, if we eliminate the middle column first, then

the bottom row, then the right column, we are left with (O,bl).

3. Sufficient Conditions for Uniqueness of the Reduced Game

We now study conditions which ensure that the reduced game is unique.
We present our result in terms of abstract dominance relations between
strategies. We use the terms idom and jdom to represent, respectively, such
domination among the strategies of players 1 and 2.

Let G = (I,J,U) be fixed. A subgame of G is a game G = (I,J,U) where

I €I, JCcJ, and U is the restriction of the original function U to

I xJ. Two subgames G and G' are called equivalent if they can be obtained

from each other by permutation of rows and columns, i.e., if there exist

one-to-one onto correspondences My I-1I'and My J - J' with Up(i.j) =

Up(nI(i),nJ(i)) for p = 1,2 and for all i € I and j € J.

For every subgame G consider a relation idom on I satisfying the

following four conditions: °
Cl1. 1idom_ is transitive.
cz2. idom? is defined by player 1's payoff, i.e..
Gif i,.1, € I and for every j € J, U (i,.3) = U (i,.])

1'72

then i1 idom i <=> 12 idom_ 1

G G
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and i idom_ i, <=> i idom_ i

G 2

[0}

for every i € I.

C3. 1idom is inherited to suhgames. i.e.,

if G is a subgame of G and i

171y €1
then iy idom_ i, => i idom. 12.
G G
C4. 1idom_ is essentially strict, i.e..
G
if i, 1domé i, and i, 1domé i

then for every j € J Up(ll,J) = Up(lz,j) for p = 1,2.

n

1

Similarly, consider relations jdom_ on the sets J which satisfy the
G
symmetric conditions for player 2,

-~ -~

For two subgames G and G we say that G is a one-step reduction of G if

either:

(i) J = J, and there are distinct elements i, .i

101, €1 with 12 idom_ i

G 1

and I = f\{il}, or
(ii) the similar one-element reduction as in (i) is done in J and I
remains unchanged.
successive one-step reductions. A reduction G is called maximal if it

contains no dominated strategies.

Theorem: If the domination relations satisfy conditions C1-C4. then any two

maximal reductions of G are equivalent.

Proof: The proof is by induction on the total number of strategies

Il + 1JI. The case !I! + {J| = 2 is obvious. If II! + 1J! > 2 but there
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is no dominated strategy i € I or j € J then G is the only maximal reduction

of itself. Thus we are left with the case of a game with at least one

dominated row or column. We assume without loss of generality that row i

-~

dominates row 1 and 1 # i. Let G = (T,J.U) with T = I\{f}. It suffices to
show {because of the induction hypothesis} that for any maximal reduction G
of G, there is an equivalent maximal reduction of G.

A reduction G of G is obtained by a series of one-step reductions which

can be described by a typical sequence as follows:
P P, ckY (4 sk ssy g *
s (11'11)(12’12)(j1131)(13'13)(14'14)(J2'J2)'

where i1 is eliminated first using iT, i2 is eliminated second using i;.

etc.
We will first show that we can assume, without loss of generality, that
one of the i, 's is i. If this is not the case then i € T and i ¢ I by the

maximality of the reduction. This means that for some ik in the reduction

-~ -~ -~

sequence S, 1 = ik' Now consider the sequence i. i*.i** _ .. obtained

through the eliminations of S. After a finite number of steps. one of these
elements belongs to I and is not eliminated, say i*** € I. But from the

maximality of the reduction we conclude that i*** = 1. Consider the entry

(i** j***) in §, From this entry and on (to the right) we can switch the
rolls of i** with i*** = 7, obtaining an equivalent reduction to G in which
T is eliminated.

Now, assuming that 1= for some ik of S. we modify S so that no

1k
it = 1. Let t be the first index with the property iz = 1. Clearly t < k

-~

(otherwise it # 1 for all t). If i was not eliminated before it then we can
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replace i* = 1 by it = i. Otherwise consider the finite sequence

t
i ,i_,... generated by the following inductive rules: 1 = 1 and
Ty Te Ty
1'r = i? . Let T be the largest index in the sequence with the property
n+l n
r <t. Ifr <t we replace i* = i by i¥ = i¥ | If r = t, then we
m m t t r m

replace the rolls of ir with i from the entry (it,i:) in S and on to the
m
right. Under any of these replacements the resulting elimination sequence

vields an equivalent reduced form. Following the above replacement
procedure repeatedly yields an "equivalent" elimination sequence with ie ik

for some k and 1 # i: for all t. Now, after removing the entry (1k,i;) from
the obtained "equivalent" procedure, the resulting elimination procedure can
be used in G to obtain a maximal reduction equivalent to the one obtained in

G.

4, Special Cases

Corollary 1: Let G be an arbitrary game and consider strict dominance.

Then there exists a unique maximal reduction of G.

Proof: Strict dominance is easily seen to satisfy Ci1-C4. In fact, in the
proof of the theorem above, 1 never belongs to I. Also, rm < t in the proof
of the above theorem. This implies that the maximally reduced subgame is

unigue (rather than unique up to equivalence).

Corollary 2: Let G be a zero-sum game and consider weak dominance. Then

all maximally reduced subgames of G are equivalent.
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Proof: Weak dominance satisfies C1-C3. For zero-sum games, it also

satisfies C4.

In fact., weak dominance satisfies Condition C4 for a larger class of

games, namely games for which

U (1.3) = U,(1.3) <=> U,(i.3) = U,(i.3).
We call games which satisfy this property games with jointly varying
payoffs. An interesting example, opposite to zero-sum games, are games with

identical interests, Ul(i,j) = Uz(i,j).

Corollary 3: Let G be a game with jointly varying payoffs, and consider

weak dominance. Then all maximally reduced subgames of G are equivalent.
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