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1. Introduction

Three important areas in modern decision theory are: bounded
rationality, artificial decision making, and management information systems.

It is easy to illustrate fundamental questions within these areas. For

example:

- What are the possible outcomes of strategic games if players
are restricted to (or choose to) use "simple" strategies?

. What are the limitations or implications of delegating
competitive decisions to machines?

- What information system (size and structure) should a player
maintain when playing a strategic game?

. What are the effects of complexity costs on the outcomes of

the game?

Recently, within the context of repeated games, meaningful answers to
questions of this type were obtained. The purpose of this survey is to
report some of these new methodologies and results.

Interest in bounded rationality and strategic complexity is not new. A
few prominent examples from economics are: Simon [1972}, Varign [1975],
Futia [1977]}, Stelen [1978], Radner [1980], Smale [1980], Rosenthal [1982],
Kreps-Milgrom-Roberts-Wilson [1982], Mount-Reiter [1983], Abreu [1984], and
Lewis [1985]. However, this survey will restrict itself to recent results
within the area of repeated games and with complexity measures that use
notions of automata (sometimes referred to as Moore [1956] machines; more
information about automata can be found in Hopcroft-Ullman [1979]).

Two recent interesting philosophical papers on related topics are:

Binmore [1987] and Megiddo [1986]. Also there have been some recent studies



on bounded rationality and strategic complexity that are not included in
this survey due to time and length limitation. Some of the important ones
include: Aumann-Sorin [1985], Megiddo-Wigderson [1986], Gilboa [1986],
Lipman-Srivastava [1987], Lehrer [1987], Kalai-Samet-Stanford [1986],
Stanford [1987], Lipman [1987], and Aumann [1988].

This survey contains all the mathematical definitions needed for a
mathematically able reader and does not assume prior knowledge of game
theory or the concept of automatons. We refer the reader who is interested
in more details about repeated games and solution concepts to the excellent
surveys of Aumann [1981], Mertens ([1987], Sorin [1988], and Van-Damme
{1983].

We turn now to a brief description of the results contained in this
survey and their historical development. ’

The proposal to apply the model of an automaton to describe a player in
a repeated game comes from Aumann's [1981] survey of repeated games. He
specifically suggests this notion as a way to distinguish between simple and
complicated strategies based on the number of states of automata describing
them.

A second useful idea described in Aumann's survey is the one of
studying a specific complexity issue by studying a modified version of the
game specially designed for this purpose. Aumann reports on a result of
Aumann-Cave-Kurz which deals with the infinitely repeated prisoners' dilemma
game (this game and its strategies are defined later). Rather than
considering the usual version of this game, they consider a modified,
restricted version of it. In the restricted version the players can only

use strategies that depend on the last action combination of every history
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of plays, i.e., bounded recall strategies, and moreover only on their
opponent's last action, i.e., reactive strategies. In this modified version
of the repeated prisoners' dilemma game, they show that the famous tit-for-
tat strategy is sequentially dominant. Thus by considering a variation of
the game, the Aumann-Cave-Kurz approach gives us a game theoretic
justification for the intuitively appealing tit-for-tat strategy. (Later
studies of reactive strategies include Stanford [1986a,b] and Kalai-Samet-
Stanford [1985]; later studies of finite recall strategies can be found in
Kalai-Stanford [1988] and Lehrer [1987].)

Following Aumann, three path breaking papers were written by Ben-
Porath {1986], Neyman [1985], and Rubinstein [1986]. These papers used the
automaton notion to construct special games suitable for analyzing special
complexity issues. Ben-Porath studied the advantage of having a bigger
automaton in playing repeated zero sum games. He restricted his two players
to use finite automata of different fixed sizes and he showed that
asymptotically there is no gain (when compared with the unrestricted game)
from having a bigger automaton unless it is exponentially bigger. In the
exponentially bigger case the fullest possible gain is realized by the
bigger player. Similar issues were later studied by Gilboa-Samet [1987].

It turns out that if the game is not zero sum then being smaller can
actually turn out to be advantageous.

Neyman studied the finitely repeated prisoners' dilemma game.
Cooperative play in such a game contradicts the existing solutions of game
theory. Yet it is commonly observed even when the players are game
theorists (see, for example, Axelrod {1980]). Neyman restricted his players

to use automata of given fixed sizes in order to play the game. It turns
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out that in the restricted game cooperative play is a game theoretic
equilibrium. Thus the Neyman model gives us a way of resolving the
cooperation paradox by considering strategies of limited complexity.
Neyman's results were later elaborated upon by Zemel [1986] who modified the
game further by introducing into it meaningless communication between the
automata of the players during the play of the game. It turns out that the
meaningless communication helps cooperation even further since it "uses up"
a significant portion of the capacity of automata.

Rubinstein [1986] studied the effect of complexity costs on the outcome
of the game. His approach, as the approach in the later Abreu-Rubinstein
[1986] paper, is to modify the infinitely repeated game as follows. The
players are restricted to use automata of any finite size in order to play
the game. However, their final payoffs decrease as they use automata of
bigger sizes. Thus they create a tension in a player between high overall
utility and increasing complexity. 1In this modified version of the game the
equilibrium outcomes have a nice simple structure and the set of equilibrium
payoffs is dramatically reduced. This is even the case as the complexity
costs approach zero and thus their model points out a fundamental
discontinuity regarding complexity costs.

Kalai-Stanford [1988] introduced a modified version of the automaton
which they applied to general {(unmodified) infinitely repeated games. With
their version it turns out that every strategy of the infinitely repeated
game can be fully and uniquely described by a minimal (in the number of
states) automaton. Thus this minimal number of states yields a general
measure of complexity for repeated game strategies. It turns out that the

complexity of a strategy equals precisely the number of distinct strategies
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it induces during the play of the game (these concepts are defined in the
sequel) and thus we obtain a natural game theoretic interpretation of the
complexity measure which does not depend on the arbitrary choice of a
machine type (say, automata versus a Turing machine). It also turns out
that the complexity of a strategy is the minimal size of the information
system needed by a player using the strategy.

Within the context of infinitely repeated games the following question
arises. What equilibrium payoffs of the game can be obtained by strategies
of finite bounded complexity. Kalai and Stanford [1988] showed that for the
case of repeated games with discounting this is not a serious issue because
every equilibrium payoff can be approximated by an equilibrium using bounded
finite complexity strategies.

This approximation of equilibrium payoffs by ones using finite
complexity strategies was extended by Ben-Porath and Peleg [1987] to two
limit cases. The case of infinitely repeated games with the average payoff
criterion, and the case of low discounting. In these cases the
characterizations of all equilibrium payoffs is given by the well-known folk
theorems (see Aumann-Shapley [1976], Rubinstein [1977], and Fudenberg-Maskin
(1986]). Ben-Porath and Peleg showed that all the equilibrium payoffs
described by the folk theorems can be approximated by equilibria using
finite complexity strategies.

For robust equilibria of generic infinitely repeated games with
discounting, interpersonal complexity bounds exist. Kalai and Stanford
[1988] showed that at such equilibria the complexity of the strategy used by
any one player never exceed the product of the comp%exity of his opponents.

In particular, two players playing a game must use equal complexity



strategies.

II. What are Strategic Games?

A strategic game G is described by a triple G = (N,S,u) with the

following structure and interpretations. N = {1,2,...n} is the set of
players. It is assumed that n is a positive integer. Every player i € N

has a set of strategies Si' The set of strategy combinations is S = xieNSi'

The utility function u = (u

,U,.,...,u ) with each u.: S = R. u. is called
1’72 n i i

the utility (sometimes payoff) function of player i. The game G is played

as follows: simultaneously and independently every player chooses a

strategy s; € Si' The resulting strategy combination s = (sl,s ,S )

o008y

determines a payoff ui(s) for every player i. A Nash equilibrium of a game

G is a strategy combination s* € S satisfying
* *x

RN - . <0
sn) ul(s )

for every i € N and every si € Si'
In some of the applications described later it is useful to look at a
slight relaxation of the Nash condition. For a given € 2 0 we say that the

strategy combination s* is an €-equilibrium if it satisfies the inequalities

in the definition of a Nash equilibrium but with the right side zero being
replaced by €.

Often we are interested in situations where players are allowed to
randomly choose their strategies. When a player does so we say that he is

using a mixed strategy. We formally define the mixed strategies extension

of a finite game G = (N,S,u) to be the game AG = (N,AS,u) described by:



AS = A(Si) with

x -
i€eN

A(Si) = {48

: S, »R: §.(s.) 20 and L
i i i1 si

The elements of A(Si) are the mixed strategies of player i and elements of

AS are mixed strategy combinations. u = (u_,u .,un): as - R®.  Here

1vver e

every ui(6) is defined to be the expected utility of player i when the

players choose their si‘s randomly according to the distributions 61, i.e.,

(s.).

u; (8) = L g u;(s) njeN SJ. j

S€

(We will be abusing notations throughout by letting u stand for different

utility functions defined on different domains.)

Example II.1: The prisoner's dilemma game, P = ({1,2},A,u), is described as

follows:

A=A i = i = .
1 % A2 with Ai {c,d} for i 1,2
We refer to Ai as the set of -actions of player i with ¢ and d denoting a

cooperating and a defecting action, respectively. A is then called the set

of action combinations.

The utility functions are described by a bimatrix:
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Player 2's Actions

c d

Player 1's Actions

It is easy to see that (d,d) is the only Nash equilibrium of this game in
pure or mixed strategies.

A game Z is called O-sum if for every strategy combination s € S
zieN ui(s) = 0. Obviously Z is O-sum if and only if its extension to mixed
strategies is also O-sum. In a 2-person O-sum game there is a unique Nash
equilibrium payoff (in pure or mixed strategies), i.e., there is a real
number v with u(é*) = (v,-v) for every Nash equilibrium 8*. The unique
number v is called the value of the game. This observation will be useful
later when we wish to compare the payoffs of different games. Because of

the uniqueness of the equilibrium payoff we will be able to say whether a

player is better off in one 2-person O-sum game than in another such game.

III. What Are Repeated Games?

I11.1 Types of Repeated Games

We begin with a given strategic game G = (N,A,u). We are interested in
several strategic games that describe different versions of repeated play of
G. To avoid confusion we will refer to G as the stage game and to the
others as the repeated games. It is also convenient to refer to the

strategies of the stage game as actions and use the word "strategy" for a
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choice of a rule of behavior in the repeated game.

We will deal with finite and infinite repeated play of the stage game G
and will use the notation GT and Gw. respectively, to denote them. The game
GT is played as follows. 1In the first stage the players play the stage game
G, creating an action combination al. and getting paid u(al). Every player
is then informed of the actions of all the players. With this information
available, the players proceed to play G again creating a second action
combination a2 and being paid u(az). This process repeats itself T times.
In G~ the same process goes on forever.

To completely specify the games GT and G~ one has to describe how the
players evaluate their utility for receiving (finite or infinite) streams of
payoffs. We will be using two common methods. Under the first method the
players use a given common discount parameter & and evaluate a stream of
payoffs according to its discounted value. When this is the case we denote

T,.«

the resulting games by G and 6%, Under the second method the players

use their long run average payoff. When this is the case we denote the

games by GT and G .

Before turning to the formal description of these games we need to
introduce some additional terminology. By a history resulting from the
repeated play of G we mean a string of action combinations of any finite
length, i.e., an element of x%=1 A for some 2 2 0. We use 2(h) to denote
the length of a history h. For two histories h and h of lengths 2 and 2 we

write hh to denote the concatenation of h with h, i.e., the history of

length & + 2 whose first 2 elements are the action combinations of h
followed by the & action combinations of h. It is also convenient to be

able to speak of the empty history which denotes the fact that "nothing
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happened yet." We use the letter e to denote it, define its length
2(e) = 0, and define eh = he = h for every history h.
We let HT denote the set of all histories of length strictly less than

T and H* denote the set of all histories of any finite length.

111.2 The Formal Description of gl

The strategic game G! is described by the triple (N,F,u) having the
foliowing structure and interpretations.

N is the set of players of the underlying stage game G. The set of
strategy combinations F = xieN Fi with the sets Fi denoting as usual the

sets of individual strategies. Each Fi here consists of all the functions

f.: HT - Ai' Thus a strategy is a prescription of how to act after every

i

possible history of action combinations. Notice that the domain of fi
contains histories that are not consistent with its own earlier
prescriptions. This is important for two reasons. It clearly prescribes
actions even if mistakes were made in carrying out fi's earlier
prescriptions--situations that arise frequently in large economic games.
Also it allows for a careful analysis of the self consistency of the
rationality of playing a strategy (see, for example, Selten [1975]).

To define u = (ﬁl,ﬁz....,ﬁn) we first define the play resulting from a

strategy combination f € F. Inductively we define f1 = f(e) and for

t t-1

t=2,3,...T £~ = f(fl.fz....,f ). We now define u(f) = (l/T)):;I_:=l u(ft),
Thus every player evaluates his utility of the strategy combination f

according to his average payoff.
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III.3 The Formal Description ém

In playing G infinitely many times, infinite streams of payoffs are
created. Defining the average payoff of such streams is more difficult. It
is convenient to use the notion of a Banach limit to evaluate such averages.

We let B denote the set of all bounded countable infinite sequences of
real numbers and we assume that each of the players i € N has a utility
function ﬁi: B - R satisfying the following conditions.

1. ui is linear;

t.oo
2. For every b = (b )t=1

T t = . T t
L <
lim 1nfT (l/T)Zt=1 b~ < ui(b) < lim sup, (1/T)Zt=1 b~, and

- t,. oo - t, oo
3. u b)) = u, (b))

The existence of such functions ﬁi is guaranteed by the Hahn-Banach theorem.
There could be many functions ﬁi satisfying the above conditions. However
we will assume from here on that every player has chosen one such ﬁi to
evaluate streams of payoffs for all infinitely repeated games.

Now G~ is defined by a triple (N,F,u) described as follows. The set of

strategy combinations F = xieN Fi with every Fi containing all the functions

fi: HS = Ai. Just as in the definition of GT we define the play path (now

infinite) resulting from a strategy combination f by f1 = f(e) and for

t 2 t-1

t=2,8,... f° = f(fl.f R § ). The utility vector associated with
every strategy combination f € F is defined by u(f) = (ﬁl(f),...,ﬁn(f)) with

ﬁi(f) = ﬁi(f N
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111.4 The Formal Description of Gm'a

The infinitely repeated strategic game G is defined by the triple
(N,F.ua). The set of strategy combinations F, is defined as in the game G,
Also for every strategy combination f € F the play path fl,fz,... is defined
as before. However, the utility functions u? are defined for a given

© t-1

discount parameter «, 0 < @ < 1, by u?(f) = zt—l o ui(ft).

111.5 Examples of Strategies in the Repeated Prisoners' Dilemma Game

The strategies described here are often used in discussions of the
repeated prisoners' dilemma game. They apply to the finitely and infinitely
repeated games with both discounting and the average payoff criterion. We
describe them as player one strategies. The symmetric definitions apply to
player two.

The constant defecting strategy of player one, d is defined by

1"
dl(h) = d1 for all histories h.

The cooperate and then follow the tit-for-tat rule, c—tftl, is defined

as follows:

c-tftl(e) = cl. and for every history h of length 2 > 0
c-tftl(h) = h;, i.e., the last action taken by player 2.

The grim trigger strategy, gtrgl. is defined by gtrgl(e) = Cy. and for

every history h of length & > 0 gtrgl(h) =cy if and only if

Other strategies that will be defined and used later are the n-period

trigger strategies. For example, the two-period trigger strategy, 2trg1, is
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the one in which player one continues cooperation until he detects a
defection. When (and if) he does he plays d1 for two periods, ignoring what
player two does, and then starts the two-period trigger strategy again. It
is easier to formally define these strategies recursively, through the

notion of automaton. This will be done later.

IITI.6 Equilibria of Repeated Games

For all three types of games, 6T, G® and ¢™'%, the concepts of Nash
equilibrium and €-equilibrium are defined as for general strategic form
games. However the more sophisticated notion of subgame perfect equilibrium

is often applied to these games.

Consider first the game GT, a history h of length 2 < T and a strategy

combination f = (fl,fz.....fn). We denote by filh the strategy of plavyer i
induced by f, and h in the game 6T %, Formally we define this strategy by
(£,1h)(R) = £ (hh). Since hh is a history of Gl if and only if

a(h) €T - 8, fklh is indeed a strategy of éT_Q. Also, f|h is defined to be

the strategy combination induced by f and h, i.e., (fllh.falh,...,fnlh). We

say that the strategy combination f of GT is a subgame perfect

(e-)equilibrium if for every length R history h of GT, flh is an
(e-)equilibrium of GT-Q. In other words, at a subgame perfect equilibrium,
regardless of the past, the players play an equilibrium strategy in the
remaining game.

The analogous concepts are defined for ém and Gm'a. A strategy

combination f of G (resp. Gm'a) is a subgame perfect (€-)equilibrium if for

o, X

every history h, f|h is an (€-)equilibrium of G (resp. G ). Here the

induced strategies fiih are defined by (fiih)(ﬁ) = fi(hﬁ) for every history
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h of any finite length.

The following are some examples of equilibria of the repeated
prisoners' dilemma game P. The pair of constant defect strategies
d = (dl’dz) is a subgame perfect equilibrium for all games of the form ﬁT,
ﬁm, and P>'®. This is the case since dih = d for every history h and d is a
Nash equilibrium for all of these games. For games of the type FT one can
actually check that d is the only Nash equilibrium.

The pair c-tft = (c-tft,,c-tft,) is a Nash equilibrium of G~ and of
Gm'a for sufficiently large a. However, it is not a subgame perfect
equilibrium of these games. Consider, for example, a history h which ends
with the action combination (g). c-tft|h = (d-tft,c-tft) with d-tft being
the strategy "defect and then follow the ti;—for—tat rule.” It is easy to
verify that (d-tft,c-tft) is not a Nash equilibrium of the infinitely
repeated game as is required by subgame perfection since (c-tft,c-tft) will
yield player one a higher payoff.

A pair of grim trigger strategies gtrg = (gtrgl,gtrgz) is a subgame
perfect equilibrium of P* and of Pm’a with sufficiently large . This is

the case since gtrg|(h = gtrg or gtrg|/h = d and both gtrg and d are Nash

equilibria of these games.

IV. Automata and Complexity Measures in Repeated Games

IV.1 What Types of Automata

A repeated game automaton of a player is a system that is in one of a
given set of states at any time. At every such state it prescribes an

action for the player and then receives as an input the action combination
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of the other players. According to a fixed transition law, which depends on
the current state and on the input action combination, it then transits to a
new state. In this new state the same operations are repeated. It is clear
that with a specification of an initial state, such an automaton can "play"
the game for a player, i.e., "decide" what to do after every history of
action combinations.

Two types of automata will be used later. 1In one type, the input to
the automaton at any given state is the action combination of all other
players, excluding the action of the player using the automaton. In the
second type the input to the automaton is the action combination of all the
players, including the plaver using the automaton. We refer to the former

type as an exact automaton and to the latter as a full automaton. Exact

automata are useful for implementing strategies in situations where the
action taken by a player is always the action prescribed by the automaton.
Full automata are useful for situations where the automaton's prescribed

action may differ from the action actually taken.

IV.2 Formal Description of Exact Automata

For our purposes it suffices to describe exact automata for two person
games. The extension to n-person games is straightforward. We will
describe such automata for player one. The symmetric definitions applies to
player two.

Such an automaton is described by a triple ((M,mo),B,T) with the
following interpretations. M is the set of states of the automaton with

0

m € M being the initial state. The behavior function B: M =+ A, prescribes

1

an action to player one at every state of the automaton. The transition
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function T: M X A2 — M transits the automaton to a new state from an old one
as a function of the action of player two.
The following table lists examples of strategies in the repeated

prisoners' dilemma game and exact automata corresponding to the given

strategies.
Strategies of Corresponding Exact Automata
Player One
Behavior Transaction Function
States Function actions of plaver 2
2 L4,
dl-—The constant mo =D d1 D D
defect strategy
c-tft n’® =cC c c D
1 1
Cooperate and
then tit-for-tat D d1 C D
tr m’ = C c C D
EirE, - 1
The grim trigger
strategy D d1 D D
2tr mo =C c C P
g 1 1
Two phase
trigger Py d, Py Py
P d C C
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IV.3 Formal Description of Full Automata

A full automaton is described by a triple ((M,mo),B,T) with the same
structure and interpretation as an exact automaton. The only difference is
that here T: M X A - A1 (rather than M x A2 - Al)' In other words, the
transition function depends on the player's own last period action and not

just on his opponents' last period actions. The following are examples of

player one's full automata in the repeated prisoners' dilemma game.

Strategies of Player One Corresponding Full Automata
States Behavior Transition Function
Function Action Combination
CH c1 d1 d1
() (4 () ()
2 2 2 2
Grim trigger on mo = C c C D C D
, . 1
opponent’'s defections
D d1 D D D D
o]
gtrg m =2C c1 C D D D
Grim trigger (on both)
D d1 D D D D

Notice that while the full aﬁtomata of the two strategies above are
different, exact automata that will describe their exact (no mistakes) play
will be the same. We emphasize that the full automaton gives prescriptions
to the player of how to play after every history of action combinations.
Thus a full automaton describes a complete strategy for a game, while an

exact automaton prescribes actions only for histories which are consistent
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with its earlier prescriptions.

IV.4 Complexity and the Structure of Strategies

In this section, following Kalai-Stanford [1988], we define the notion
of (full) strategic complexity for strategies of infinitely repeated games
through the notion of a full automaton. We then give an alternative game
theoretic characterization of this measure, one that does not make use of
the notion of automata but rather makes use of the internal structure of
such strategies. In the following section, strategic complexity is
characterized again, this time through the size and structure of the
information system needed in order to implement a strategy.

The complexity of a strategy is defined to be the size (number of

states) of the smallest full automaton prescribing it. It is easy to verify
that this notion is well defined for every strategy provided that we allow
for infinite complexities.

. c . ~ ©,x

In the cases of infinitely repeated games, G and G , a full
automaton turns out to be an alternative way to fully describe a strategy.
Moreover, there is a natural one-to-one correspondence between the set of
player's strategies of a game and the set of his minimal full automata for
the game.

‘ =] —C0 o,

Consider a strategy fi of G (recall that G and G have the same
strategy sets and thus we use Gco to denote any game of these two types). We
define the set of all strategies induced by fi after all histories of the
game by fiiH = {filh: h is a history of Gm}. We now define the canonical

, by the triple ((M,mo),B.T) described

full éutomaton associated with fi, Af
i

as follows. M = f_ [H, m = fi[e, B(fi|h) = fi(h)' and T(fi[h,a) = filha.
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It is easy to verify that B and T are well defined--that is, if fiih = filh
then fi(h) = fi(ﬁ) and fi]ha = fi(Ea for every action combination a.
Consider for example the two phase trigger strategy of player one,
2trg1, in the infinitely repeated prisoners' dilemma game. This strategy
induces itself, for example after the empty history and after completely
cooperative histories. It also induces the strategy dd—2trgl in which

player one defects twice and then returns to using the 2trg1 strategy. For
c c c

example, this strategy will be induced after the history ((cl),(cl),(dl)).
2 2 2
Similarly the strategy defect once and then go back to the 2trg1 strategy,

c1 c1 c1 d1
d - 2trg., is induced after the history ((_ "),(_"),(.”),(,7)). One can
1 02 02 d2 d2

easily verify that no other strategies are induced by 2trg1. Now consider

the following minimal automaton corresponding to 2trg1.

Transition Function
Action Combinations

States Behavior { 1) (dl) ( 1) (dl)
o 2 o 2

C C1 C Pl Pl Pl
P 4 P Py Py Py

P d C C C C

Observe that if the automaton started at its other states, rather than C, it

will prescribe the induced strategies described by the following table
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Starting State induced Strategy
C 2trg1
P1 dd—2trg1
P2 d—2trg1

We observe a one-to-one correspondence between the states of the automaton
and induced strategies of the given strategy. This structural relationship
between a strategy and a minimal full automaton prescribing it is completely

general, as we describe now.

We say that a full automaton A = ((M.mo).B,T) prescribing a strategy fi

is reducible if there is a partition L = (Ll,Lz,...,Lt} of M with the
following two properties:
1. L is not trivial in the sense that at least one of the LJ's is not

a singleton.
2. If mm €L’ then:
a. B(m) = B(m), and
b. for every a € A T(m,a) and T(m,a) belong to the same Lk.
Clearly, if an automaton is reducible in this formal sense then one can
define a smaller (reduced) full automaton (with the states being elements of
the partition L and the initial state being the element Lj containing mo)
prescribing the same strategy.
We say that two player i automata, A and A, of a given game are

isomorphic if there is a one-to-one onto correspondence from the set of

states of A to A, m: M - M, which preserves behavior and transitions. This
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means that for every m € M B(m) = B(w(m)), and for every a € A m(T(m,a)) =

T(r(m),a).

Theorem 4.1: Every irreducible automata prescribing a strategy fi is

isomorphic to the canonical automaton Af
i
It is easy to verify that every automaton prescribing a strategy fi
must have at least as many states as the number of strategies induced by fi'

We thus obtain the following corollary.

Corollary 4.1: The full complexity of a strategy fi equals the number of

distinct strategies it induces, i.e., I(fi|H)|.

IV.5 Complexity and Information Systems

As a strategy is being implemented during a play of a given game, one
has to keep track of the essential parts of past histories. It turns out
that a little past information is needed in order to implement a simple
strategy. As the complexity of the strategy increases, the amount of
information needed for its implementation increases in a one—tp—one fashion.

Consider, for example, implementing the constant defect strategy in the
infinitely repeated prisoners' dilemma game (strategic complexity = 1).
Essentially, no past information is ever needed in implementing it. The
C-tft1 strategy (complexity = 2), on the other hand, does need some
information. Here one must be able to distinguish between two classes of
histories. These are the ones that end with player two cooperating and the
ones that end with player two defecting. Thus a player implementing this

strategy does not need to keep track of the whole past history for future
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references but only of which of the two possible types a history is.
Therefore, information systems capable of being in two distinct states
suffice.

In general, given a game G* and a strategy of player i, fi’ we say that

the histories h and h are equivalent relative to fi’ h ~ hi' if for every
history string B, fi(hﬁ) = fi(EB). In other words, h and h are equivalent
if no matter what actions follow h or h player i will act the same. Thus,
one could replace h by h without ever affecting player i's future actions.
This means that an information system of player i does not need the ability
to distinguish between equivalent histories; it only needs tb keep track in
which equivalent class of histories it is at every stage of the game. Given
the strategy fi we let H/~ denote the quotient set of H relative to ~.
Consider, for example, the two-phase trigger strategy of player one
discussed in the previous section. It is easy to see that H/~ here contains

exactly three equivalent classes of histories: [e]--the set of histories

c

equivalent to the empty history, [(dl)]——the set of histories equivalent to
c1 c1 d1 2 c1 d1
(.7), and third, [({, )(., ))}]--the set of histories equivalent to (., )(,”)
d2 d2 d2 d2 d2

Actually, one can extend the one-to-one correspondence between starting
states and induced strategies discussed in the previous section, to include
also the one-to-one correspondence with equivalence classes of histories.

For example, for the 2trg2 strategy this correspondence table is the

following:
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Equivalence Class - Starting State Induced
of Histories Following the History Strategy
[e] C 2trg1
€1
[(d )] Py dd-2trg,
2
¢y 44
AFRIFRE P, d-2trg,

It is clear that in order to implement a strategy the minimal number of
history classifications needed is precisely |[H/~|. Also, from the previous

discussion, the following statement is quite apparent.

Theorem 4.2: The complexity of a strategy fi equals the number of

equivalence classes of histories it induces |[H/~|.

Recently, a refinement of the equivalence relation ~ was proposed by
Stanford [1987]. According to it, for a given strategy fi, two histories h
and h are equivalent, h S h, if for every two histories a and B,
fi(ahs) = fi(aﬁs). In other words, two histories are equivalent if no
matter what happens prior to them and what happens following them the same
behavior is induced. Clearly S is a stronger equivalence relation than ~.
If two histories h and h are S-equivalent, then one can substitute them for

each other even when augmenting them to earlier existing histories. The
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number |{H/S| represents the size of the information system needed for
implementing the strategy fi while keeping track of the history strings that
could start at any point of time, not necessarily the beginning of the game
(for example, when summarizing annual activities before augmenting them to
earlier activities). This is not the case for the equivalence relation ~.
Also, the set H/S can be shown to have an elegant semi-group and even group

structure under some restrictions on the underlying strategy.

V. Complexity Issues Analyzed Through Specially Constructed Games

Several issues regarding the effects strategic complexity has on
outcomes of games have been analyzed recently. Typically the approach in
these studies is to modify the definition of the game by building in some
special structure and restrictions designed to address the specific
complexity issue. Then by comparing the equilibria of the modified game
with the equilibria of the original game, the effect of strategic complexity
is observed. We will report here on studies of three such general issues.

In the finitely repeated prisoners' dilemma game it is well known that
the only Nash equilibrium is the one in which both players always defect.
This is considered somewhat of a paradox, since players do not seem to
follow this very convincing noncooperative game theoretic solution. 1In
modified versions of this game the players' strategies are restricted to
ones that can be played by finite automata. If the automata are restricted
to be of sufficiently small size then cooperative behavior emerges as a Nash
equilibrium of this modified game. Surprisingly, this result persists even
when the bound on the size of the automata is quite generous. If in

addition to playing the game we engage the players in some high vocabulary
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meaningliess back-and-forth communication, then even with very large automata
at their disposal, cooperative behavior becomes a Nash equilibrium.

A second direction of research studies the effect of having the players
use automata of different sizes. It is shown that in an infinitely repeated
two person zero sum game, if the automaton player two can use is
significantly greater than the automaton available to player one, then the
value of the game will shift completely in player two's favor. However, for
this phenomenon to occur, player two's automaton must be exponentially
bigger than player one's automaton; otherwise player two has no gain at all.
In a nonzero sum game, having a bigger automaton can actually turn out to be
disadvantageous.

The third modification discussed here goes further than just
restricting the game to be played by finite automata of given sizes. It
takes into consideration also the cost of having a bigger automaton when
playing an infinitely repeated game. When the payoff functions of the
players are modified to take this cost into consideration, the resulting
equilibria have a simple interesting structure, and the set of equilibria is

dramatically reduced.

V.1 Cooperation in Finitely Repeated Prisoners' Dilemma Games Plaved

Through Bounded Automata

We first summarize results of Neyman [1985]. We let P denote the two-
person prisoners' dilemma game and, as before, ﬁT denote the game consisting
of T repetitions of P with the average payoff criterion. Now we consider a
new two person strategic one shot game, ﬁT , des?ribed as follows. The

m,,m
1’72
. . =T
strategies of each player are choices of exact automata for playing P°. In
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making these choices each player i is restricted to choose an automaton of
size not exceeding the given positive integer mi. Given a pair of such
automata (Al'Az)' the utility of each player i, ui(Al'Az)’ is defined to be
the utility he receives in ﬁT when the prescriptions of the automata Al and
A2 are followed.

The first theorem states that if the players are restricted to choose
automata that are too small to count the number of stages of the repeated
game then both players choosing "a cooperating automaton” is a Nash
equilibrium. (Recall that the only Nash equilibrium of the unrestricted
repeated game has both players defecting throughout.) One may therefore

think of "bounded rationality,” or bounded ability to handle strategic

complexities, as a way to resolve the prisoners' dilemma paradox.

Theorem 5.1: If 2 < m_,m

=m < T - 1 then there is a Nash equilibrium pair of

2

, . ~-T
automata of GT n that prescribe cooperation throughout G .
1’72
It is surprising that even if the players can choose large automata,

then they can get arbitrarily close to the cooperative payoffs provided that
they are allowed to randomize in their choices of automata. Recall that
under our conventions, for a strategic form game G, AG denotes its extension
to mixed strategies. Also the cooperative payoffs in the one shot

prisoners' dilemma game are (3,3).

Theorem 5.2: For every positive integer K there is an integer To such that

1/K < < TK. then there is a Nash equilibrium payoff

N .
for ali T 2 To if T sm.m, <

of Aﬁi n  €xceeding 3 - 1/K for both players.
1’72
The next result of Zemel [1985] gives an alternative way of explaining
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cooperation in the finitely repeated prisoners' dilemma game. It goes
further in modifying the game by incorporating artificial communications
(small talk) into the stage actions of the players. The communications of
the players do not directly affect the players' payoffs. However, they
increase the complexity of executing a strategy. Consequently, they prevent
a player from carrying on complex computations which may be required for
noncooperative strategies. It is mathematically easier to prove that
cooperative behavior is induced by a Nash equilibrium of the modified game
with communications. Nevertheless this modified game is attractive on
intuitive grounds and its methodology can be applied to some games in which
the Neyman modification is not applicable.

Starting with the two person prisoners' dilemma game P, and a given
finite set of messages L, we define a modified strategic game, PL, which
stands for the prisoners' dilemma game with the language L attached to it.
PL is described by the triple PL = ({1,2},AL,u) with AL = AL1 x AL2 and
ALi = {¢,d} x L. Thus an action in PL consists of choosing an action in the
original prisoners' dilemma game and a message from the language L. The
utilities of both players are defined to depend only on the c,d combinations
as in the unmodified prisoners' dilemma game without regard to the choices

of messages. More precisely
U ((x,,8,) 0 (X, 8,)) = Uy (x),,)
with the right side being the utility function ui of the prisoners' dilemma

game. However, the messages will play an important role in the repeated

game since they may artificially increase complexities of strategies.
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We define PL. to be the T repetitions of PL with the average payoff
criterion. ?fi is defined as before to be the one shot game in which

1° M

the players choose automata of sizes not exceeding m, and m_, respectively,

1 2
and use the prescriptions of these automata in the game PL! in order to
determine their payoffs. The game A§E$ is the one in which the players can

choose these automata randomly.

Theorem 5.3: If ml.m2 > 3, T2 5 and the size of the message set

iLf 2 max{ml,m } - T + 3, then there is a mixed strategy Nash equilibrium of

2
which prescribes cooperation throughout ﬁfm.
The equilibrium constructed for the proof of the above theorem has the
players choose randomly a message from the large set of possible messages.
They send each other the randomly selected messages in the first iteration
of the game. On subsequent iterations they have to repeat to their opponent
the messages they received earlier. Failing to repeat correctly a message
causes the other player to trigger into defection. Thus it pays a player
to keep track of the message received and to repeat it. However, Kkeeping
track of the messages received "uses up" many states of his automaton,
preventing the player from counting the number of stages left in the game.
This brings us back to a situation similar to that of Theorem 5.1 in which
cooperation is possible.

Neyman's construction for the proof of Theorem 5.2 is similar. There,
however, the irrelevant communication has to be done through the play of the
game by defecting in an "agreed upon" sequence of stages. For that reason
his pfoof is more difficult, and one actually cannot have perfect

cooperation.
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V.2 The Advantage of Having a Big Automaton

We first summarize results of Ben-Porath [1986]. We start with a two
person zero sum game Z and its infinitely repeated version Z° with the
average payoff criterion. Next we consider the strategic game Z: m This

1
is the one shot game in which the players choose automata of sizes nit

and m,, respectively, for playing the game z". The payoffs of

exceeding m1 >

the players are then determined according to their payoffs in the game =
when the prescriptions of the chosen automata are followed.

It is important to observe that:

]
8

1. is still a finite two person zero sum game and thus has a

My my
value (in mixed strategy).
2. Every player can guarantee his pure strategy Z-maxmin value with

an automaton of size one.

More specifically, the pure-strategy Z-maxmin value of a player is the

largest payoff he can secure for himself by choosing a pure action in Z and
assuming that his opponent will move after him in order to minimize the
original player's payoff. For example, the pure-strategy Z-maxmin payoff of

player one is max min u, (a
aleA1 azeA2 171

actions in Z and u1 being the utility of player one. Let a; be a maxmin

,az) with Ai being the sets of pure

action of player one, i.e., an action at which the maximum is attained. By
playing aT repeatedly in = player one can guarantee for himself this maxmin
value. Thus even with a one state automaton, player one can guarantee
himself his pure-strategy Z-maxmin value against any automaton of player

two. The next theorem states that if player two is allowed a sufficiently

large automaton, then he can indeed push player one ail the way down to this
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minimal security level.

Theorem 5.4: (On being much bigger): For every given positive integer m1

there is a positive integer m, and an automaton A2 of size m, such that for

every automaton Al of size ml, ul(Al’Az) < pure strategy Z-maxmin value of
player 1.

If, on the other hand, both players choose large automata of "roughly
the‘same size,"” then the value of the automata game remains the same as that
of the underlying stage game. It turns out roughly the same size here has a
very liberal meaning.

Let Q be a function from the set of positive integers to itself. We

say that Q(n) is asymptotically a little bigger than n if:

1. Q(n) 2 n for all n, and
2. ¢n(Q(n))/n - 0 as n - ®,
For example, a polynomial function of n is asymptotically a little

bigger than n.

b -}

Theorem 5.5: (On being a little bigger): Value (Z
SHeoren =2 m.Q(m,)

ml - o if Q(ml) is asymptotically a little bigger than m

) = Value (Z) as
1

Thus, asymptotically, one cannot benefit from having a bigger automaton
at a zero sum game unless the automaton is much bigger.

Next we summarize results of Gilboa-Samet [1987]. They study the game
in which only one of the players, say player one, is restricted to choose a
finite automaton while the second player is unrestricted. It turns out that
in nonzero sum games being unrestricted may work against a player.

We start with a two person game G and consider the infinitely repeated
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game G® with the average payoff criterion. We now consider a game ﬁ;,m. in
this game player one is restricted to choose a finite automaton of any size
while player two can choose any strategy. (0One can restrict player two to
choices of Turing machines and obtain similar results.) We let VII denote

the pure strategies minmax value of player two in the game G, i.e

VII = mmaleAl maxa2€A2 u2(a1.a2). Notice that VII is the utility that

player two can secure for himself in the game G provided that he chooses his
strategy after observing player one's choice. Indeed, it is the case that

for every player the minmax value of G = maxmin value of G.

Theorem 5.6: (The advantage of being unbounded): Player two has a strategy

in G© _ yielding him a payoff of at least V
=]

7 against any automaton of

II

player one.

This theorem is very similar to Ben-Porath's Theorem 5.4 since in a
zero sum game the minmax value of player two equals the negative of player
one's maxmin value. Thus player two "guaranteeing himself his minmax value"
is the same as "being able to push player one down to one's maxmin value."

Now we restrict player one further by requiring that he uses automata
that are "reversible." This means that for every state that player one's
automaton can enter during the play of the game player two has a sequence of
actions that will lead one's automaton back to its initial state. Observe
that when player one uses such an automaton plaver two is able to
"experiment"” and study one's automaton without ever causing himself
irreversible damage. (Strategies of reversible automata are sometimes call
forgiving. See Axelrod {1980].) We let G denote the strategic game

RF,

restricting player one to use reversible finite automata.
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==

Theorem 5.7: Player two has a dominant strategy in ERF o

Here a strategy f2 of player two is said to be dominant, if for every

other strategy f, of player two and every automaton A, of player one,

2 1
N _
u2(f2,A1) > u2(f2.A1)-

To illustrate situations advantageous to player one we need some more

notation. We let C be the convex hull of the set of feasible payoffs in the

game G, {(ul(a),uz(a)): a € A}). We let R be the region of feasible payoffs

yvielding player two more than VII' R ={ueC: u, > VII}. Now we let WI be

the maximal payoff that player one can receive in the region R,

WI = sup{ulz (ul,uz) € R for some uz}.

ARz

€= equilib ria

Theorem 5.8 (the advantages of being bounded): Suppose the region R # @ and

0

consider the game GRF © For every € > 0 the set of €-equilibria in which

player two uses a dominant strategy is not empty. Moreover, at every such

equilibrium the payoff to player one is within € of W_ (player two's payoff

I

is at least VII)'
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V.3 The Reduction of the Set of Fquilibria Due to Complexity Costs

Here we report on resulilts of Abreu-Rubinstein [1986] which modify the
original results of Rubinstein [1986].
We start with a finite two person stage game G and consider an

infinitely repeated game G°° with either the average payoff criterion (éw) or

under discounting (Gw'a). Next we restrict both players to use finite

=]

automata in playing G~ and denote the resulting game by GF P

However, we
assume that in G;,F every player has a linear preference relation over the
possible pairs of automata chosen. Such a preference relation depends on
two parameters, the utility of the player (average or discounted) resulting
from the recommended play of the automata, and the number of states in the
player's own automaton. More specifically. a player has monotonically
strictly increasing preference for higher utility (for a fixed size of his
own automaton) and a monotonic strictly decreasing preferences in the number
of states in his automaton (for a fixed utility level). Formally the
following three assumptions are made about the preference relation of player

i. For two pairs of automata A = (Al'AZ

) and A = (K ,A_) for the game G;

172 B’

with number of states mi and ﬁi' respectively,

1. If ui(A) ui(ﬁ) and mi ﬁi then player i is indifferent between

A and A, A ~ A

mi then player i strictly prefers A to

2. If ui(A) > ui(A) and m,
A, A >i A; and
3. If u,(A) = ui(ﬂ) and m, < ii then again A >. A.

but relative to the

Now we define the Nash equilibrium of the game G F

eI

,A_) is a Nash

preference relations >i' Thus, a pair of automata (A1 >
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(=]

equilibrium of GF.F

if for every automaton Al of player one:

with the symmetric condition holding for player two.

Theorem 5.9: (The structure of equilibrium with costly states): Let
(Al,Az) be a Nash equilibrium of G?,F and let al,az,as,... be the play
sequence of action combinations prescribed by these automata.
1. The sequence can always be decomposed into three phases, I, II,
and II[, as follows:
Phase III starts from the first at... at which the seguence becomes
cyclic (recall that the Ai's are finite so that at must exist).
Phase I is the longest initial part of the form al,az,...,a2 in which
none of the players use any of the same states that he uses during the
cycle-phase III. These may be thought of as entering states.

Phase I1 is aQ+1,...,at_1.

It turns out that in this phase both
players use only cycle states but the cyclical order is not established
vet. (Phase II is empty in the cases where G> is a repeated game with
discounting.)

2. The total number of states, as well as the number of cycle states,
are the same for both players.

3. In phases I and III the actions of the two players are
synchronized in the sense that a player changes his action from one period

to another if and only if his opponent does.

The above structure theorem facilitates the computation of the set of
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equilibrium payoffs for many games. It turns out that the reduction of the
equilibrium payoff set as we move from an unrestricted repeated game to the
one with costly states can be dramatic. To illustrate this we will
concentrate on the repeated prisoners' dilemma game with the average payoff
criterion. 1In particular we consider the lexicographic preferences with
players considering their utility first and size of their automaton second.
More specifically consider two pairs of automata A = (Al’Az) and A =
(A,.A)), A > A if and only if:

1. u,(A) > u (4), or

2. u(A) = ai<;> and m, < m,
with mi and ii representing the number of states of the automaton A and Ai'
respectively. (Recall that Gi(A) is the average payoff to player i of the
stream of payoffs created by the pair A.) 1In Figure 2 we illustrate the
reduction of the set of equilibrium payoffs. The shaded area describes the
set of all equilibrium payoffs in the unrestricted game. The two line
segments within the region represent the set of equilibrium payoffs of the

game with costly states.

Figure 2
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VIi. Complexity in General Infinitely Repeated Games

in this section we concentrate on general {(unmodified) infinitely
repeated games. Some of the results described here deal with the
sufficiency of equilibria using finite complexity strategies. It turns out
that the set of equilibria consisting of finite complexity strategies
approximates well the set of all equilibrium payoffs. Thus there is no
discontinuity between what can be achieved by real unrestricted players and
what can be achieved by players using finite automata. This may seem
surprising in view of some of the striking results reported in Section V.
One has to keep in mind, though, that there the game was restricted (for
example, to be played through finite fixed size automata). This restriction
was common knowledge to all the players and the set equilibria of the
restricted game turned out to be substantially different from the
unrestricted game. The approach here is very different. It asks: In an
unrestricted game, what can be achieved by "simple" strategies? This means
that these simple strategies have to be optimal also when compared with non-
simple strategies.

Another result in this section describes interplayer complexity bounds
at discount robust subgame perfect equilibria of repeated generic games.
One interesting implication of this bound is that in two player games, the
players must use equal complexity strategies at equilibria.

The notion of an automaton used throughout Section VI is the one of a

full automaton.

VI.1. The Case of Discounting: Finite Complexity Equilibria Suffice and
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Interpersonal Complexity Bounds

We first report results due to Kalai-Stanford {1988]. They address two
different issues. The first as regards the set of equilibrium payoffs that
are attained by equilibria of finite full complexity. It turns out that the
restriction to finite complexity is not serious, and one can uniformly
approximate all equilibrium payoffs of a given game by ones of finite
bounded full complexity.

The second issue regards the interplayer complexity relations at
equilibria. It is shown that generically at equilibria no player's
strategic complexity exceeds the product of the complexities of his
opponents. 1In particular, in a two-person game both players must use equal
complexity strategies.

We start with an n-person stage game G = (N,A,u) and assume that the
utility functions of all the players in G are bounded. Next we consider
Gm’a, the infinitely repeated game G with the discounting criterion for some

fixed discount parameter a. A strategy combination f = (f_,f ,....fn) is of

1'72

finite complexity if each fi is of finite complexity.

Corollary 6.1:

{subgame-perfect equilibrium payoffs of Gm'a} c ﬂ€>o Closure {finite-

complexity subgame perfect e€-equilibrium payoffs of Gw'a

}.

This corollary follows from the following finite approximation theorem.

Theofem 6.1: Given the game G°° and an € > 0 there is an integer M with

the following properties. For every subgame perfect equilibrium f* there is
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x* *
a subgame perfect €-equilibrium g* with iui(f ) - ui(g )| < € and the
*
complexity (gi) <Mfori-=1,2,...,n.
One can actually construct a "universal" approximating n-vector of

automata that can simultaneously approximate all the subgame perfect
equilibria of the game by varying only the automata's initial states. Given

@,

G and the € > 0, there is an integer M and a vector of minimal full

automata (Ai) with the following properties:

ieN

1) The complexity(Ai) <Mfori-=1,2,..,n

2) For every subgame perfect equilibrium f* we can choose initial
states (mi)

for the automata (Ai)ie respectively, so that

ieN N’
when started at these states the automata will play a subgame
perfect €-equilibrium whose utilities are within € of the
utilities of f*.

Turning now to the interpersonal complexity bounds, we say that the
stage game G is generic if for every a, a € A, if a # a then for every

player i ui(a) # ui(é). For example, the prisoner's dilemma game is

generic. A subgame perfect equilibrium f* of Gm'a is discount robust if for

some € > 0 for all s € (¢ - €, a + £€) f*¥ is a subgame perfect equilibrium of

St

Theorem 6.2: Let G be a generic game and let f* be a discount robust
subgame perfect equilibrium of Gm'a then for every i € N

* *
, < ,
complexxty(fi) < nj#i complex1ty(fj).

Corollary 6.2: under the assumptions of Thecrem 6.3 if n = 2, then
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* ' *
complexity (fl) = complexity (f2)

Vi.2 The Folk Theorems with Finite Complexities

The results reported here are due to Ben-Porath and Peleg [1987]. They
provide the analogue of the finite approximation theorem (Theorem 6.1) when
the discount parameter approaches 1 and for games with the average payoff
criterion. In these cases the approximation turns out to be stronger and
can be done by using full subgame perfect equilibria as opposed to
€-equilibria. 1In these limit cases (low discount or average payoffs) the
set of equilibrium payoffs has the well known characterization given by the
folk-theorems (see Aumann-Shapley {1976], Rubinstein {1977] and Fudenburg-
Maskin [1986]). Thus one obtains finite complexity approximation to the set
of equilibrium payoffs described by the folk-theorems.

We start with a stage game G = (N, A, u) with compact metric spaces
Ai's and continuous utility functions ui's. The pure strategy minmax value

of player i, Voo is defined by

,a,

v, = min max u,{a , . N
= { i-1" Ui i+1 n

a€EA a €A, !
i™i

In other words, vi is the utility level that player i can secure for

himself if he chooses his strategy after observing the choices of his

opponents. A vector x € Rn is strictly individually rational if xi > vi for

. n . . . . .
i=1,2,...,n. A vector x € R is a rational convex combination of pure

payoffs of G if x = Z§=1 rjxj with entry rj being a nonnegative rational
number, 2j=1 rj = 1, and every xj = u(a) for some a € A.
We first describe the folk theorem type of characterization for the

finite complexity subgame perfect equilibrium payoffs of Gm. the infinitely
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repeated version of G with the average payoff criterion.

Theorem 6.3: Suppose X is a rational convex combination of pure payoffs of
G and is strictly individually rational. There is a finite full complexity

— - *
subgame perfect equilibrium of c=, f*, with u{f ) = x.

Now we turn to the case of low discounting. We say that x is an

interior rational convex combination of pure payoffs of G if it is a

rational convex combination of pure payoffs of G and it is in the interior

of the convex hull of the pure payoffs of G.

Theorem 6.4: Suppose X is an interior rational convex combination of pure
payoffs of G which is strictly individually rational. There is a discount

parameter ao(o < ao < 1) and finite complexity strategy combination f with

lima_‘1 ua(f) = X, and f being a subgame perfect equilibrium of Siikhe for all

a € (ao,l).
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