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Abstract

We examine the question of existence of subgame perfect equilibrium
points in infinite horizon games which allow players to move simultaneously at
each period. The previous literature on this question had dealt only with
games of perfect information which rules out situations in which players can
move simultaneously. We specify assumptions under which infinite horizon
games with simultaneous moves (IHGSM) will have subgame perfect equilibrium
points. We discuss two classes of games; one a class of supergames, and the
other a class of games involving strategic investment, and apply our existence
result to these two classes of games.



1. Introduction

The notion of subgame perféct equilibrium is a concept that has much
intrinsic appeal. The basic idea is that, without commitments, behavior in
a subgame can depend only on the subgame itself. Kuhn's (1953) result that
any finite horizon game of perfect information admits a perfect equilibrium
point in pure strategies, is by now well known. Selten (1975) extended the
noti;n to finite horizon games with, possibly, imperfect information.
These, in a sense, settled the questiqn of existence of perfect equilibrium
boints for finite games. |

The question that remained concerned the existence of perfect
equilibrium points in games pf infinite horizon. Fudenberg and Levine
(1983) demonstrated the existence of perfect‘equilibrium in puré strategies
in finite actioh games with perfect‘informafibn and continuous payoffs.
Harris (1985) showed that under rather weak assumptions one can eliminate
the condition that the game be a finite action gamé, and demonstrated that a
perfect equilibrium point exists for infinite horizon games with perfect
information.

The requirement that the infinite horizon games have perfect
informafion rules out the possibility of players.moving simultaneously in
each period. Hence, a large class of games cannot be analyzed using the
infinite horizon games with perfectlinformatidn. " Therefore, one is led into
investigating the question of existence of perfectvequilibrium points for
games in which blayers can move simultaneously.

In what follows we give conditions under which infinite horizon games

with simultaneous moves will have perfect equilibrium points. The

conditions are, of course, stronger than those imposed by Harris (1985).
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Among the assumptiohs, the two conditionsrthat are striking are concerned
with the concavity--or more precisely, the quasiconcavity of the payoff
functions and the convexity of the set ofrfeasib1e~hist0ries. The
conditionsvare used to find a fixed point. ©One finds at this point certain
vague analogies with exigtence of equilibrium points of one-shot games, and
it is not, therefore, difficult to see the need for assumptions.

The theorem that is shown to hold for infinite horizon games with
simultaneous moves is then applied to two classes of infinite horizon games.
The first is the élass of fepeated games. The second is a class of games

which generalize the model of Fudenberg and Tirole (1983) in which firms

play a game of strategic investment.

2. The Model

An infinite horizon game with simultangous moves is a set N of players,
a sequence of action spéces or strategy sets fdr each i.e N,‘a sequence of
correspondences from infinite historiés inté‘actioh spaces for eachvi € N,
and payoff functions for each player over the set of possible histories.

Let Xit.denote the action space for player i in period t. The actions
that are feasible for a player i € N in period t will aiwaysvb? in Xit'

The outcome in any period t can, therefore, be represented by an
N

element of Xt i= ®i=1 xit' Hence, the set of possible outcomes is
X: = ®¢=1 Xt’ For any sequence of outcomes x € X, we will write
(xl,xz,...,xt,...). : .

A history up to period t -~ 1, which is known to all players i € N at

time period t, is a finite sequence'of outcomes (xl,x Given the

2""’xt—1)'

history x € X, we will denote the outcomes up to time period t - 1 by



-

and the sequence of outcomes from period t onwards we will denote by

Tt(x) = (xt,xt+1,...).

Feasible Histories
Given the set of histories up to time period t - 1, the actiohs

feasible in time period t is given by the correspondences

At R (B) = X4y
for all i € N. . ' : o
We will say a history Qt_l(x) up to time t - 1 is feasible if for all 1

fSv <t -1, we have

X et € A5 Lag (8,(X)

for all i € N.

If é hisfory Qt_l(x) up'to time pefiod t - 1 is not feasible, then
Ait(ﬁg_l(x)) = @ for all i € N. Hence, ;he action correspondences
Ait: Qt_l(x) - Xit is a nonempty valued correspondence only over the set of

histories which are feasible up to the time period t - 1.

Let F € X denote the set of infinite histories which are feasible in
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the infinite horizon game. Then, x € F satisfies the fcllowing consistency

requirement. For all i:

€ A (Qv(x)) for all v =2 1.

X, .
1,v+1 i,v+1

The set of histories which is possible given an initial feasible history

Qt_l(x) depends on the history & (x). We.will denote this by

t-1

Gy (R4 (X)) = (¥/y € F, &, (¥) = &, ()}

Similarly, let

Gi(R,_, (X),x_ X_; ()

+ j¢) = ly/yeF, o L (y) =8 LX), y_ ;4 =

denote the set of feasible histories, when Qt_l(x), a feasible history up to
period t - 1, has been realized and all player j # i have chosen x;it a

feasible action (n - 1) tuple in period t.

Strategies -and OQutcomes: The strategies of the players are plans describing

the actions of the players contingent on any initial history. Hence, player

, Where

i's strategy is a sequence of functions {hit}:_l

‘such that



[¢)]

By (Re_qV) € Ay (R 4y)

for all vy € F. The strategy combination for period t is then written as

t  YU1t’ 2t Unt

and

for a strategy combination of the entire game.

Let H denote the set of these strategies and Hi the set of strategies
of plaver i. if h € H and qi € Hi' we will denote by h\qi the strafegy
combination ébtained by replacing player i's strategy hi by q;-

If a strategy combination h is used, where h € H then this will define
a history y € F. We will write this outcome as [h,y], the history y
resulting from the strategy.h € H. If an ihitial histofy has occurred,

given by % (x), and a strategy is selected for the subgame, then we will

t-1

denote it by h| and the subsequent history by Tt(x). The outcome in

Re-1(®)
the subgame generated by the history Rt_l(x) will then be written as
[hi,

hlg

(x),rt(x)] where Tt(x) is the history generated by the strategy
t-1 '

in the subgame.
t-1 ()

Payoffs: Tﬁe payoff function u1 of player i is a function defined on the

set of feasible histories F, ul: F - R

The Game: The infinite horizon game can now be completely described by:



where Xit is the set containing the action spaces of player i in period t

for all possible histories up to time t; A, ,  is the correspondence which

it
describes the actions that are possible given the histories up to time
t - 1, and ul is the payoff function defined on the set of feasible

histories.

3. Infinite Horizon Games with Simultaneous Moves

The infinite horizon game described above is one in which at time t the
players know the history up to time t - 1, and make their choices
conditional on this history. At period t, however, the players may make>
their choices without knowing the choice of the other players at period t.
_Hence, the infinite horizon game is one in which players move simultaneously
in each period t, and their information is the past history up to period
t - 1. Hence, in these games, the information that players have is about
the past history and this is common to all the players.

In particular, a repeated game with complete information is an infinite
‘horizon game with simultaneous moves. However, because the action spaces of
the players can be different inreach period, an infinite horizon game with
simultaneous moves has a much ﬁore general structure than the repeated games
in which the action spaces are Kept fixed over time.

A formal definition of an infinite horizon game with simultaneous moves

(IHGSM) is given below:
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Definition 3.1: An infinite horizon game with simultaneous moves (IHGSM) is

w0

. - . i
te X,, A, .
an infini horizon game [{ 1t’A1t}t=1’u ]leN

such that for some finite
history Rt(x) € Rt(F), the action spaces Ait+1(gt(x)) of at least two
players is not a Singleton.

That is, at some point for some history at least two players will have
to move simultaneously. This rules out games with perfect information,

where players cannot move simultaneouély, so that only one player has an

action space which is not a Singleton.

Definition 3.2: A strategy n-tuple h*¥ € H of the infinite horizon game is a

subgame perfect equilibrium point of the game, if for every time t 2 1, and

feaéible history Qt_l(x) € Qt_l(F) up to time t - 1, the strategy n-tuple

h*IQ (x) for the subgame generated by Qt_l(x) is an equilibrium point for
t-1 ' : :

the subgame.

That is, for every t 2 1, and history e (x),

W IR (0, T (0] 2[R0, T (9)]

for all

. : x :
T (V) € [T (2)/7,(z) is generated by (h /qi)'“t—1(X)]
for all i € N.
Hence, a subgame perfect equilibrium strategy is an equilibrium on any

subgame of the infinite horizon game.
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4. Existence of Subgame Perfect Equilibrium For Infinite Horizon Games

with Simultaneous Moves

The existence result that will be given will ‘require certain
assumptions on the primitives of the infinite horizon game with simultaneous

moves.

Assumption 1: xit is a compact convex subset of a Euclidean space for all i

and t.

Assumption 2: X_is given the product topoiogy.

. Assumption_3: The correspondences Ait: Qt_l(p) *lxit are upper
semicontinuous, closed-valued, and convex-valued correspondence for all i

and t.

Assumption 4: The payoff functions ul: F -» R are quasiconcave on F.

Y

“Assumption 5: The correspondences Ait: gt_l(F) - Xit all satisfy the

following cohvexity assumption. Let

%t_l(z) = akt_l(gl) + (1 - a)%t_l(xz) € . . (F).

t-1

Then, for ahy

1
xit € Ait(ﬁt_l(xl)) and
X%, € A, (R, .(2))

it it'"t-1



we have

1 2
Zig T Xy (1 - adxg €A (R (2)).

Assumption 5 could be interpreted in two possible ways. The first
interpretation has been commonplace in the literature and involves using
behavior strategies over the tree. The second interpretation is one in
which the pure strategies or histories lie in some kind of convex set. The
second interpretation, of course, severely limits the nature of the game
tree, but allows one to think in terms of pure strategy equilibria.
Assumptiﬁns 1-5 give'ué the following structure'for the set F of

feasible histories of the infinite horizon game.
Lemma .4.1: F is a closed, convex subset of the product space X.

Proof: Let {XV}:=, be a sequence of histories in F converging to x* € X.

1

We want to show that x* is in F. Suppose x* ¢ F, then it is not feasible,

so that there must be t 2 1 and an i € N such that

*

Kig E AR (9D

This implies>that there exists an open set G containing Ait(ﬂt_l(x*)) subh

E 3
~ that X, £ G. But since A

N ¢ Qt_l(F) - Xit is upper semicontinuous and

. . - *® »
closed valued and Qt_l(xv) Qe (x*) in Qt_l(x), Ait(ﬂt_l(xv)) ; G for all
v sufficiently large, so that, in particular, {x?t}:=1 does not converge to

*®
xit This gives us a contradiction. Hence, F must be closed.
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Let x_,X

1'% € F bée any two feasible histories. Suppose

y = axl + (1 - a)x2 is not in F. Then, for some t 2 1 and i € N, we have

Vig £ Agelfe (W I

Since Qt_l(y) = aﬁt_l(xl) + (1 - )R (x,), by Assumption 5 we have an

t-1"2

immediate contradiction. [1

We now begin defining some important correspondences.

Let wt: ﬁt_l(F) - Tt(F) be some closed valued and nonempty valued

correspondence which is upper semicontinuous on Qt_l(F). Let
Wig(Reog (300 X 50 Z54)
' i _ ,
i= min{u™(y) /R (¥) = (R _ (X)), X_40 250)
and
Teap (V) € Wy R (0D X460 25 )

Therefore, wit(ﬁt_l(x),x_it) is the worst payoff that pléyer i can get
wnen the history up to period t - 1 is Rt_l(x), players j # 1 has chosen
x_it € X—it and the subsequent play of the game is restricted to
¢t(2t_1(x), X_j¢ Zit)' Hence, one can think of ¢t(ﬂt_1(x), X g0 zit) as

being the set of perfect equilibrium paths of the subgame generated by the

of players j # i and the choice z,_  of

history % it

(x), the choices x_

t-1 it

player i, if such perfect equilibrium paths exist, and that punishments for

deviations must be restricted to such perfect equilibrium paths.



11
Hence, for a gﬁven correspondence wt: Qt_l(F) - Tt(F) we can think of

the punishment function w,

it Qt_l(F) @ Xt - R.

Now, we define

) = sup{w. (R __.(X}),x_

it Reo1 it’ 2y /z €A (Qt_l(x))}.

it 1t) it it

by (R g ()% ;¢

Thus, b,,: ¢

it t_-1(F) ® X — R denotes the best payoff that player i can

-it

guarantee himself when players j # i have chosen x_ by making the

it’
appropriate choice in period t, knowing that hencefofth he will be punished
with the worst feasibleApunishment in the resulting subgame that ensues from
period t + 1 onwards.

The following two results give us some properties of the two functions.
We first define a convenient notation. For any histéry Qt_l(x) € Qt_I(F),
- define

AR (x) 1= @0 A (8, (x)).

i=1 it Tt-1

Hence, At(Qt_l(x)) is the set of feasible outcomes in period t if the
history up to period t - 1 is Qt_l(x). From the assumptions, the

‘correspondence

At: Qt_l(F) - Xt

is upper semicontinuous, closed valued and convex valued.

Lemma 4.2: The function wit: grA. - R is continuous on graph of At'

t
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Proof: Since'At: 2 (F) - Xt is upper semicontinuous and closed valued,

t-1

graph At is a closed set.

Let z € grAt, and if {zk}ol:=1 is any sequence that converges to z, we

have that for any open set G containing ¥ (z), there exists a ko such that

t+1
¢t+1(zk) € G for all k 2 ko, by the upper semicontinuity of the

. . . k
correspondence ¢t+l' Qt(F) - Tt+1(F). This will imply that wit(z ) =

wit(z). Since z was arbitrary, it follows that the function is continuous

on grAt. [1

This result shows that for any history Rt_l(x) and X . € A._(%

it it (x)),

t-1

the function wit is continuous over the choices that player i makes. We now

investigate a property of the function bit' Let

A—it(at—l

(%) 1= @y Ap (R (X)),

We can then talk about the correspondence

At Ry (F) = X_

-it it

is a closed set since the correspondences

and its graph. The set grA_it

Ait: ﬁt_l(F) - Xit are u.s.c. and closed valued. The function

b,,: Qt_l(F) ® X_i

it - R is actually defined ovér grA . . We now examine a

t it

continuity property of this function.

Lemma 4.3: The function bit: grA_i£ -+ R is continuous.
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Proof: By definition,

;,z. )z, € A, (R (x));

bR it’7it it it

it t—l(x)’x_it) = SUP{Wit(Qt_l(x),X_ o1

Now, consider the set

W (R (X V)V € A3 (Re (X)) E R

From the continuity of wi : grAt - R, it follows that the correspondence

t
defined by

Wigr gTA_j » R

(x),x_ ) =.{wit(ﬁt_l(X),X_it.yit)/y. € A, (R _.(x))}

as W, (2 it © it -

t-1

is upper semicontinuous, since Ai Qt_l(F) - Xit is an upper semicontinuous

t:
correspondence. Hence, for any point (%

k }m
-it’k=1

t_1(x), x—it) € grA_it, and a

sequence {Qt_l(xk),x converging to (% (x),x_it) for any open set G

t-1

containing Wit(ﬁ (x),x_it), there exists a k0 such that for all k 2 ko,

k, .k
(x7),x_; 4

t-1

W (R g ) €6.

k, k '
Therefore, b. ﬁt_l(x ), X it) converges to bi

il (2

¢ t_l(x), x-it)' Since

Qt_l(x), x-it) was arbitrary, if follows that bit: grA_it - R is

continuous. []
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In order that éfter the history Rt_l(x), a player i does not have an
incentive to deviate, a history'y must occur which gives the player at least
as much as he could guarantee himself. Hencg, the ‘history y must be such

that ui(y) 2 bit(ﬂt_l(x),y_it), where the other players are conforming to

the history v.

i

For every history v Rt_l(x) € Rt_l(F), we define the correspondence

itt %-it T %it
as follows:

v

Bie(Xj) =y /3y eery st 2.(y) = (R (x),x vy 00}
i :
>

such that u (y) 2 bit(ﬁt_l(x),x_it)}.

Lemma 4.4: For all t 2 1, and history Qt_l(x) € Qt_l(F), the
correspondences '

EY.: A . (R, (X)) = A, (%, ,(x))
it” T-it Tt it " "t-1

is nonempty valued, convex valued, compact valued, and upper semicontinuous.

roof: ‘each hist | i
Proof For eac istory ﬁt_l(x) and X_jt € A_it(ﬁt_l(x)), consider

X € A (& _;(¥)) such that u'(y) > ul(z) for all z: R (z) =

it t(

(Qt_l(x),x_it,zit). Then, clea;ly, X € Eit(x-it)' This shows that the

correspondence is nonempty valued.
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From Assumptioﬁ 5 and the quasiconcavity of the utility functions over

, . . v . .
histories, it follows that Eit' A_it(at_l(x) - Ait(x)) is convex valued.

g E. (X

- Suppose X,

Now, let x., be a limit point of Eit(x it

it 1it)' it —it)'

Then for all y € gry such that ﬁt(y) = (ﬁ (x) x1 t), we have

t+1 trX

() uh(y) < b (R (x),x_,).

'xit)’ we hgve

Since, for al; y € grwt+1 such that Qt(Y) = ($lt_1(x),x__i,t

u (y) < b, (% X),Xx

it "t- 1( -it

X, )}

(x).x it

therefore, theré is an open set v 2 {y € gr¢t+1/gt(y) =

(% t-1 -it

such that ul(y) < bit(ﬂ (x),x_it) for all y € V. By the upper

t-1

semicontinuity of wt+1: Qt(F) - thl(F)’ it now follows that there exists

Xi¢ € E?t(x_it) which will satisfy (*). This gives us a contradiction:
v

Hence, Eit' A

(ﬁ 1(x)) - A (x)) is closed valued.

1t(

: v . . .
Suppose Eit' _it(Qt_l(x)) - Ait(ﬁt(x)) is not upper semicontinuous.

Then there exists a point x -it € A i (Q _l(x)) and a neighborhood G of

gY
it
k k k

Vit € Eit(x—it) such that Vit € G.

k - ‘ .
where x - X - there exists

©
( ) such that for a sequence (x it}k=1 —it -it’

k K }}, we have

That is, for all yk € {y € grvy —it'yit

te1” R (v) = (Qt_l(X),x

i, k
(+) u(y) < blt( £ 1(X) X it).

Since ¢t+1: Rt(F) - T (F) is compact valued, it follows that

t+1
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‘ Kk
Yrag B (B X500V

is a compact set. Hence, from (+) it follows that for every k there exists

an ek for which

ui(yk) + ek < b, t( to 1(X) X it)

k k k k .
for every y € ngt+1 such that Qt(y ) —'(Qt_l(x),x_it,yit), Also, since,
¢t+1 Q (F) - t+1(F) is upper semicontinuous, there exists a neighborhood

,Vk of y?t such that -

W)+ (1/2)65 < by (a (x).F ;o)

k

Ky _
such that Qt(y ) = (Qt_l(x) X it z

) where

k.
for every y € ngt+1

" K
?it € V.

Cover CQ{Y?t/k € N} by the open sets Vk. Then the set is covered by

-finitely many of these sets because of compactness. Let & = min(8k/k € N}.

Then, for all k, we have

% ik -
(**) u(y) + (1/2)8 <’bit(gt_1(x),x_it).
Now,~from Lemma 4.3, because of the continuity of bit: grA_it - R, we have
-k .
blt( - 1(x) X_ i ) converges to b. t( t- 1(x) X lt). Hence, there exists a
. k k, _
ko € N such that for all k 2 ko, there exists a y € ngt+1, gt(y ) =

-k k
(Qt_l(x)»x_it»yit) such that
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vt y¥) 2 b 0 0.5 ) > b ™)+ arae

This gives a contradiction. Hence, the correspondence

1%

Eig? Alje (e (X)) = A5 (R 1(x))
ia upper semicontinuous. 11

i

We now prove a central result. We show that for every history Qt_l(x),

* * *
there exists a Ve € At(kt_l(x)) such that yit'e Eit(y_ ) for all i € N. In.

it
other words, there is an outcome in period t which rewards everyone if no
one deviates from the outcome by offering everyone a payoff larger than what

each can guarantee himself.

Lemma 4.5: For every t 2 1 and history Qt_l(x) € Qt_l(F) there exists a

* ' .
Ve € At(Qt_l(x)) such that

* £

)

Vit € Eje(V ¢
for all i € N.
Proof:_ Since Eit: A_it(Qt_l(x)) - Ait(ﬂt_l(x)) is nonempty valued, convex

valued, compact valued and upper semicontinuous, the correspondence

B A (R, (X)) = A (%, (x))
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defined by

is nonempty valued, convex valued, compact valued and upper semicontinuous

on At(ﬂt_l(x)).

%* %*
Hence, by Kakutani's fixed point theorem there exists a yt € Et(yt)..

* *

Since yit € Eit(y—i

t) for all i € N, we have the result. {1

We have shown in Lemma 4.5 that if playvers are punished for deviations

in period t by paths in ¢ t) where z,, € A, (R (x)) is a

(R4 (x).x_ it it

t+1 it'%i t-1

*
deviation by player i, then there is an outcome yt such that players are
better off if they conform, since fhen there exists a path which rewards all
the players jointly. We reguired that the correspondence

C %*
Y (F) be upper semicontinuous in order to show that Ve

g1’ Re(F) 2 Ty

exists.

Now define wt: Q

t—1(F) - Tt(F) in the following way:

YR (%)) :={y € F/ _,(y) = &, _,(x), such that

y, satisfies Vit € Eit(y~it) and Tt+1(y) € ¢t+1(2t(y))}.

t

Hence, the correspondence wt is a refinement of the‘correspondence wt+

in the sense that the paths in the graph of wt are contained in the graph of

Y The refinement ensures that in period t none of the players have any

t+1°

_incentive to deviate. We will want to show that the cdrrespondence

1
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wt: Qt_l(F) - Tt(F).is upper semicontinuous. For every i € N and t -» 1, we

can define the set

v o)
]

i .
it {y e F/ur(y) 2 b, (&, _,(¥),y_; )}

We now define wt: Qt_l(F) - Tt(F)'by its graph as follows:

gry. = [gry, 10 [ﬂ?= B, 1.

t+1 1 it

We Will show that wt: Q (F) - Tt(F) is nonempty valued, closed valued and

t-1

upper semicontinuous.
Lemma 4.6: The grwt ;s closed.

Proof: Let x be a limit point of Bi From the continuity of the function

¢
. k,» . k .

- R, it follows that for any {x }k=1 in Bit such that x - x, we
k, .k B k
(x )’x—it) converging to bit(ﬂt_l(x),x_

k, _k
e (X)X

bjg BFA_j¢

have bit(k
ul(xk) >b

t-1 ). Since

(R

it

g1 (B X_

i
>
it it) for all k, we have u (x) 2 bit(ﬂ it)'

Hence, B, is a closed subset of F. Since gry is

Therefgre, X € Bit' it es1

also a closed subset of F, we have that

grft = [grwt+1] n [ﬂi=1 Bit]

is a closed subset of F. (]
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Lemma 4.7: The correspondence wt; 2 F) - Tt(F) is nonempty valued,

t—l(

closed valued and upper semicontinuous.

Proof: From Lemma 4.5, we know that for every history Qt_l(x) € Qt_l(F)

*
there exists a Ve € (Rt_l(F)) such that

* - *
Vie € Bie(V_j¢)

for all i € N. -
That is, there exists y € grtpt+1 such that Tt_l(y) €
) i
> .
Verp (R (X),V_540V5¢) and u'(y) 2 bit(at_l(x),y;it) for all i € N.
Therefore, Tt: Rt_l(F) - ft(F) is nonempty valued. From Lemma 4.6, its

graph is a closed subset of F. Therefore, it is upper semicontinuous and

closed valued. This completes the proof. []

What we have shown from Lemma 4.1 to Lémma 4.7 is that if we start with

an upper semicontinuous and closed valued ¢t+ then it is possible to

1’
define a nonempty valued, closed valﬁed and upper semicontinuous .
éorrespondence ¢t such that the histories prescribed'by the correspondence
are such that the players have no incentive to deviate in period t knowing
thatAafter that they will be punished with histories_prescribed by the-

correspondence ¢t+1’ or be rewarded by some history prescribed by the

correspondehce ¥ Hence, $_ can be thought of as selecting those

t+1° t

histories that are supported by equilibrium strategies of the subgames

generated by histories up to period t - 1, by promises of punishments or

rewards by histories prescribed by ¥ We can again define a nonempty

t+1°
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valued, closed valued upper semicontinuous correspondence wt;l

prescribing that plays follow paths dictated by the correspondence wt. We

by

can do this in the same way as in defining wt from ¢t+1.

Hence, we can define a sequence of such‘correspondences. We will use
this kind of construction to show the existence of subgame perfect
equilibrium points.

k .
Le# wt. Qt_l(F) -~ Tt(F) be defined as follows.
k
q"k+v

( (x)) := T

k+v(F)' That is, for any t > k, the correspondence

Rk+v—1

assigns the whole set of feasible paths to histories. This is upper

semicontinuous and closed valued. For t < k,

k, _ k n

Hence, for ény t £ k, the correspondences are defined recursively by using
the construction laid out in Lemmas 4.1 to 4.7.

Now define the correspondence

wo:

vy (F)

Qt_l(F) - Tt

by

0 G Kk
YR (x)) = By v (R 1 (XD

(]

Lemma 4.8: The sequence of correspondences {wt}:=1

are all nonempty valued,

closed valued and upper semicontinuous, and satisfy the condition that

0 n
t+1] n [ni=1 B¢l

0 —
gr[¢t] = [gry it
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Proof: Since each correspondence wi is nonempty-valued and closed-valued,
by the finite intersection property of coﬁpact sets

ik

4,0 ) . . .
wt(ﬂt_l(x)) = nk=1 wt(Rt_l(x)) is nonempty for all histories Qt_l(x).

Hence, the correspondence is nonempty valued. Now,

gr[¢2] = gr[ﬁ:=i¢:]
= [grq};]
= re {Terwl 1000 BT
=g, gr¢t+1] NNy Byl

_ _ © |4 S ¢
e ey Yoy NIy Byl

) 0 n
= ler e, 1IN, Byl
_ Since this graph is closed, the proof is complete. (1]

'We now claim that the set ¢2 is the set of histories that will be
génerated by perfect equilibrium points of the infinite horizon games. We

now state the main result of this section.

Theorem 4.9: Infinite horizon games with simultaneous moves (IHGSM)
satisfying Assumptions 1-5 always have subgame perfect equilibrium points.
The set ¢g is the set of histories that can be generated by the perfect.

equilibrium paths of an IHGSM.

Proof: We will prove the results by showing that for every y € wg} there is
a strategy combination h € H whose equilibrium path is y and which is

subgame perfect. Let
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0
W. (4 (x)) = {T (V)/y € graph ¥,

Re_1(¥) = R (x) and u'(v) = Wy (R (K)))

Hence, W, (2% (x)) is the collection of paths in the subgame generated by

it "t-1

Rt_l(x) which give player i the worst paybff for paths along WZ(Rt_l(x)).
By Lemma 4.8 this is well defined for every feasible history Rt_l(x) up to

time t.

For each t and i, choose zl(Q (x)) € W, (2

e R (x)) which is possible

it'tTt-1
if we invoke the axiom of choice.
Now, define h € H as follows, Let y € wg be a feasible history. Then

for any time t and history‘kt;l(x) up to time t - 1, we define

Vie s¢ _ .
Uit ;f Rt_l(x) = kt_l(y) for all i € N.

[
e J ' ' AP, . .
hi(at_l(x)) : { [z(k_l)(kk_z(x))]it if j € N is the largest integer
such that Xj(k—l) # hj(k—l)(ﬁk—z(x))' where k is the
smallest integer 1 £ k £ t - 1 such that
\

k <s <t -1 satisfying Rs(x) € graph hs‘

Hence, if there are no deviations the strategy is to play along the path
y € w?. If there is a deviation then the strategy is to puniéh one of the
deviators by playing a path in the appropriate set.

We will now show that the strategy n-tuple h € H defined above is a

perfect equilibrium point of the infinite horizon game.
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Let Qt_l(x) be.- any history up to time t - 1. The strategy h € H is

such that on the subgame generated by % (x), the subgame strategy

t-1

h|Sl has a path that is in wg(%t_l(x)). From the definition of

-1 (%)

0 0 R . .
?t(ﬂt_l(x)) any y € grwt such that Qt_l(y) = Qt_l(x) is such that if player

i € N deviates from hi (x) in period t by playing X then his payoff is

2

t-1 t

Wi (B ()Y LX) S b (R (X),y_ ) S ul(y).

Since this hdlds for every subgame and every player i € N we have shown that

h € H as defined is a subgame perfect equilibrium of the infinite horizon

game .

"Since we defined h € H for an arbitrary vy € w?, we have completed the
probf. (1
5. Some Special Classes of Infinite Horizon Games

Infinite horizon games with perfect information as discussed in Harris
i (1985) essentially rule out repeated games, an important ciass of infinite
horizon gémes which haVe'beenAextensively studied in gameAtheory and in game
theoretic applications to economics. Since the class of infinite horizon
games that_wé have studied includes repeated games as a special case, it is

of interest to see how Theorem 4.9 applies to this class of games. Let

e qxd 3
G.:= {X’,u }jeN
be a one-shot game with XJ being finite for each player. Let

G# :=.{#(XJ), gi}jeN be the corresponding one-shot game in which ﬂ(XJ) is
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be a one-shot game with xJ being finite for each player. Let
J J
G := XY}, uv}.
= ) ey
the mixed strategy space of player j € N and ui is -the expected payoff of’

be the corresponding one-shot game in which y(XJ) is

player j'e N. Let
X() := &  u(x))

denote the outcomes of the one-shot game Gﬁ. Then X(u) is a compact convex
set.

: . o j
Define G : {Hj’um}jeN

as the supergame obtained'by repeating Gp an infinite number of time so that

J

n’ e Hj is a sequence of functions {ht

}:=1 such that

bl X1 - )

is a function from the histories up to time t - 1 into the strategy set of

plaver j € N. The payoff function in the supergame G* is defined as:
wx) = 52 st (x)
o * t=1 F7RNN

where x. € X(u) and x ='{x is an outcome path of G~.

«©
t t}t=1

Theorem 5.1: G has a subgame perfect equilibrium point.
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Sinée X(u) is a compact convex set in the usual topology, and the
actions spaces u(Xj) are invariant over time, Assumption 5 is also
satisfied.
j:

Also, since ?u X(u) = R is the expectea payoff function of player

j € N, it is concave over X(u). Since the set of feasible histories is

X := ®¢=1 [X(u)], it follows that ui: X~ - R is concave over histories.
This shows that Assumption 4 holds.
Since all Assumptions 1-5 of Theorem 4.9 hold, the theorem applies and

the proof is complete. =~ []

Whiie it is comforting to know that the theorem applies to a fairly
wide class of infinite horizon ggmes, repeated games are only a special case
of infinite horizon games in which the action spaces do'ﬁot_change over time
or with histories.

There are infinite horizon gameé in economics.which are not repeated
games. We will study a class.of such games. A vérsion of this class of
games appears in Fudenberg and Levine‘(1983). |

We assume there are n firms. Firms j € N has an initial capital stock
given by kg. At.any time t, firm j's feasible investment strategies are
described by [O.Ti], where fi denotes the maximum investment that can occur.

The actual investﬁent that a firm can make is a fun;tion of its capital

stock in the previous period. Hence, its feasible investment possibilities

at time t, given the capital stock KJ at time t is given by

t-1
3 c 0. 797 ion 13. 1o &I <3
[O,;t(Kt_l)] c {O,It]. The function ig [O’Kt-l] - [O’It] is assumed to be
monotone increasing and concave on [O,-J ], where RJ is the maximum

t-1 t-1

capital stock that the firm can accumulate up to time t - 1.
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The amount iJ(KJ ) is the maximum that firm j can invest when KJ is

tht-1 t-1
the capital stock in time t - 1.

We assume that given the capital stocks Ki of the firms in time t,
there is an equilibrium in the product markef with associated net revenues
(i.e., total revenues minus operating costs). Tﬁese net revehues, for
instance, could be the result of a Nash equilibrium in quantities given the
short run costs at time t.. _We are, therefore, implicitly assuming that the

choice of quantities at time t has no effect on the game later. We will

call this the Fudenberg-Tirole-Spence assumption.

Each firm's instantaneous profit in time period t is net revenues minus

the investment in that period, and we will denote it by

nj: ((n,t) - R

t
where
e [0 1J
I(n,t) : ®j=1 [O,It].
. j, .1 n,  _ J, .1 n, .Jj
The payoff function nt(It,...,It) : Vt(Kt""’Kt) 'It’ where
vi(Ki,...,Kz) are the net revenues of the firm in period t.

We will assume that vi(-) is concave. Then, it is not difficult to
check that ﬂi(-) is concave. The payoff function of the firm over the
infinite horizon is then given y

o t i
s (It)

j .=
o) = Leoy S5

where I denotes an entire history of investment by the firms and It is the

investment made in period t. Jj € (0,1) is the discount rate of firm j.
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=

M) = L5, ESmy)

where I denotes an entire history of investment by the firms and It is the

investment made in period t. Jj € (0,1) is the discount rate of firm j.
Since ﬂ%(-) is concave for all t 2 1, we have ﬂi(-) is concave over the

histories of investments.

Theorem 5.2: The infinite horizon game of strategic investment has subgame

perfect equilibria.

Proof: Assumptions 1-3 of Theorem 4.9 is clearly satisfied.

Assumption 4 holds for the payoff functions. Since

% IR 5 RS, B . .
-1 2v=1 I, + Ky, and the 1nvest¢ent function

i%: [O.R%_l] - [O,T%] is assumed to be monotone increasing and concave on

[O.K%_l], Assumption 5 holds.
Since all the assumptions of the theorem hold, it follows that by

Theorem 4.9 we have the result. []1

6. Conclusion

We have given a ;olution to thé problem pos;d in Harris (1985).
However, in the course of the_proof we used the fact that the player. set N
is finite when we used Kakutani's fixed point theorém. Also, the strategy
spaces were assumed to be finite dimensional. It is suggested here that

both assumptions could possibly be relaxed if, instead of Kakutani's fixed
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point result, we use Glickberg's theorem which is the infinite dimensional
counterpart of Kakutani's fixed point result.
The other point that one would like to make is that though we have
applied the result to two classes of infinite horizon games, it is not
djfficult to see that many other interesting classes of infinite horizon

games could fit into our framework.
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