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Abstract

This paper deals with the compliexity of computing Nash and correlated
equilibria for a finite game given in its normal form. 1In order to focus on
the distinction between "easy" (i.e., polynomial) and "hard" (i.e., NP-hard)
problems, we discuss YES/NO problems. However, the natural problems of
existence are trivial from an aigorithmic point of view: every game is
known to have a Nash equilibrium {in mixed strategies)--hence, perforce, a
correiated one. We therefore deal with the existence of equilibria
satisfying a certain condition, sucn as: "Given a game G and a number r, is
there a Nash (correlated) equilibrium of G in which all players obtain an
expected payoff of at least r?", or: "Given a game G, is there a unique
Nash (correlated) equilibrium in G?", and so forth.

We show that most of these problems turn out to be "hard" for Nash
equilibria but "easy" for correlated equilibria. These results may be
interpreted as implying that, at least for some purposes, the correlated

equilibrium is a more reasonable soiution concept than the Nash equilibrium.



1. introduction

1.1 Motivation

Game-theoretic solution concepts may be theoretically interbreted and
practicaliy applied in numerous ways and in a variety of contexts. For some
of these interpretations, the complexity of computing the equilibrium may be
absolutely irrelevant. For instance, one may think of a Nash equilibrium as
a condition which has to be satisfied by any steady state in a certain
dynamic biological system. Such an application may be supported without
assumptions on the piayers' rationality and, more specifically, without
assuming that any of them "computed"” the equilibrium.

However, there is a large ciass of applications-—especially in economic
theory-—-which do implicitiy assume that a rationai decision maker is faced
with the technical problem of computing equiiibria. For instance, whenever
the Nash equilibrium concept is interpreted as a self-enforcing agreement
among rational players, which is attained by negotiation or suggested to
them by another partiy or even read by the players from a certain "game
theory guide," it is implicitly assumed that someone computes Nash
equiiibria. This "someone” may be the piayers themselives, or the "other
party"”, or the "Game Theory Guide" author. At any rate, this "someone" is
not an omniscient super-being--it eventualiy turns out to be a person or a
machine for which bounded rationality considerations and computational
restrictions do appiy.

We therefore beiieve that the complexity of computing a certain
solution concept is one of the features determining its plausibility for a
whole range of theoretically and practical appiications.

This paper deals with two of the most wideiy-used solution concepts for
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noncooperative games: the Nash equilibrium (introduced by Nash (1951)), and
the correlated equilibrium (introduced by Aumann (1974)). The main resuits,
given in the next sub-section, may be summarized, in very bold sirokes, as
saying that Nash equilibrium is a complicated soiution concept, whereas
correlated equilibrium is a simple one.

In Section 2 we give some preliminaries and provide the basic

definitions. The proofs are to be found in Section 3. Section 4 is devoted

to some technical remarks.

1.2 The Results

Assuming familiarity with the standard definitions quoted in Section 2,
we may state our main results. We first define the probiems.

in the following definitions, the word "game" should be interpreted as
a finite game with rational payoffs given in its normal form. Each
definition relates to two problems--one for Nash equilibrium (NE) and one

for correlated equilibrium (CE):

i) NE (CE) Max Payoff: Given a game G and a number r, does there

exists a NE (CE) in G in which each player obtains the expected
payoff of at least r?

2) NE (CE) Unigueness: Given a game G, does there exist a unique NE

(CE) in G?

3) NE (CE) in a Subset: Given a game G and a subset of strategies Ti

for each player i, does there exists a NE (CE) of G in which ail
strategies not included in Ti (for each i) are played with
probability zero?

4) NE (CE) Containing a Subset: Given a game G and a subset of
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strategies Ti for each pilayer i, does there exist a NE (CE) of G,
in wihich every strategy in Ti (for every player i) is pilayed with
positive probability?

3) NE (CE) Maximal Support: Given a game G and an integer k 2 1,

does there exist a NE (CE) of G in which each piayer uses at leasi
K strategies with positive probability?

P

6) NE (CE) Minimal Support: Given a game G and an integer k > 1,

does there exist a NE (CE) of G in which each player uses no more

than k strategies with positive probability?

Theorem

(a) The following problems are NP—hard (NPH): NE max payoff; NE
uniqueness; NE in a subset; NE containing a subset; NE maximal suppori; NE
minimal support; CE minimal support.

(b) The foliowing probiems are of polynomial time complexity (P): CE
max payoff; CE unigueness; CE in a subset; CE containing a subset; CE

maximai support.

These resuits may be summarized in the following tabie:



Table 1

NE CE
max payoff NPH(l) P
uniqueness NPH(Z) P
in a subset NPH(l) P
containing a subset NPH(l) P
maximal support NPH(I) P
minimal support NPH(1’4) NPH(3’4)

{1) NPC for two player

(2) CoNPC for two players

{(3) NPC for any number of players
(4) NPH even for zero-sum games.

2. Preliminaries

2.1 Game Theory Definitions

A game (to be precise, a noncooperative game in normal form) is a

i

tripie (N,(Si) (h™)

. . ) . i,
ien’ ieN) where N is a nonempty set (of players), S  is a
nonempty set (of strategies of player i) for every i € N and h': s » R for

every i, where S = nieN st (hl is the payoff function of player i). A game

(n®)

_ i, . . - R .o i
G = (N, (S ’ieN' ieN) is calied finite if the set N and all sets (S )ieN

are finite. We will henceforth discuss only finite games. Since we are

interested in computational issues, we will also assume that the game data

is rational, i.e., h': § - Q rather than S — R.
. . 3 i i . .
Given a finite game G = (N, (S )ieN’ (h )ieN) in which we assume,
w.l.0.g. (without loss of generality), that N = {i,...,n}, we define the
. . e = i 1 . .
{mixture) extension of G to be the game G (N, (£ )ieN' (H )ieN) where:

i

i) Y. is the set of all probability vectors over Sl (the set of mixed



strategies of player i);

2) For every o = (01,02,...,cn) €EX = H?=1 ' we define a measure Pc
on S by Pc(s) =Ty cl(sl) where s = (si,sz,....sn), and Hl(c) is

the expected payoff to player i according to Pc’ i.e.,

H'(0) = I g P (s)h'(s)

An n-tuplie of mixed strategies o = (61,62,...,6n) € L is called a Nash

equilibrium of G (in mixed strategies) if the foliowing condition holds for
. | i
every i € N and ¢° € L :

i, = i-1 -2 -i-1 i =i+l -n
H(c 9 5...,0 T ,O v--'vc)'

fa¥]
Q
v

That is to say, O is a Nash equilibrium if no player can increase his/her
expected payoff by a unilateral deviation from the (equilibrium) strategy
suggested for him/her by o.

Nash (1i951) has shown that every finite game has a Nash equiiibrium in
mixed strategies as above. The proof uses topological arguments (Brauer's
fixed point theorem); to the best of our knowledge, there is no."elementary"
proof of this fact. Hence it seems unlikely that the existing proofs of
existence wiil be used to develiop a polynomial algorithm for the computation
of Nash equilibria, though they may give some insight for the development of
iterative algorithms which, in turn, may prove useful for practical
purposes. (See, for instance, Samuelson (1988).)

We now turn to correlated equilibria. 1In these, it is assumed that the

players have some randomization device they may all observe simultaneously.
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Hence any probability distribution on S may now be considered as a solution
of the game, rather than the smaller set of distributions which are the

product of independent marginal distributions. A correlated equilibrium is

therefore defined to be a probability distribution p on S which satisfies

the following condition:

s% ,s% ,...,sq } € S such that
J1 J2 Jn

p(s) > 0, for every player i € N and for every strategy st e Sl,

For every s = (s, . =
v ( 178y .sn) (

L i - i, 1 —i
b i p(s)h"(s) 2 % i p(s)h (si,...,s R - D
{s€Sis.=s_ } {s€Sis.=s_ } . Jn
i7i. i 73,
1 1
The intuition which stands behind this definition is the foliowing.
Suppose an (n + 1)th party chooses each s € S with probabiiity p(s}), and
reveals to each player only his/her component S5 of s. Given this
information, and assuming that the other players will play the strategy
"recommended" to them by the (n + 1)th party, player i has a conditional
probability regarding the other pilayers' choices. It is required that the
strategy "recommended" to piayer i, that is, s% , will be optimal for
i
him/her given this conditional probability.
Aumann (1974), who introduced the concept of correiated equilibria,
aiso noted that every Nash equilibrium in mixed strategies induces a
correlated equilibrium defined by the product of the players' mixed
strategies. This also implies that for every game there are correlated
equilibria. However, Hart and Schmeidier (1986) noted that correlated
equilibria are defined by a finite set of linear inequalities, and showed

(without using Nash's resuit) that the feasible set induced by these

inequalities is nonempty for all games. (Their result also deals with games
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with an infinite number of piayers, for which there is no Nash equilibrium
in general.) In fact, all the results presented in this paper, which prove
that a certain CE probiem is easy, use this observation and that linear

programming probliems can be solved in poiynomiai time.

2.2 Computer Science pDefinitions

Unfortunately, we cannot provide succinct and formal definitions for
the terms we will use. For the sake of brevity, we will onliy provide short
and intuitive expianations, and the interested reader is referred to Aho,
Hopcroft, and Ullman (1974) for formal definitions.

By a problem we refer a YES/NO problem, i.e., a function A(e) from the
set of inputs to the set {YES,NO}. An instance of a problem is a given
input. The size, {xX|, of an instance x is the number of digits in the
encoding of Xx.

An aigorithm T is a welli-defined set of instructions which may be
identified with a Turing machine and thought of as a computer program with a
specific output state denoted YES. Let T1 be the set of inputs such that T,
when given x, reaches the output state YES within a finite number of steps.

In that case, the number of steps is called the running time of T on x.

An algorithm T is said to solve the problem A if T1 = {x: A(x) = YES},

i.e., it reaches the state YES preciseiy on the correct set of inputs. The
computational complexity of T, c{(n), is the maximum running time, over all

inputs x € T. such that (x| < n. Note that this definition is not symmetric

i

with respect to repiacing YES by NO. We will focus on the order of

magnitude of c(n}), rather than on the function itself. More specificaily,

we will pe interested in the existence of "poliynomial algorithms," that is,
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algorithms for which the time complexity c(n) is bounded from above by some
poiynomial of n. The set of all problems for which there exists such an
algorithm is denoted by P. Most of the well-known optimization problems,
such as the traveling saiesman problem, the set covering problem, the
knapsack problem, etc., are generally believed to be outside P. Rather,
they are known to be in a set containing P, which is called NP.

A problem is called NP (or belongs to the class NP) if there is a
nondeterministic Turing machine which solves it in polynomial time. One may
think of a nondeterministic Turing machine as a computer with an unbounded
number of processors working in paraiiel. Intuitively, a problem A is in NP
if one can "prove" in polynomial time that A(x) = YES. For exampie, the
problem of deciding whether a certain graph contains an Hamiltonian tour is
not known to be in P, i.e., we do not know of a polynomial algorithm for it.
However, this problem is in NP since we can prove in poiynomial time that a
given graph is in fact Hamiltonian by presenting the aigorithm with a
Hamiltonian tour. The only "polynomial"” requirement is for the algorithm to
check in polynomial time that the presenied tour is in fact Hamiltonian.

As noted previously, the definition of running time is not invariant
under compiementation of YES and NO. The class of problems whose
compiements are in NP is called CoNP. 1In other words, a problem A is in
CoNP if one can prove in poliynomial time that A(x) = NO. Obviously, P € NP
but the question of whether the containment is strict is stiil open. It is
also not known whether or not NP = CoNP. The "evidence" so far suggests a
negative answer io both these guestions.

On the set of probiems one may define the binary relation "is

(polynomially) easier than" or “can be polynomially reduced to" as follows.
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A probiem A is easier than B if there is a polynomial algorithm which
transiates every possible input of A to an input of B, such that all
A-inputs for which the A-answer is "YES," and only those, are mapped to
B-inputs for which the B-answer is "YES." (In this case, we will aiso say
that B is harder than A.) In particular, if A is easier than B according to
this definition, then the following conditional statement is true: 1if there
were a polynomial algorithm solving B, there would aiso be one for A.

A problem which is "harder," in the above sense, then all problems in
NP is called NP _hard (NPH). If such a problem is in NP it is called NP

complete (NPC). Similarly, if it is in CoNP it is called CoNP compiete

(CoNPC). 1If a polynomial algorithm existed for any NP hard problem, then we
wouid have a polynomial algorithm for all problems in NP and aiso in CoNP.
In that case P = NP = CoNP. For this reason NP hard problems are considered
hard: there are no known polynomial algorithms for them, and computer

scientists tend to believe that such algorithms are uniikely to be found.

3. Proofs

Iin this section we provide the proof of our theorem. To each probiem
we devote a subsection showing whether it is NPH or P. Then, in Section
3.13, we show that for the case of two players, the NE probiems are in NP
except for NE uniqueness wnich is in CoNP. Finally, we show that minimal

support CE is also in NP.

3.1 NE Max Payoff

The proof is by reduction of the ciique problem, defined as follows.

Given an undirected graph Gr = (V,E) and an integer k, does there exist a



0

[ay

clique of size k in Gr? That is, does there exist V' ¢ V, |V'| = k such
that {i,j} € E for‘all i,j e v'?

(The cligque problem is known to be NPC.)

Given a graph Gr = (V,E) where, without loss of generality,

V ={1,...,n} and a number k, construct a two-person game G as follows:

i
ht((1,1),(1,5)) = h2((1,1).(1,3)) = <

-
{1 + ¢ ifi=J
¢ 1 if i #j, {i,j} € E
!

io otherwise

L

where £ = 1/nk

.
K i=j
|

h((2,1),(1,3)) =4
;

io iz
L
r
| -M i=3j
9 |
n7((2,i),(1,3)) =4
]
i0 i#j ‘
(.
r
{-M i=3
1 i
h™((1,i),(2,3)) =4
{
10 i2j

L



r

K i=
) l
h%((1,1),(2,3)) =4
!

io 1]
L

1 . . 2 . .
h"((2,i),(2,3)) = b ((2,1),(2,])) = 0.
where M = nkz. The game matirix is given in Figure 1.

<Insert Figure 1 about here>

Ciaim: G has a NE with expected payoff of at ieast r = 1 + €/k for both

players iff Gr has a clique of size k.

Proof: First assume that Gr has such a clique, say {11,12,...,ik}. Define

mixed strategies p for player 1 and g for player 2 by

. = = < i<
D(l’l.) q(l,i_) i/k for 1 £ j £ k.
J J
It is easy to verify that p and g constitute a Nash equilibrium in which
both players obtain the payoff r.
Conversely, assume that p = (p(l,l)""’p(z,n)) and g =
((:_t(1 1),...,q(z n)) are two strategies which form a NE in G, such that the

expected payoff of each player is at ieast r. We want to show that Gr has a

clique of size K.

Ciaim 1: For every i £ 1i £ n,

p(2,i)’q(2,i) < l/n(M + 1).



Proof: For a given i £ i £ n, assume p(z,i) > 0. This implies that
E(hlf(z,i),q) > r. (Here and in the sequel, this expression means the
expected payoff of player 1 given that he/she plays the pure strategy (2,i)
and that player 2 piays the mixed strategy gq. We will aiso use the obvious

variations of this notation.) This is possible oniy if g > 0. But by

(1,1)
the same argument, the latier implies E(hzlp,(l,i)) > r. A simple
calculation shows that PN i) < 1/n(M + i) follows. The proof for q is

symmetric. (i

We now know that most of the probability mass of the mixed strategy of
each player is concenirated on the first n strategies. Using this fact we

wiil show that at least k of them are chosen with positive probability:
Claim 2: i Ly D> i {i . > K.

oot S '{ 'p(l,l) 0}|’|{1|q(1’1) > O}I Z K

Proof: Assume the contrary, say I{i{q(l i) > 0}} < k. Using Claim 1, this
implies that for at least one index 1 £ i £ n, 94 i) > (1 - 1/nk2)/(k - 1).
Simple and not-too-tedious calculations then show that E(hlj(2,i),q) >

1 + . But this is possible only if p(1 i) = 0 for all j £ n, which is

known to be false. Li

Claim 3: For all i € n, if p(l

Proof: Assume p(:l ., > 0. The only payoff which exceeds 1 in the (1,i) row
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is attained in column (1,i). Hence E(hlg(l,i),q) >r =1+ e/k only if

q(1 i) > i/k. (And the other part is proved symmetrically.) I

Combining the conciusions of claims 2 and 3 we deduce that there are Kk

i i 1 < i 3 i < = = 1
indices 1 < 3y < i, <...<Jp=n such that p(l,jg) q(l,jg) i/k for

1 £ 9@ £k. It is now obvious that these indices correspond to a ciique of

size k in Gr. i]

3.2 NE Uniqueness

Again we use the cligue problem. Given a graph Gr we construct a game
G as in subsection 3.1, only that now we add another strategy--say 0--to
each player. Each player may guarantee himseif/herseif the payoff r by
choosing the strategy 0, but if only one of them chooses 0, the other one
gets the payoff -M. Hence (0,0) is certainly a NE. However, there are no
Nash equilibria in which either one of the players obtains less than r. It
is easy to see that (0,0) is a unique NE iff the graph Gr does not have a

clique of size k.

3.3 NE in a Subset

Use the construction of subsection 3.2 and define the subsets to be all

strategies (of each player) but the one denoted O.

3.4 NE Containing a Subset

The proof uses the cligue problem again. Given a graph Gr and a number
k, construct a graph Gr' by adding one vertex which is connected to all the

previous ones. Obviously Gr has a ciique of size k iff Gr' has a ciique of
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size (k + 1) which includes the new node. Then construct a game G as
described in subsection 3.2 for the graph Gr' and the integer (k + 1). This
game will have a NE in which the strategy, corresponding to the new node in

Gr', is piaved with positive probability iff Gr has a clique of size k.

3.5 NE Maximal Support

Again, use the construction of 3.2.

3.6 NE Minimal Support

In this subsection we willi prove a stronger result than originally
stated: we will prove that the NE minimal support problem is NPH even if
the input is restricted to be a iwo-person zero-sum game. This resuit will
aiso be used to show that CE-minimal support is also NPH. To this end we
need a new construction, and this time we will use the set cover probiem,

which is also known to be NPC. The version we use is the following.

Set Cover: Given a number n > 1 and r subsets Tl'Tz""’T of
e r
N = {i,...,n} such that UISiSr Tj = N, and a number K £ r, are there K
indices 1 £ jl < j2 < ... < jk < r such that U = N?

1<0<k Tij

We will now show that Set Cover can be reduced to the following

probiem.

Zero—Sum NE Minimal Support: Given a two-person zero-sum game G and a

number k =2 1, is there a NE in G in which both players use no more than k

strategies with positive probability?
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Proof: Let there by given an integer n 2 1, r subsets T. ..., T of

4 "
L

1=t

N = {i,...,n} such that U1<j<h Tj = N and an integer k £ r. Define the

foliowing game G:

8 = {1,2,...,r,r + i}
2 -
§" = {i,2,...,n,n + i}
r
i1 jsr,is<n ie€T,
i J
|0 J<r, i<n, 1i¢T,.
1,0, . - J
h™(j,i) = -0"(j,i) =«
i1/k jEr,i=n+1
i
i1/2r j=r+1
L
Claim: The set N has a cover of size k out of {Ti""’Tr} iff the game G

has a NE in which both players do not use more than k strategies with

positive probabilities.

Proof of Ciaim: First assume that G has a NE as required. Consider player

i's strategy given by pj = 1i/r for 1 £ j £ r (and Poi = ¢). This strategy

ensures player 1 the expected payoff i1/r. Hence the pure strategy r + 1 is
not an optimal (maxmin) strategy for piayer 1, and cannot be played with
probability 1 at any equilibrium. Hence, if p and g are the equilibrium

sirategies of players 1 and 2, respectively, the set J = {1 £ j £ ripj > 0}

i . W laim i U, . T. =N. ieed, if i I il
is nonempty e claim that jed TJ N Indeed, if the sets {TJ}JEJ fail
to cover the sei N, there exists an i € N for which E(hllp,i) < 1/2r. 1In

this case, p again is not a maxmin strategy for player 1. We then conclude
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that {Tj}jeJ is a cover of N. But our assumption on the Nash equilibrium

under consideration implies that |J| £ k. This completes the first half of

the proof.
Conversely, assume that there are 1 < jl < j2 < ... < jk < r such that
UISQSR ljg = N. Let p be a mixed strategy of player 1 defined by pjg = 1/K

for 1 € & £ Kk, and let q be player 2's strategy defined by qn+1 = 1. The
minimal expected payoff for player 1 should he/she choose p, is 1/k. This
is aliso the maximal expected loss incurred on player 2 should he/she choose

a. Hence these are optimal strategies and they constitute a NE of G. [1

3.7 CE Minimal Support

In order to prove that this problem is NPH we will use the proof in
subsection 3.6. The main point is that for zero-sum games the two concepts
of equilibria coincide in terms of both the equilibrium payoffs and the
strategies wnich may be used (at equilibrium) with positive probability.

We first note the foliowing.

Claim 1: Let p be a correlated equilibrium in a two-person zero-sum game G.
Then E(hljp) equals the value of the game V(= maxp minq E(hllp,q) =

. .1,
ming max E(h |p,q).)

Proof: Assume the contrary, e.g., E(h‘ip) < V. (The other case is
symmetric.) This implies that there are (i,j) € S such that pij > 0 and
1

L (pij/Lkpik)h (i,3) < V.



17
By definition, player 1 has an optimal strategy which assures him the payoff

V against any strategy of player 2, in particular (pij/z_p_,) 5" This
K ik jes
strategy may be a mixed one, but there must be at ieast one pure strategy

% € S1 such that E(hllk, (p../Z.p..) ) 2 V. This implies that p is not a
ij"7kYik jesz

CE. 1

=~

Ciaim 2: Let p be a CE of a two-person zero-sum game G. Then for every
i,j) € S such that p. . . . /I p, . imai
(i,3) Pij; > 0, (plﬁ/zkplk)k and (pmJ/>KpKJ)m are optimal

strategies for players 2 and 1, respectively.

Proof: ©Let us consider player 2's strategy (the argument for piayer 1 is,

of course, symmetric.) Consider

- -1
Max _ ¥ (p.,/Z, p., )0 (m, Q).
mes! ges? IR KTk

-

Since p is a CE, this maximum is obtained at m = i. But ciaim i shows that
the maximal value is then the value of the game V. This is just the

definition of a minimax strategy for pliayer 2. (1
The proof wiil now be complieted by the following:
Proposition: Let there be given a two-person zero-sum G and an integer K.
G has a NE in which each player uses no more than k strategies with positive

probability iff it has such a CE.

Proof: The "only if" part is trivial since each NE also constitutes a CE
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(in which exactly the same strategies are played with positive probability).
For the "if" part, assume that there exists such a CE p, and pick a pair
i,j) € S such that p.. > O. i , . . P. i SE. .
(i,3) o Py 0. By Claim 2 (plQ/ZKplk)Q and (pmJ/ZkaJ)m are
optimal strategies, hence a NE. Obviously, in this NE the strategies which

are played with positive probability are also played with positive

probability in the CE p. [

3.8 CE Maximal Payvoff

In view of the observations in Section 2.1, this problem is simply an

LP {(linear programming) one.

3.9 CE Uniqueness

Given the set of linear constraints on (p_) defining a CE in a given

S's€eS
game, one may soive two LP problems for each s € S. One of them will have
the objective function Max P, and the other, Min ps, while both share the

same feasible set. Obviously, the constraints define a unique CE iff all

these problems have the same solution.

3.10 CE in a Subset

This problem is again solved by linear programming where one constrains

the appropriate variables to be zero.

3.11 CE Containing a Subset

Again, for each s € S, one solves the LP probliem defined by the
feasible set of CE and the objective function Max ps. Then one takes the

arithmetic average of all solution vectors obtained. Of course, this is a
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CE since the set of CE is convex. Furthermore, if these exists a CE at

which p. > ¢ for some s € S, then p, > 0 also in this average solution.

Hence, for given sets Ti (for every player i) it only remains to check

. i . .
whether for every sj € Ti and every i € N there is an s =
i 2 i n . . . . . .
(s™,s ,...,sj,....s )} with ps > 0. (Note that this may be carried out in

time complexity which is poiynomial in the size of the game.)

3.i2 CE Maximal Support

Identical to 3.11.

3.13 Membership in NPC and CoNPC

We briefiy show here that for two piayers the NE problems are in NP
except for uniguness which is in CoNP. Then we show that CE minimal support
is also NPC (for any number of players).

We start by analyzing NE for two piayers. In this case, each NE is a
soiution to a poiynomial set of equalities invoilving the (rational) matrices
hl and 'n2 as coefficients. 1It{ is well known that basic solutions to such
systems are themselves rational, of size poiynomial in the original data.
Thus, all basic ﬁE for a given game are of polynomial size. Also, given a
polynomial set of alieged basic NE's, it is easy to verify in polynomial
time that these are, in fact, NE's satisfying any of the additional
properties such as Max Payoff, maximal support, etc. For the case of NE
unigueness, we can easily disprove this property in polynomial time by
presenting a pair of distinct NE.

We now consider the case of CE minimal support for any number of

players. As mentioned earliier, CE can be presented as a linear programming
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probliem so that its basic solution is of polynomial size. Furthermore, a CE
satisfying the minimal support property can be chosen basic. Thus the
proolem is in NP.

This completes the proof of our main theorem.

4. Some Remarks

4.1 Cur results do not imply NP hardness for the problem of computing
any NE for a given game. (The YES/NC problem which corresponds to this
question is the trivial problem of existence of NE). 1In fact, Megiddo
(i988) has shown that, for the case of two players, the probiem is not NP
hard unless NP = CoNP, an uniikely event. The problem for the general case

is still open.

4.2 All the compiexity analysis éarried our here referred to the
"worst case" compiexity of exact aigorithm. It is conceivable that probiems
which are hard with respect to this measure are in fact easy in the
"average" case or if approximations, rather than exact aigorithms, are

concerned. This topic is currently under further study.

4.3 0ur results about minimali and maximal support for CE can also be
used to show that, for a given general set of linear constraints, it is
"easy" to find a soiution with the maximal number (or the maximal set) of
positive variables, but it is "hard" to find the soiution with the minimal

number of positive variables.
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(1,1) ... (i,n)1(2,1) ... (2,n)
(1,1)| (1+e,1+2) {(-M,Kk)
(i+g,1+€) (-M,k)
(eij,eij) (0,0)
(eij’eij) (0,0)
(i,n) (1+€,1+€) (-M,k)
(2,1)] (k,-M)
(k,—M)
(0,0)
(010)
(0,0)
(2,n)i (k,-M)

®i3 T 11,3} € B}

Figure 1
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