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Abstract

This paper analyzes the optimal sequential strategy in a parallel search
problem arising in many economic situations. A decision maker has a finite
number n of activities or projects, each yielding an unknown reward at an
uncertain time. Several m (< n) projects may be undertaken in parallel
(simultaneously), and the projects may be selected sequentially in any order
desired. Optimal strategies, which maximize the expected discounted utility
of the rewards obtained, are in general complex to determine. We present
general conditions in terms of risk and stochastic ordering of the
distributions associated with projects, which result in simple optimal rules.

*This research has been partially supported by National
Science Foundation Grant SES-8708325.



1.0 Introduction

Many economic problems fall into the broad Eategory described below. A
decision maker has a number (n) of activities or projects, all of which must
be undertaken. Each project yields an unknown reward at an uncertain time,
and is characterized by its own independent joint probability distribution of
reward and yield time. Once a project is selected, the reward from it is
revealed after a random time lag when it is collected. The projects/
activities are selected sequentially in any order desired. Furthermore a
number m (1 < m < A) of activities may be explored simultaneously, i.e., m
projects can be carried out in parallel. Once the reward from a project is
received, another one from the set of remaining projects is selected. Given
that m projects can be undertaken simultaneously, the problem is to determine
the sequential strategy (the order of project selection) that maximizes the
expected present discounted utility of the stream of rewards obtained from the
projects.

In principle, the above problem may be formulated as a dynamic
programming problem, and the optimal strategy determined via a straightforward
solution to the dynamic programming equations (using backward induction or
fixed point techniques). However in most actual cases, this approach, besides
shedding little economic insight, would be a combinatorially complex brute
force task especially for large values of n and m.

The purpose of this paper is to demonstrate that simple and intuitive
rules for the optimal sequential strategies are obtained, when the
distributions of the reward and yield times of the various projects satisfy
certain stochastic ordering relations. The optimal order for sequential
selection of the projects can be predetermined, and may be simply étated as

follows. Associated with each project is its expected (discounted) utility



which depends on the reward and yield time distribution of that project.

Order the projects from the one that gives the highest expected utility to the
one which gives the least, and select the projects according to this
predetermined order, i.e., at an instant of time, when an opportunity to
select a project arises, choose from the set of remaining projects the one
which has the highest expected utility. Conditions for the optimality of this
rule are given in terms of the risk associated with each distribution and
stochastic dominance.

The sequential strategy based on the expected utility ordering is myopic,
and in general, myopic rules are not optimal in a dynamic environment such as
that of the problem described above. The principal feature of this paper is
the demonstration of the optimality of this ordering when several projects can
be undertaken in parallel. If only one project may be undertaken at a time
(the case of m=1), the model described above falls into the general class of
bandit processes (Gittens [1979], Whittle [1980], Weitzman [1980]). The
solution to bandit problems can be usually characterized by a reservation
rule. Each project is assigned a reservation number or an index (a number
analogous to the internal rate of return, which in this model coincides with
the expected utility of the project) depending only on the project and
independent of all other projects. At every decision instant the project with
the highest reservation number is selected. Baﬁdit processes have been
extensively studied when only a single project can be selec;ed at a time
(m=1), and the solution concept of a reservation number is applicable to more
general models. However, the case of parallel operation of projects has
qualitatively different features and there have been relatively few studies in

this direction.1



The problem addressed in this paper has many natural economic
applications. For example, the projects can be various products that require
an uncertain amount of time for their development, and the rewards may be
interpreted as the estimated profits from marketing them. Depending on the
context at hand, the various projects may be interpreted as mines, o0il wells,
resource-based technologies or investment opportunities.2 For a further
discussion of the applications and the wide scope of such problems, see
Weitzman [1976] and Roberts and Weitzman [1980].

The paper is organized as follows. The assumptions and the formal
description of the model for the general case of parallel operation of
projects are given in section 2. The main theorem concerning the optimal
policy 1is also stated in section 2. The proof of this theorem is presented in
a later section viz., section 5. The simple case of m=1 (single project) is
discussed in section 3. The parallel project case has qualitatively different
features from the single project case, and this is discussed in section 3.

For this case it is shown tgét the expected utility ordering is optimal in a
more general situation when new projects become available in the future.

*
Limitations of the optimal ordering given in the main theorem, and the role of
the various assumptions for the case m > 1 are discussed through examples in

section 4. Conclusions are given in section 6.

2.0 The Model and the Main Result

There are n projects at the beginning (i.e., time t=0), all of which must
be undertaken. Project i, 1 < 1 < n, yields a reward Zi and the time taken to
collect the reward (from the time the project is started) is X; (i.e., if
project begins at any time t, the reward is received at time t + Xi). 2y and

X; are nonnegative real valued random variables with finite expectations and



having the joint probability distribution denoted by Fi(x’z) = Pr(xi <x, Z, € 2).

i
It is assumed that F; and F; are independent for all i £ j. Let

Hi(x) = Pr(Xi < x) and Gi(z) = Pr(Zi < z) respectively denote the (marginal)
distributions of X; and Z;, for 1 < i < n.

Let m(T) denote the number of projects that can be simultaneously carried
out (in parallel) at time te[0,®). We shall assume that m(T) is
nondecreasing in T. Specifically it is assumed that m(T) has unit upward
jumps at times T, < T, € T_ € ... T where m < n. The first project is

1 2 3

started at time T the second additional project can be started in parallel

1’
at time T2, and so on. (Notice that if Tl < T2, and if the project that was

begun at T. is completed at some time t < Ty another one from the set of

1
remaining projects is selected for execﬁtion at time t, but during the time
interval [TI,TZ) only one project is carried out).

The present discounted utility of receiving a reward z at time t, in its
usual form, is given Sy e-ptu(z), where p > 0 is the discount rate and u(°*) is
a concave increasing function. However, for notational convenience we shall
use an alternative form which also facilitates consideration of time varying
discount rates. It is assumed that the present discounted utility of a reward
z at time t is given by the function u(t,z) which satisfies the properties
mentioned below. (Again for conveﬁience, we shall use the terms "increasing"

and "decreasing'" respectively in places of 'nonincreasing' and 'nondecreasing').

The function U: R+ x R > R' possesses the following properties.

(A.1) u(t,z) is twice differentiable in both arguments, and is convex
decreasing in t, for each z.

(A.2) u(t,z) is concave increasing in z, for each t.



(A.3) ul(t,z) = du(t,z)/ot is convex decreasing in z, for each t; and
concave increasing in t, for each z.

du(t,z)/9z is decreasing in z and t;

(A.4) uz(t,Z)

Szu(t,z)/322 is increasing in t, for each z; and

Szu(t,z)/at2 is decreasing in t, for each z.

uno(t,z)

ull(t,z)

The above assumptions conform to the usual notions of time discounting the
utility, and it is easily verified that the special case u(t,z) =

e Pt u(z), where p > 0 and u(+) is concave increasing, satisfies the above
conditions.

Two kinds of strategies (for carrying out the projects) may be
distinguished depending on whether or not there is an option to pull out of a
project before its completion and switch to another project. If there is such
an option, we shall call the class of policies preemptive; if not, policies
are called nonpreemptive. In the following we shall be concerned only with
nonpreemptive strategies.

A strategy, thus, is fhe order in which all the projects are carried
out. Without confusion, we let 7 = (il,iz,...,in) denote both a permuted
listing of (1,2,...,n), and the order which selects the projects in the order
11519500051 for execution.

Let T denote the vector of times (rl,...,rn). Let U(t,m) denote the
total expected (discounted) utility from the strategy 7.

n
U(t,r) = E[ ) u(e (), z)],
k=1
where ;k(w) is the time at which the reward Z, from project k is obtained,

adopting strategy T.



Our primary interest is in characterizing the (nonpreemptive) optimal

policy n*, the order which achieves the maximum total expected utility i.e.,

U(t,m*) = max U(t,m). (1)
™

Let T = (il,iz,...,in). Defining L (i3,i4,...,in), the dynamic

programming equation for the above problem may be written as follows.

*) = -
U(t ,m*) m:x E[I(x1 <1, Tl){u(rl+ xil,zil) + u(r + xi1+ Xiz’ziz)

+ U(rl+ X, + Xi » ToeesT s nl)}

i, i,

2, ) (2)

+ (X > T,m 1)) {u(rl+ X; 5 2y ) +ultyy X, i

1 1 1 2

+ U(T + xil,r2+ xiz’ r3...rm;nl)}}.

In the above equation I(*) denotes the indicator function. If the first
project (which is i; in the order m) is completed prior to time Tys then the

second project (iz) is begun at time rl+ Xi ; 1f not, it is started at time
’ 1

T In the former event, for the list of projects in LEE the times at which

2.

different projects are started is specified by the vector (t,+ Xi + X, ,

S
72,...,Tn). A similar observation holds for the other event also.

As mentioned earlier, equation (2) may be solved, in principle, by
backward induction (note that U(t,$) = 0, where ¢ is the null list containing

no projects). But, this is likely to be a combinatorial task of unwielding

proportions unless n is small. -



In what follows, we restrict our attention to a class of problems by
imposing conditions on the distributions associated with the projects, and
show that, under these conditions, simple rules for ordering the projects are
optimal. 1In stating the assumptions the notions of mean preserving spread
(see Rothschild and Stiglitz [1970]) and stochastic dominance are used.

The distribution of rewards and yield times of the projects are assumed

to satisfy the following conditionmns.

(B.1) For each project k, 1 < k < n, given Xk = x, the conditional
distribution of rewards, denoted by Fk(zlx), is either y
(a) stochastically decreasing in x,
-or has
(b) a spread which is increasing in x (with the mean preserved).3
(B.2) For each project k, 2 < k < n, the conditional distribution Fk(zlx)
is either
(a) stochastically smaller than Fk_l(z]x),
6r is
(b) a mean preserving spread of Fk_l(zlx).
(B.3) For each project k, 1 < k < n-1, yield time X, is stochastically

smaller thggka$1.4

The projects can have different spreads (with the same mean) in the yield
times. However, in this case, an additional stronger assumption is needed on

the conditional distribution of rewards.

(B.3)' For each project k, 1 € k < n-1 the yield time X, is a mean preserving
k

spread of the distribution F, _.(x|z). In addition

k+1



E[u(x,Zk(x)] is convex decreasing in x, for all k, where Z;(x) is the
random variable with distribution Fk(zlx), and u(+) is as defined

earlier (in assumption A).

Condition (B.l) implies that, for all projects, the longer it takes to
receive the reward, the less likely it will be large, or that the risk
involved in gpe reward is greater. (Notg that B.l is satisfied if X, and Z
are independent i.e., Fk(z|x) is the same for all x). Conditions (B.2),
(B.3), and (B.3)' order the projects according to their distributions.
Considering projects i and j, where i < j, it is assumed that the former
yields a stochastically greater or a less risky reward (conditional on the
same yield time), and also that its yield time distribution is stochastically
smaller or has a greater spread. It may be noted that if Zy and X, are
independent, then the additional assumption in (B.3)' is always satisfied.

Before we state the main theorem, the following observation is in
érder. We shall refer to the assumptions (A.l) = (A.4) as the set A of
assumptions, and the assumptions (B.1l), (B.2), and (B.3) or (B.3)' as the set

of B of assumptions.

Proposition l: Given sets A and B of assumptions,

Elu(X,2,)] > Ela(X, 2, 0],  for 1 <k < o-l.

Proof: Let Zk(x) denote the random reward from project k conditional on

Xk=x. Define,

gk(x) = E[u(x,Zk(x))], 1 <k < n.



By virtue of assumptions (A.1l), (A.2) and (B.1l), it follows that g (x) is

decreasing in x. Moreover,

g, (x) > 41 (¥)»  for all x, (3)

which follows from conditions (B.2) and (A.2). Hence,
Elu(X,2,)] = Elg, (%)]
> E lg,,(X)] (4)

> Elgge) B = Blu@y 2y, D1 J (3)

The first inequality follows from (3). The second inequality is due to
assumption (B.3). To prove the proposition under assumption (B.3)', note that
gy (x) is convex decreasing in x and that (5) follows from (4) due to this

convexity property.

As is evident from the proposition, the sets of assumptions A and B order
the projects in terms of their expected utilities with project 1 having the
highest expected utility and project n having the least. Under the stated
conditions, we shall demonstrate that the optimal policy 7n*, which achieves
the maximum total discounted expected utility in (1), is the predetermined
order 7* = (1,2,3,...,n). That is, the projects are ordered according to
their expected utilities, and whenever an opportunity to start a project
arises, the project with the highest expected utility is chosen from the set

of remaining projects.



Theorem: For the model described'above, with the set of assumptions A and B,

the optimal sequential order is 7* = (1,2,...,n).

The proof of the theorem is deferred to section 5. In the next section,

the simpler case of m=1 is discussed.

3.0 Case m=1: Single Project Selection

In this section, we discuss the special case of the problem discussed in
the previous section, when only one project can be carried out at a time.
This case has qualitatively different features from the case of parallel
operation of projects, and the purpose of this section is to point out these
differences. (Note that this special case is obtained from the model
described in section 2, by letting Tj =»,  for j » 2).

Firstly, the proof of the theorem for this case can be obtained by a
simple interchange argument. This is demonstrated below.

To keep the exposition simple, we shall assume, in what follows, that Z,
and X, are independent for all k, 1 € ¥k < n, and also that u(t,z) is given
by et u(z). To prove the theorem for m=1, let T # T* be an optimal policy.

Then the prescription of 7 implies that there exists a time T > T when a
project j is selected, and immediately upon collecting the reward from this
project, another project i is started, with i < j, i.e., project i has a
higher expected utility than j. Consider another policy T which is
identically equal to m* up to time T, but selects i at time T, and upon
completion of i, selects project j, and thereafter T is the same as 7. The
theorem is proved by contradiction if the total expected utility (denoted
U;) following policy T is at least as large as the total expected utility

(Un) following policy .



It is easily seen that (letting e P= B, 0<CB K UTr can be written as,

T+X, T+X . +X,

- j ji
U vl + E[8B u(Zj) + 8 u(zi)] + V2,

where V; is the expected discounted utility obtained up to time T;, and V, is
the expected discounted utility obtained after completing projects j and i.

Now, because of the construction of ;,

T+, T+Xi+Xj
U~ =V, +E[B u(z,) + 8 u(Zj)] +V,.
It follows that
' THX, THX, +X, T+X, T+X +X,
U~ - U = E[B -8 31 Elucz)] - E(8 4 -8 3 *) Eluz)]
L§ L i j
T X, X.
> BY(E[B *1 - E[B 1) E[u(Z,)]
> 0.

The first inequality is a consequence of assumptions (B.2) and (A.2). The
second inequality follows under both assumptions (B.3) and (B.3)'. The
theorem is thus proved for the special case.

As is evident from the above discussion, the feature which makes the
interchange argument simple, in the case of m=1, is that from a time the
project is selected until its completion, the states of the other projects are
unaltered. This is not the situation in the case of parallel project

operation, as the states of the other projects being simultaneously carried



out, are indeed changing. This aspect of the case of parallel projects is
precisely what makes the proof of optimality more involved.

A second distinct feature of the one-project-at-a-time case is that the
highest expected utility ordering is optimal even when new projects become
available as time progresses, i.e., at any time when a project must be
selected, the project with the highest expected utility among the set of
currently available projects is chosen. It should be clear that the same
interchange argument (presented above) is also valid (interpret Un as the
total expected discounted utility following policy 7 given that new projects
arrive in the future) even when new projects come in at future dates. For the
case of parallel selection, howevef, the myopic ordering implied by the
theorem may not be optimal when there is arrival of new projects. This will

be discussed in the next section.

4.0 Examples

The main theorem provides an extremely simple rule for ordering the
projects, in situations where the assumptions of the model are satisfied. 1In
this section, some examples are presented to show that the highest expectedv
utility ordering of the projects is not, in general, optimal when some of the
assumptions are violated. |

For example, the policy 7* may not be optimal when the number of projects
that can be carried out is decreasing over time (i.e., m(t) is decreasing in T)
or there are comnstraints such as due dates for the completion of projects, as

is illustrated by the following example.

Example 1: Consider three projects all of which have deterministic yield

times, and all yielding the same unit reward, i.e., u(Zi) = 1 for i=1,2,3.



Suppose X; = 1, X3 = 2 and X3 = 3. Further, assume that there are two
machines (each machine can undertake one project) available at time t=0. Say,
there is a constraint that both machines must be returned at t=4 (the machines
are available for four time units), and in addition, one of the machines must
be returned after completing the first project.

It is clear that if the highest utility rule m* is followed, only the
projects 1 and 2 can be completed (as one of the machines is returned at t=1,
and there is not enough time for the other machine to start project 3 at time
t=2 and complete it). If U"* denotes the total discounted utility following

policy 7*, then (letting 3 denote the one period discount factor)

Th

Consider another policy m = (3,2,1) which is the reverse order of w*, which
schedules projects 3 and 2 at t=0. Then

u =3%+8+3%,
It is clear that for values of 8 close to unity (for example 8 > .8), UTr > U"*.
This demonstrates that, in general, m* is not optimal if the number of
projects that can be carried out in parallel is decreasing over time.

Another assumption that has been made in the model described in section 2
ig that once a project 1s selected, it is carried out until its completion.
There is no option of pulling out or backing out from a project in the middle
and starting another project. w* is optimal when there is no option to back
out from a project. If there is an option to stop a project before its
completion and swit;h to another project, then, in general, m* is not optimal,

as illustrated by the following example.



Example 2: Suppose there are two projects X; and X,;. Xj equals 1 with
probability 2/3, and equals 4 with probability 1/3, and X, = 2. Suppose that
u(Zi) = 1 for i=1,2 and m=1. Since X; is a mean preserving spread of Xz, by
virtue of assumption (B.3) it follows that w* = (1,2) and
_ 2 1 3 1 4 6

U = 3B +87) +35 (8 +87).
Assuming that the option to pull out exists, consider the following policy =:
Select project 1 first. If it is learned that X, # 1 (at the end of period 2)
switch to project 2 and then come back to project 1 at t=3. Then
1

U
T

NGRS I A IO
It is easily verified that UTr > U“* for all B, 0 < 8 < 1, thus demonstrating
that among the class of policies which permit preemption (or backing out), w*
may not be optimal in general. Stronger assumptions on the distributions
associated with the project are needed for n* to be optimal within the class
of preemptive policies.

In the case of parallel selection of projects, the highest expected
utility ordering ﬁay not be optimal if new projects arrive in the future, as

illustrated by the example below.

Example 3: Suppose at t=0, there are three projects: Xy =1, Xy = 2,
X3 = 3. Let u(Zi) = 1 for i=1,2,3. Further, suppose that two projects arrive
at t=3, each carrying a reward z and having a yield time equal to one. Let

m(t) = 2 for all t > 0.



If policy n* is followed (which schedules projects 1 and 2 at t=0, and project

3 at t=3, and the other at t=4), we get
4
U =8~ +B" +8 + 28 + zB7.

Consider another policy 7 which chooses projects 2 and 3 at t=0, starts
project 1 at t=2 and completes both new projects at t=4. We get

3 4 2285,

u = 62 + 28
T
It is easily verified that U_> U_, for all z > (1 + 8- 28%)/8%(1), thus
showing non-optimality of m* when new projects may arrive, in the parallel

operation case.

Example 4: Consider 3 projects. Let X; = 2, X, = 3, and X3 = 1 or 6 with
equal probability. Let u(zi) =1 for i=1,2,3. Notice that project 3 has a
higher mean and a higher spread than both projects 1 and 2. Neither
assumption (B.3) or (B.3)' is satisfied. Suppose two projects can be chosen
at a time, i.e., m(t) = 2 for all t. If U; denotes the expected discounted

utility of project 1i=1,2,3, the for B = 0.9

U =%(sl +8%) = 0.715,

(o]
"
[ o]
]

0.81 and

= 0.729.

[=}
(]
™
[



The total discounted utility from the highest expected utility ordering
T* = (1,2,3) is,
2 3 1

_ 2,,1. 6, _
Uﬂ*—B + 8 +78(B+8)'2'114

However, consider the order m = (3,1,2). Then (for B = 0.9)

1 1 4 2 1.5 1 .6 _
UTr §(B+B)+B +§B +-2-B = 2.149

> Un*
The last example shows that if the stochastic ordering assumptions on
yvield times are not satisfied, then m* prescribed in the theorem may not be
optimal. Similar examples may be easily constructed to show the nonoptimality

of m*, in general, if assumption (B.l) or (B.2) is not satisfied.5

5.0 Proof of Optimality

In this section the proof of the theorem is presented. The proof is
approached through several lemmas.6

The first lemma is similar to proposition 1.

Lemma 1: Let g(x,z) be a real valued function, concave increasing in x, and
convex decreasing in z. If the random variables (Xi,zi), for 1 < i< n

satisfy the set (B) of assumptions, then

Elg(X,,2)]1 > Elg(X,_;,Z, ], 2k <n,



Proof: Let Zy(x) denote the random reward from project k, conditional on

X = X Define

b (x) = Elg(x,2, (x)].

By virtue of assumption (B.l), and due to the assumed properties of g(+), it
follows that hk(x) is increasing in x. Moreover, due to assumption (B.2),

hk(x) > hk_l(x), for 2 £ k < n. Hence we have,

Elg(X,,2)] = Eln, (X )]

v

Elh _ (X))

v

B, (X )] = Elg(x .2, )]

The second inequality is obtained from (B.3) or (B.3)' due to the assumed

dependence of g(x,z) on x. This proves lemma l.

Lemma 2: Suppose Y; and Y, are independent real valued random variables.
a. 1f h(xl,xz) is real valued function increasing in X] and

decreasing in x,, and if Y| is stochastically smaller than Y, then
E[h(Y),Y,)] < E[n(Y,,Y))] (6)
b. If h(xl,xz) is a real valued function which is concave in x;

and convex in x,, and if Y; is a mean preserving spread of Y,, then

inequality (6) holds.



Proof: Define g;(x;) = E[h(Y;,x;)] for i=1,2. Under the hypothesis of part
a), it is obvious that g;(x,) is decreasing in x, for i=1,2. Moreover, g1(xp) <

gz(xz) for all x5. Therefore,
E[h(Y;,Y,))] = Elg,(¥,)] < Elg,(¥,)]
< Elgy (Y] = E[n(Y,,Y)],

which proves part (a) of the lemma. The argument for (b) is similar, after

observing that g;(x9) is convex in x; for i=1,2.

The next lemma derives some properties of the total discounted expected
utility when the optimal policy n* is followed. Specifically, the lemma
characterizes the rate of change of the total expected discounted utility with
respect to the times Tos 1< i< n. Note that T, is the time at which the itP
parallel project can be started. For ease of exposition only, we shall refer
to Ti as the instant at which the i'P machine is available. Each machine can
undertake one project at a time. The first machine arrives at time Tis when

the first project is begun; the second machine arrives at time 12, when the

second project is started and so on. Define

du(r,m)
dr.
1

Ui(r,n) R 1< i< m (7.a)
To. avoid any ambiguity in the above definition, when more than one machine is
available at T, we shall define Ui(r,n) to be the right hand derivative,7

i.e., fore > 0



Ui(‘r,'n) = i.i.gl [U(Tl,...,‘ri_l,‘ri+ €, Ti+l,...,rm;1r) - U(t,m)l/e. (7.Db)

Similarly let Uii(T,n) denote the right hand second derivative,
u,,(t,m) = dZU(T w)/drz- (8)
i ’ i}

Lemma 3: Suppose there are n projects which satisfy the set B of assumptions,
and the strategy n* = (1,2,...,n) is followed. Let T be the vector of
instants (Tl,rz,...,rm) where T, denotes the instant at which the ith parallel

project is started. Then the following properties hold.

a. For j # 1, and n > 2,

Ui(r,n*) is increasing in Tt

i and decreasing in Tj.

b. For j # i, and n > 1,

.Uii(r,n*) is decreasing in T, and increasing in Tj.

i
c. Suppose w; = (2,3,...,n), omitting some k » 2. Then for n > 2
* *
LN ) M - o e & M < L]
LU T+ X Tyt KpoeonsTpiTy) = Up (Tt XuTod Xppeen,Tpsmp) 1 €00

Proof: The proof is by induction on n. Parts (a) and (b) are trivial for
n=l. For this case U(t,r*) = E[u(Tl+ Xl,Zl)]. Therefore Ul(r,n) =
E[ul(rl+ Xl,Zl)] is increasing in T (due to assumption A.l) and non-
decreasing in Tj, j # 1. Part (b) is proved for n=1, similarly by virtue of

assumption A.3. Part (c) is obvious for n=2.

Suppose the lemma is true when there are fewer than n projects. We shall

show it holds for n projects. To show that Ui(r,n*) is increasing in T

(in part (a)) let T, < T, < ees € T e Let i=1, without loss of generality.



We shall outline the behavior of Ul(r,n*) as 7, increases, considering three
separate cases viz: (i) T < T (ii) T > Ty and (iii) T, = Ty

%
For ™ < Tys (defining L (2,3, ...n))

-

%
*) = .
Ut ,m*) E[u(rl+ Xl’zl) + U(T1+ Xl,rz,...,rm,wl)].
Hence, we have
%
*) = .
Ul('f,7T ) E[ul(T1+ Xl,Zl) + Ul(T1+ Xl’Tz""’Tm’"l)]' (9

It follows from assumption A.l and the induction hypothesis (note WI has fewer
than n projects) that the expression on the right side of (9) over which the
expectatioﬁ is taken, is increasing in Tl. Thus we have shown that Ul(r,n*)
is increasing in Tl, within the region Tl < Tye

Considering the region T > Tos observe that project 1 is started at time

T It follows that

2.
J
*) = .
U(T T ) E[u(T2+ Xl,zl) + U(T13T2+ Xl’...,Tm’ﬂl)]

and, therefore

J
*) = .
Ul(T,n ) E[Ul(rl,tzf XI,...,Tm,nl)]

Again from the induction hypothesis, it 1is c¢lear that Ul(T,n*) is increasing
in Tis in the region T > Tye

It remains to consider the change in Ul(T,n*) when T takes the value
T

%*
9° Suppose Ty =Ty = eee Ty < Tew] S oo Tpe Let n2=(2,3,...,n), omitting

project k. First consider case k < n.



- 21 -

Let T, < T1+ €, where € > 0 is small, Then, projects 1 through k-1 are

started at Tos and project k is started at r2+ €. Letting € + 0, the right

hand limit

Ul(rz,rz,...,rm;ﬂ*) lim U, (T,+ ¢ 2Tysess T 5T%) (10)
e+0

%*
= Eluy (1o X0Zp) + Uy (Tpd Xy Tod XpaTaseee,Tpsmo) e

k’

Similarly, if Ty =T, 8, where € > 0, then project 1 is started at T,~ €,

whereas projects 2 through k are started at T Hence, the left hand limit is

20

%

U, (1, T T*) = E[u(T2+ X2, ) + U (1,4 X Tyt X TaseeesT 3T,)]

1’72230 1°

(11)

Thus, for the case k < n, the change in Ul(r,n*) when 7. takes the value T, is

1
the difference between the values in equations (10) and (l1), which equals

E[ul(T2+ Xk,Zk) - u1(12+ Xl,Zl)] >0 - (12)

The nonnegativity of the above expression is a consequence of assumption A.3,
and the set B of assumptions. (Note lemma 1 can be directly applied).

For the case of k » n, the change in Ul(r,n*) when T. takes the value T,

1

equals

E[-ul(T2+ X1’Z1?] >0, (13)



since u1(°) < 0 by virtue of assumption A.l. The arguments presented above,
establish that the change in Ul(T,ﬂ*) is positive at = Ty This completes
the induction for part (a). (Arguments are similar to show that Ul(r,w*) is
decreasing in Tj, for j # 1, and are omitted).

It is easy to see that part (b) can also be established along the same
lines as the proof for (a) given above. (In this case inequalities (12) and
(13) will be reversed).

The inductive step for (c) is directly established by letting h(x;,x;) =
Ul(rl+ X1,T ot x2,13,...,rm;ﬂ*) and by using part (a) of the lemma, the

assumption (B.3) or (B.3)', and lemma 2. This completes the proof of lemma 3.

The next lemma states that the marginal expected utility Ul(r,n*), when
following optimal policy n* is greater if project 1 were started later and

then the other projects are carried out in the optimal order.

Lemma &: Suppose the optimal order 7* = (1,2,...,n) is followed. Let

%
L (2,3,¢..,n). Then for T, < T, Cheee,S T

*

*) < .
Qe Ul(rsﬂ ) E[UI(TI’TZ+ Xl""’rm’“l)]’ (1403)
and

*

* > ®o o0 M [ .
b. Ull(r,rr) E[Ull(‘rl,‘rz+ X ,rm,wl)] (14.b)
Proof: The proof is by induction on n. The lemma is trivially true for

n=l, since the left side of (l4.a) is negative and the right side is zero.

Suppose the lemma is true when there are fewer than n projects. Let
*

T

(3,4,00.,n). For L < Tys



%*
Ul(r,n) = E[ul(Tl+ Xl,Zl) + Ul(rl+ XI{TZ""’Tm;Hl)]

N

*
Zl) + Ul(T1+ X ,T,+ Xz,...,rm;nz)]

Elu) (v + X 1°72

1’

N

*
E[u (t 1 Xpl ) + Uy (r + X, ,T,+ Xl,...,rm;nz)]

o 2’72

*
= E[Ul(r Tyt Kgyeee, T sm)]

The first inequality follows from the induction hypothesis. The second
inequality follows from part (c) of lemma 3, and the assumptions (A.2), (B.2),
and (B.3) or (B.3)'. This completes the inductive proof for (a). The proof
of (b) is similar, and is omitted.

The proof of the theorem is now established, using the above lemmas.

Proof of the Theorem: The proof is by induction on n. The theorem is

obviously true for n=l. Suppose the theorem is true when there are fewer than
n projects. We shall establish the induction step, through an interchange

argument and contradiction, and prove that the theorem holds for n projects.

Consider a strategy m # m* which selects project k(>l) at time T By
the inductive hypothesis it is optimal to start project 1 next (at TZ) and
*
thereafter follow the rule prescribed by the theorem, i.e., the order HZ =

(2,3,...,n) omitting project k. Thus amongst the strategies which start k

* *
first, the best strategy is "k 1- (k,1) + m, which denotes order (k,1l,m,).
We shall demonstrate in what follows that the policy LA defined by

b

*
T 2 (LK) Ty,



is better than « The proof of this claim will complete the inductive

k,1°
step.

Let U(t,T;c,z) denote the expected total utility following strategy m,

gi#én (or conditional on) X, = c and 2, = z. Define
A(c,z) = U(T,ﬂl’k;c,z) - U(r,wk’l;c,z).

To prove the theorem, it is enough to establish that A(c,z) is concave
increasing in ¢ and convex decreasing in z. The reason for this is as
follows. Let (il,fl) be a pair of independent random variables which are
identically distributed as the pair (xlzl). Given Set B of assumptions, and
(Xl’zl) assuming the above property of A(c,z), it follows from lemma 1 that

E[A(%,2,)) > E[A(X),Z)] = E[4(X,Z))] = 0.

This establishes that L K is better, thus completing the induction. (Note
b

that, in the above, the last equality to zero follows from the fact that if

both projects 1 and k were identical, then the policies ™ ok and L will
b b

both yield the same expected reward).
We, now, proceed to establish the desired properties of A(c,z).
It is readily seen that

U(r,nl’k;c,z) = E[I(X,< = Tl){u(rl+ X),2)) +u(t + X+ c,z)

1

T -w;)}

+ U(rl+ X+ c,T o’

2,...,

1

+ 1(X1> T, Tl){u(rl+ Xl’zl) + u(12+ c,z)

*
+ U(rl+ Xl,rz+ c,...,rm;wz)}]. (15)

Also, we can write

*
U(T,ﬂk,l;c,z) = u(rl+ c,z) + U(T1+ c,TZ,---.Tm;(l) + "2)’ (16)



*
where (1) + wz denotes the list of projects (1,2,...,n) omitting k, which are

also carried out in that order.
From (15) and (16) it follows that
dA(c,2z)/dz = E[T(X;< T,= 7 ){u(t + X+ c,2) - uy(1,+ c,2)}
+ I(X1 > Ty~ Tl){uz(T2+ c,z) -~ u2(11+ c,z)}. (17)

< 0. (18)

The last step is a direct consequence of assumption (A.4) and the fact
that T, > T Differentiating (17) again with respect to z, yields (using
assumption A.4) that

4% a(c,z)/dz% > o. (19)

Inequalities (18) and (19) establish that A(c,z) is convex decreasing in
z. It remains to show that A(c,z) is concave increasing in c.

Differentiating (16) with respect to c and then making use of lemma 4, we have

*
dU(r,nk’l;c,z)/dc < E[ul(rl+ c,z) + Ul(rl+ c, 12+ Xl,...,rm; wz)] (20)

Now differentiating (15) w.r.t. (c), and using (20), it follows that,



%*
da(c,z)/de > E[I(X;< 1, Tl){ul(rl+ X;* c,2) + U (T + X+ c,rz,...,rm;nz)},

*
+ I(X1> Ti-'rl){ul(T2+ c,z) + U1(12+ c,T xl,...,tm;nz)}

™

)H (21)

[C I

- {u1(11+ c,z) + U1(11+ c,T .+ Xl,...,r

2 m;

> 0. (22)

Using part (a) of lemma (3), assumption A.l and the fact that T; S Ty, it is
easy to verify that the expression on the right side of (21) over which the
expectation is taken is positive. This establishes that 4(c,z) is increasing
in c. Similarly, differentiating (15) and (16) twice with respect to c, and

making use of (part b) lemma 4, we get

2 2 . - e
dA“(c,z)/dc” < E[I(X1< T, rl){ull(rl+ X+ c,z) + Ull(rl+ X+ c,rz,...,rm,nz)}

+ I(X.> ){ (T + Yy + U, _( *
17 T Tpltug Tyt ez 11 (Fa* ST+ Xheee T3]

1 m

*
- {u11(11+ c,z) + Ull(rl+ c,T2+ Xl,...,rm;wz)}]

< 0. (23)

The last step follows from part (b) of lemma 3, the fact that 2 < Ty
and assumption A.4 (i.e., ull(°,z) is decreasing in its first argument).
Inequalities (18), (19), (22) and (23) establish that A(c,z) is concave increasing

in ¢ and convex decreasing in z, thus completing the proof of the theorem.



6.0 Conclusions

This paper addresses a parallel search problem which is common to many
economic situations. The problem of determining the optimal sequential
strategy is often complex. In general, the optimal policies are hard to
characterize and difficult to compute, as the time to arrive at the solution
(through standard techniques) grows exponentially in the parameters of the
problem. Thus, it is worthwhile investigating conditions under which simple
and intuitive rules are optimal. A set of general conditions is presented, in
this paper, for the problem of undertakiﬁg a finite number of projects (each
having uncertain reward and yield time), when several of them can be explored
(nonpreeemptively) in parallel, to maximize the expected discounted utility.
The optimal policy is shown to be a simple predetermined order for carrying
out the projects.

For the problem of parallel projects considered here, conventional
thinking (based on static scenario) suggests picking (as many as are allowed)
those projects having the highest expected utility, when determined in
solution (i.e., computed individually). This paper may be viewed as a study
of the conditions for which such a highest expected utility ordering is
optimal, when decisions are made sequentially in a dynamic environment. The
conditions given are general in the sense that if any of them is violated,
this rule is no longer optimal, and the resulting problem becomes complex.
This is demonstrated via several examples.

The case of one-project—at—a—time has been dealt with extensively in the
literature. In contrast, the studies of the ubiquitous case of parallel
projects is relatively few. It appears that the solution to the parallel
projects problem is not amenable for characterization via simple reservation

rules (as in the single project case), unless some restrictions are imposed.



While investigation of the conditions for which other simple rules are
optimal, may prove useful in applications, the study of this paper could be
extended in several directions. For example, finding conditions under which
the highest expected utility ordering is optimal for the parallel project case
even when preemptions (or pull-out options) are allowed is a topic for further
investigation. Learning, when new information about a project is continually
revealed during its operation, and correlated projects are other topics for
further study in this context. Finally, studying this parallel project
problem when the decision ﬁaker's object is to maximize the expected
discounted value of the maximum of the rewards received (stopping problem) has

applications in technology choice, and research and development.
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Footnotes

11t is easy to construct examples to demonstrate that picking the projects
corresponding to the n largest reservation numbers is not an optimal policy
for the parallel projects case, when these reservation numbers are determined
from the one-project—-at—a-time case.

2For an application to scheduling jobs at a service station, see Weber,
Varaiya, and Walrand [1980] who consider optimal scheduling on parallel
servers to minimize the sum of expected waiting and service times of all jobs,
when service times are ordered through first order dominance.

3Given the random variables ¥y, i=1,2, with respective distributions Di(y),
the random variable Y; is stochastically smaller than Y, if Dl(y) 3 Dz(y) for
all y; Y; is a mean preserving spread of Y, if fg[Dl(s) - D3(s)] > 0 for all
y. In the former case, E[f(Yl)] > E[f(Yz)] for every decreasing function
f(*), (the inequality is reversed if f is increasing). In the latter case,

this inequality holds for every convex function f.

4A sufficient condition for B.3 to hold, may be given in terms of the
conditional distribution, Fk(xlz), of yield times. Since the marginal
H (x) = f Fk(xlz) d6, (z), it follows that H (x) - H ,,(x) =

f[Fk(xlz) - Fk+1(xlz)] dG, (z) + ka+1(x|z) [dG, (z) - dG, ., (2)].

This quantity is nonnegative for each x, if (i) for each z,

Fk(xlz) > Fk+1(x|z), (i1) for each k, Fk(xlz) is increasing in z, and (iii) Z,
is stochastically greater than Ze+1 In otherwords, the conditional yield’
times must be stochastically increasing in k (for each z), and decreasing in z
(for each k).

5Such examples will be similar in nature to those that may be constructed to
demonstrate, for example, the fact that, given two random variables, the
expectation of increasing function of these may not be ordered if they are not
stochastically ordered.

6Some of our arguments in this section are similar to those in [4].

7In otherwords, a project is started on machine i (the one with respect to
which the derivative is taken) after assigning a project (according to 7%*) on
other machines which may become available at the same time. To put in another
way, machine i is thought of as becoming available slightly later.



