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ON EXISTENCE OF A NASH EQUILIBRIUM POINT
IN N-PERSON NONZERO SUM STOCHASTIC
JUMP DIFFERENTIAL GAMES

by

Birger Wernerfelt
Abstract

Using the technique of Wan and Davis, we give an existence theorem for a
Nash eqﬁilibrium point in N-person nonzero sum stochastic jump differential
games. It is shown that if the Nash condition (generalized Isaacs condition)
holds there is a Nash equilibrium point in feedback strategies. We extend the

results to other solution concepts and discuss applications and extensions.

Key Words: Nash equilibrium, differential games, jump processes.



i. Introduction

Using the technique of [10], we give an existence theorem for a Nash
equilibrium point in N-person nonzero sum stochastic jump differential
games. It is shown that if the Nash condition (see Definition 3.2) holds,
there is a Nash equilibrium point in feedback strategies. We extend the
results to other solution concepts and discuss applications and extensions.

In [8] the existence of Nash equilibrium points in stochastic
differential games is looked at by using the technique of [l]. It is an
essential point of this technique that analogues of the time derivation of the
gradient of the value function are constructed using a martingale method.
Consequently, we can obtain the optimal value directly by optimizing the
Hamiltonian at each point. We will here give parallel results for stochastic
jump differential games, using the technique of [10].

Keeping the notation close to that in [10], we consider a jump process x;
specified under a basic probability measure P to which corresponds a pair of
entities (A,\) called the local description of the process; A determines the
rate of occurrence of jumps while A determines their positions. By using an
indexed pair of Radon-Nikodym derivatives (a“,8"), we achieve control of X
through mutually absolutely continuous transformation of the local
descriptions from (A,A) to (AY,A"). Neither the jump process, nor the
controls need to be Markovian.

The player i, i = l,...,N, chooses a feedback control ui(t,X) over the
finite interval [0,T¢]. Together, these controls determine u(t,x) =
(ul(t,x),...,uN(t,x)). Corresponding to this choice of control, player i

incurs a cost of the form:
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Te
(1.1) J.(u) = Eu[fo c,(s,u_,w)dh_ + G. ] (see Definition 2.2)

In Section 2 we give a mathematical formulation of the game and some related
results. 1In Section 3 we prove the main theorem, whereas solution concepts
other than Nash equilibrium are considered in Section 4. We devote Section 5

to applications and extensions.

2. Preliminaries

2.1 The Jump Process

The jump process {xt} is piecewise constant, takes values in a Blackwell

space (X,S) and has isolated discontinuities. If zpy is a fixed element of X,

we can define(Yijj) as the copy of

(7,4 = (R x 0 v [(=,2)}, o[B(R") ®5,{=,z_}}

for j = 1,2,... . 1In this case, the basic measurable space is (9,30):

o= 1 v, 7 =0 1 Y}

=1 j=1
We can now define (Sj,Zj): Q + YJ as the coordinate mapping, such that {Sj}
are the "interarrival times" and {Zj} the “"states” defining {xj}. Further let
wy = H§=1YJ be the projection onto Q. If finally zo(w) =z, is another fixed
element of X, we can let

T (w) = E5_ 185 (), T(w) = linm T, (0)

such that the sample path of {xt} is



Z(w), t € [T (w), T, .(w))
J J j+1

x (w) = {

t z , t > Tw(u))

2.2 A Measure

To get a measure P on (2,7°), we assume that the {Sk} are independent

with survivor functions FE = P(Sk > t), as given by the functions Ak:
k + k
[0, d) » R(0 < d € =) satisfying

(i) Ak(o) = 0, Ak(°) increasing and right continuous
(11)  A¥(e) t mas t 4 = if d¥ ==
(1i1)  ank(s) = aK(s) - AR(s-) <1
(iv) There exist positive constants 61,92, such that Ak(t) < 0, for
t € [O,@l] and k € X where W is an infinite subset of the

integers 1,2,... .
Based on this:

By = exp(-aa+ I aMS(s) T (1 - ar(s))
s<t s<t

where the countable set {s < t: AAk(s) # O} is referred to.

Remark: The Ty sequence is a Poisson process if Ak(t) = t, but the framework

applies equally to discrete time models.
. . k +
We further specify the functions A : Qk—l x BT xS » [0,1] such that
(i) Ak(°,',A) is measurable for each A €S.

(ii) Ak(wk_l,t,°) is a probability measure on S for each



(0_1>t) € D 1x(0,d¥] such that Awy_y,t,{z,_,(@}) = 0.

P can thus be defined as

o k
€ = -~
(S, > t, Z, AlFT ) f(t,m] M (0 »8,A)dF_

k-1
From this we define 3t as 3? completed with all P-null sets of ¥°. So ¥ 1is

the completed o-field on ! generated by x¢ up to time t.

2.3 Martingale

To characterize the fundamental family of martingales associated with

X, |, we define
{x¢}

p(t,A) =2 I

I
i (t>15) (ZjGA)

k- k
At(w) = Al(sl) + AZ(SZ) + «eo + A I(Sk—l) + A (t - Tk—l)’ t € (Tk—l’Tk]

Ae,A)@w) = ) 1 k

A(
=1 (T LT

wk—l; t - Tk_l,A)

p(t,A4) = f(o,t] A(t,A)dA

q(t,A) = p(t,A) - p(t,A)

such that q(t,A) is a local martingale of 7.

2.4 Controls

Each player i, i = 1,2,...,N, can influence the jump process through a

control ul(t,x) with values in a compact metric space ut.



Definition 2.1: ui(') is in the class of admissible controls'ui if u, is ¥

i t

predictable.

i_
Remark: We could allow U; to depend on u" = (ui""’ui—l’ ui+1""’un)’ but

prefer the less general case for ease of notation.

funct

N N . N

Let us now define U= 0 U,,U = H'L&,,]A} = 1 VY, and the two
i=1 1 i=1 j£1 J

A + + + +

ions a: R x UXx  + R and B: R x X x U x  + R . The measurable

functions o and B satisfy:

(i) For each (x,y) € X x U, a(t,u,w) and B(t,x,u,w) are 7.
predictable.
]
(ii) There exists positive constants Cr» CZ’ C3, § such that

oo

C1 < a(*) < min{Cz, —AA—t-

< B(*) <
C1 B(*) C3

for all (t,x,u,w) € RF x X x U x Q.

(iii) jxs(t,x,u,m) Adx,t,0) =1 for all (t,u,w) € R x U x Q.

Remark: The conditions (ii) are unpleasantly strong and obtaining our results

without them is an important goal of future research. Given the results of

(51,

(ii).

it seems that his very different techniques may give existence without

For now, we need these conditions to assure .mutual absolute continuity

of all solution measures.

We further define a%(t,w) = alt,u(t,w),w), B8Y(t,u) = B(t,x,u(t,w),w).



. +
There now exists for each k € Z+ and u 611, functions aE: Qk—l x R + R

X X x R+ + R such that

u
and Bk. Qk—l

u
a (t,w) = ak(wk—l’ t - Tk_l(w))l(te(Tk_l,Tk])

= ™

Bu(t,x,w) =T Bi(w

L k-1° X, t - Tk—l(w))l

(te(Tk_l,Tk])

For a given u El{, a measure P is defined on (Q,7,) by the Radon-Nikodym
derivative of its restriction to ¥¢ , M = 1,2,... as
M
dp M

. l F_ = 1 Lk(m)

dp M k=1

where

u u u
L o) = ol 1580 B (v _52y,8,) expl- I(o,sk] (o (oy_1p8) = D

dAkc(s)] n:- I(Sk < dk)

k

A ey = A%s) - T mf(e)
y<s
and

k u k ' k -1
o= sgt (1 - ak(wk_l,s)AA (s))(1 - AN (s))

2.5 Costs -

We now define the cost structure of the game, which takes place over the

finite interval [0,T¢].

Definition 2.2: For each player i, i = 1,2,...,N, the cost rate is function

c;: [0,T¢g] x U X Q > RY such that



(i) ci(t,u,m) is an 3£—predictab1e function of (t,w) for each
u € U.
(ii) There is a positive constant C,, such that ci(t,u,w) < CA for

all (t,u,w) € [0,Tg] x U x Q.
The terminal costs Gif are nonnegative JTf—measurable random variables
also bounded by C,.
Given this, the cost to player i corresponding to u eW is

J.(u) =E [f c.(s,u ,w)dA(s,w) + G, _(w)]
i u i s if

(0,T,]

Remark: As pointed out by in [10], this formulation includes cases where the

integral part of the cost function is of the form

~1
Eu f(O,Tf]XX K(X,S,us) p (ds’dx)

where p(t,A) is the compensation for p(t,A) under P .

2.6 Value Functions

From the above, the value function for player i given u'(+) is the

process {W given by

1

i
= F
Wit(u ) E ci(s,us)dAS + Gifl t]

"~
uieu1 -
It further satisfies the "principle of optimality” (HO], Theorem 4.1):

Theorem 2.1: For any u; Glii, the process M?t (ui) =
f(O,t] ci(s’us)dAS + wit(ul) is an (Jl,Pu)—submartingale. It is a martingale

iff u; is optimal, given ut.



2.7 Hamiltonian

We can decompose into

(2.1) M (u) = Wio(ui) + N‘i’t(ui) + a% (ul)

it

where {N?t(ui)} is an {Jt,Pu} martingale and {a?t(ul)} is a predictable

increasing process with ago(ul) = 0. N?t(ul) can then be written as:

u i, u
(2.2) Nit(ui) = gi(s,x,u Yq (ds,dx)

I(o,t]xx

for some g; € L%oc(p), where qu(t,A) = p(t,A) - pu(t,A).

Based on this we define the "Hamiltonian™:

Hi(t,u,w) = ci(t,u,w) + a(t,u,w) fxgi(t,x,ul(t,w),w) A(dx,t,w).

The idea is now to minimize this in a pointwise fashion.

3. Existence of Nash Equilibrium

We start by giving the conventional definition:

* * *
Definition 3.1: u = (uj,...,uy) is a Nash equilibrium point if for each i:

x  i% x % i%
Ji(u ) = Ji(ui,u ) < J(vi,u ) for all vy Elii.

Remark: In [3], equilibria was looked at where ui(t,x) only can depend on
ul(s,x), 5 < t. While this seems to be a natural requirement, it is not the
conventional Nash concept.

Further, we define:



Definition 3.2: The Nash condition holds if for each i, there exists a

function:
* i
u, [O,Tf] X X xQxU » Ui

such that for each (t,x,m,vi) € [O,Tf] x X x Q x Us:

*  i% i*
Hi(t)ui)u ,LU) < Hi(t’vi’u ,LU)

, * *
Remark: Since ug depends on both past and future values of u!", the Nash
condition is quite complicated and less innocuous than it first appears.

Perhaps the dynamic programming methods of [3] can improve on this.

Our main result is now:
Theorem 3.1: 1If the Nash condition holds, there is a Nash equilibrium point.

* . . . i*
Proof: We prove that the controls uy above are optimal 1nlli given u!” for

all i, following the proof in [10}, (Theorem 4.2).
By (2.1) and (2.2):
i
(u)

u i * i u u
(3.1) Mit(u ) = J, + I(O,t]XX gi(s,x,v )q (ds,dx) + as,

%
Letting * stand for u :

=
~
[+
~
]

ft c.(s,x,s u*)dA + W.(t)
0 it s i

u t * u
= Mit + IO (ciS - ¢, )dA

1s S
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i* u * u
=J.(u )+ j(o,t]xx dg +ag, + (c; - e  )dA
i* * *  {%
= 33 ) + [ ug Bgda A (e )
where
i u i* -u i* u i*
a;(u ) =a;, (u ) ~-a (u)=a2a (u)
t u * u_u * %
- fo [ejg = g + JxBy( B = B)AA.
. * * . . *x
By [10],(Theorem 4.1), if ajp = 0 a.s. then uj is optimal and u is a Nash

s
equilibrium. Hold ul* constant, this follows from the proof in [10],(p.

* i *
219). Since this holds for all u i(ul*), we see that u thus constructed is a

Nash equilibrium. Q.E.D.

Remark: It may well be possible to obtain this result under less restrictive
assumptions if attention is confined to the Markovian case. 1In the context of
control theory this is, of course, of considerable practical interest.

However, in many modern applications of game theory, such restrictions are not

natural.

4. Other Solution Concepts

It is easy to extend our main result to other solution concepts. Let us

first give the conventional definitions:

. e * . .. . .
Definition 4.1: u G‘Lkls efficient if there is no u € A such that

3;(u) < J;(u") for all i = 1,2,...,N.

Definition 4.2: u* €W is the core if there is no S c {1,2,...,N} and no
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-~ S S S
{ui’i € s}, and S is the complement of S.

* * . * -
u € W such that Ji(u—’uS) < Ji(u ) for all i € S, where y = {u_,i € S}, ug =

Theorem 4.1: There is an efficient point if there exists a nonnegative

*
A= (Xl,...,XN) € RN, A # 0 and a function u, [O,Tf] x Q > Ui for all i such

that for each (t,w,u) € [0,T¢] x Q x W

N * N
‘2 kiHi(t,u ,w) < .E XiHi(t,u,w)
i=] i=]
*
Proof: Proceeding as in the proof of Theorem 3.1, we can prove that the u

and the X above satisfies for each

(t,w,u) € [0,T.] x @ xWU:
i

I e B~

12

A * <
iJi(u ) <

‘ AiJi(u).
1 i

1
So there is no u*, such that Ji(u*) > Jj(u) for all i. Q.E.D.

Theorem 4.2: If the Nash condition holds and for each S c {1,2,...,N} there

exist constant A? > 0, i € S, not all zero, such that for each

* *
(t,w,u) € [O’T ] x Q Xu; z X.SH.(t,u ,L\)) < 2 )\-SH-(t’u yu ,U)).
f , ii . iti =’"s
i€s i€s S

Then the core is nonempty.
Proof: Again proceeding as in the proof for Theorem 3.1, we can prove that

the u* and the AS above satisfy for each

*
(tw,w) € [0,T.] x @ xU: T 253.(u) < 251, ().
iES 11 11

* *
So there is no 8§ and no u such that (Ji(u—’ys) < Ji(u ) for all i € S. Q.E.D.
S
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5. Applications and Extensions

We will confine our discussion to social science applications. In this
context, a prime example is matching games where players team up for longer or
shorter periods and try to control the switching behavior of each other. The
present paper is motivated by a model where firms use prices to influence the
brand switching behavior of consumers [11]. Another class of examples, with
very significant practical implications, can be found in R&D races between
firms in cases where technology follows a jump process. An application on
another level is the theory of incentive contracts in cases where a central
player (a manager) looks for reward schemes which will induce other players
(workers) to maximize the net output of a team production process of the jump
category.

As is always the case, these and other examples pose the need for more
powerful results. One promising avenue which might allow one to drop the
conditions (ii) could be suggested by the technique of [5]. Alternatively,
the deterministic piecewise Markov processes of [9] may be sufficiently
general to help us in many applications. It should be quite easy to prove
existence of equilibrium for games played with such processes. On the other
end of the spectrum, the very general processes considered by [7] and [4},
seems to have many potential applications (in fact, they were directly
motivated by a variation of the brandswitching problem alluded to above). It
should finally be pointed out that many applications suggest the desirability
of a theory of competitive impulse control. Unfortunately, the author has
been completely unsuccessful in his attempts to make progress in this

direction. Perhaps the "Dynkin” games of [6] will be a good starting point.
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