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Abstract

Homogeneous difference equations arise for example in vintage models of
economic growth. In such models these equations are naturally assumed to be
Schur—convex. Absolute stability is established by a method closely related
to the Shrinking Mapping Theorem. The results are applied to a problem of
informationally decentralized decision making in a non-stationary growth

model.



1. Introduction

Higher degree difference equations in one real variable occur in several
branches of dynamic economic theory. In models of economic growth one has
primarily been interested in linear, stationary equations. Samuelson [10]
gave necessary and sufficient conditions for absolute stability of such
equations. Simple sufficient conditions have been studied in connection with
growth models by Domar [2], Beckmann [1], Sydsaether [12] and Sato [11], among
others. Recently, Fujimoto [3] has:- considered the extension of these
sufficient conditions to non-linear equations.

Common to all the works referred to above is their reliance on complex
polynomial theory. For a linear equation, absolute stability can in a simple
manner be expressed in terms of bounds on the roots of the corresponding
characteristic polynomial. However, no matter how elegant and convenient this
approach may be, it has the apparent limitation of being difficult to apply to
non-linear and non-stationary equations. For example, a recent attempt by
Fujimoto [3] to establish absolute stability by linear approximations to a
non—-linear system, has not solved this problem. The tentative conclusion in
[3; p. 189] can be replaced by a much more definite statement about absolute
stability, as I shall show in the following.

Homogeneity, but not linearity, seem to be crucial to absolute
stability. Thus one may wonder whether the standard method relying on
polynomial theory is the only possible way of analyzing absolute stability.

It is clear from Sato [11] and Fujimoto [3] that the weaker property of
relative stability can be established by an elementary argument involving only
the Perron-Frobenius theorem. My main point is that a related, albeit more
complicated, analysis is possible for absolute stability. An important part

of this analysis is to identify a class of functions which naturally rounds



off the linear functions of Sydsaether [12] and Sato [11]. A suitable class
is the one consisting of increasing Schur—convex functions. Recognition of
this class is important for example for establishing comparative static
results which may otherwise be overlooked, see Section 4. It will be seen
that extension to non-linear and to non-stationary equations turn out to be
closely related tasks.

Even if one is interested only in linear equations, the method presented
here is useful as it yields stronger results. Sato [11] invoked a theorem by
Kakeya [6] on all but one of the roots of a complex polynomial to lie in the
unit circle. The present analysis does not draw on [6]; to the contrary,
improved bounds on the roots in [6] can be obtained from Lemma 1 and 2 of this
paper.

In Section 2 the basic framework and key concepts are presented. The
main result on absolute stability is given in Section 3 and the dependence of
the solution on the initial condition is analyzed in Section 4. Section 5
contains some special cases. 1In Section 6 the stability result is used to
establish existence of absolute stability in a non-stationary vintage model of
economic growth with restricted information about future technology. Certain

useful mathematical facts are summarized in the Appendix.

2. Difference Equations and Schur-Convexity

Consider a continuous function f defined on the cone

R: = {(Xl""’xn)lxi >0, i = 1,...,n}. Throughout it will be assumed that f

is homogeneous, f(yx) = yf(x) if v > 0, and uniformly increasing in the sense

that there exists € > 0 such that x, <y ,, 1 = 1,...,n implies
i i

f(x) + e(yi-xi) < £(y) (D



For any initial values in,...,il > 0, the function f determines a sequence

()

e e=1 by the homogeneous difference equation

gt = f(gt_l,...,gt_n), t>n+ 1. (2)

This equation is stationary in the sense that f does not depend on t.

Occasionally, I shall consider a non-stationary equation obtained by replacing

f by £7 in (2).

Equation (2) is relatively stable if there exists numbers 6, A > 0 such

that limt(it/xt—e) = 0. Since f is uniformly increasing, (2) will be
relatively stable in all cases considered in this paper, see Fujimoto [3].
Motivated by applications to economic growth models, I generally assume that
A > 1; for f linear the case A = 1 will also be studied. Results for A < 1
can be obtained by similar techniques as the one employed here although I
shall not further discuss this issue. The number A - 1 is called the

(internal) rate of return of f.

Define the normalized sequence (Ct)j = (gt/xt):. Relative stability

means that litht = 0, Call equation (2) strongly stable if for some I > A
lim (5 ~0)u" = 0 (3)
M AGmOH = 0

In the literature one has considered the formally weaker requirement: if (3)

holds for p = A, then (2) is absolutely stable, [3], [11], [12]. Finally,

call equation (2) weakly absolutely stable if

(ct—e)xt is bounded in t. . (4)



If £ is linear, then strong, absolute and weakly absolute stability are all
equivalent but that is not the case in general.

The function f on Rz is defined by %(x) = f(xl/X,...,xn/Xn). Then the
mapping F given by F(x) = (F(X)’X1’°'°’Xn—l) is associated with (2). In fact,

t t
for t > n + 1 let the n—vectors x and z be defined as

t t
X0 = (B _jseeesB )y 2= (B eensl )

Equation (2) can now be written

t+l1 t
z =F(z), t>n+ 1. (5)

Relative stability means that limtzt = Oe, where e = (l,...,1). Strong
stability requires this convergence to be of a rate which exceeds A - 1.
Therefore, it seems natural to look for a notion of distance between vectors
in subsets of Rz such that F is distance decreasing over these subsets at a
rate not less than A - 1. 1In order to obtain a simple condition for this, the
function f will be assumed to have a particular order preserving property:
Schur-convexity.

Thus the crucial assumption implying strong stability (or weakly absolute

stability) is that f be Schur-convex (S—convex) over the set

D= {xlx1 ? vee P X > 0}. There are several characterizations of S-
convexity. First, if f has a gradient (fl""’fn) on the interior of D, then

f is S—convex and uniformly increasing (see (1)) if for some € > 0

fl(x) Peee fn(x) > & X interior to D. (6)



This condition is a variant of the Schur-Ostrowski theorem. Secondly, f is S-
convex on D if whenever x is interior to D and & > 0 is sufficiently small,

then

f(xX) 2 £(X_ ,00.,% , X +8, x. =8, x yeeesX ) 7)
1 k n

k-1 k+1

If f is S-convex, then (2) is called a S-convex homogeneous difference

equation. Conditions (6) and (7) as well as the class of S-convex functions
are comprehensively discussed and reviewed by Marshall and Olkin [8]. 1In the
Appendix a third condition for S-convexity will be given.

If £ is linear with gradient (al,...,an) then (6) means that

O]
Vv

eee2a >0 (8)

Thus Sydsaether [12] and Sato [11] have, in effect, studied linear S-convex
difference equations and proved that they are strongly stable. These results
can be generalized to non-linear and non-stationary equations. Rather than
using complex polynomial theory as in [12}, [11], I shall pursue an entirely
different course. Stability will essentially be a consequence of distance
decreasingness of F in (5).

Note that S-convexity of f over RZ is not required. In fact, if f is
linear with gradient (al,...,an) and S—-convex over all of Rz, then
a, = ees = an > 0, see Marshall and 0Olkin [8]. One may wonder whether
ordinary convexity (i.e., in the sense of Jensen) or concavity of f are not
assumed. However, convexity or concavity of f appear to be quite unrelated to

the stability of (2). This can be illustrated by the following examples.



w w
Consider a finite set Q and (al,...,an) satisfying (8) for all w € Q. Then

the functions

gl(x) = minwxia?xi, gz(x) = maxwiia?xi (9)
as well as gl + g2 are S-convex on D, see Marshall and Olkin [8; Ch. 3Blcl].
Equation (2) will be strongly stable for f = gl,gz,gl + gz, see Lemma 3

below. Since gl is concave, g2 is convex and gl + g2 may be neither convex
nor concave, there does not seem reason to believe that these properties are
crucial for stability.

As a further non-linear example consider the quadratic homogeneous

function f£(x) = ]xQx|l/2 where Q = (qij) is an nxXn symmetric matrix and
Xk (q;5; = 1 ) >0, k=1,eee,0, i = 1,40.,n-1
i=1"%43 7 Y41, ’ seecols seves
(10)
k
Zj=lqnj > 0.

Then f is S-convex and uniformly increasing over D, [8; Ch. 3H4b], see also
(6). Condition (10) is in no particular way related to the definiteness

properties of Q. Thus f will generally be neither convex nor concave.
3. Stability
It is useful first to analyze a linear f given by (ai) satisfying (8).

Then the mapping F is linear; let A be the associated nxn matrix. For example

if n = 4, then



2 3 4
al/h az/X aB/K a4/h
A= 1 0 0 0 (11
0 1 0 0
0 0 1 0

. . t+l t . .
In this case (5) can be written z = Az . Note that A is non-negative and
have right eigen-vector e, Ae = e. Thus the dominant root of A is one. It is

readily verified that A has a unique left eigen-vector

p = (pl"",pn), P = pA, Where

=70 ant, k=1,.00 0. (12)

P = Lix®y

Since p = pA, F leaves invariant the set Z = {z € R: pz = pe}. As
PraceesP, > 0, this means that MAxN < lxl where !*l denotes the norm

Ixll = 2:=1]xi|pi, x € B'. Due to (8), if one takes the restriction of F to
x, y €2, v=Xx-1y, the inequality lAvl < lvll can be considerably improved.

For p > 0 define the (p-) auxiliary numbers al,...,a by

G = Py T Pps k=1,e0e,n — I. (13)
The sign of these numbers turns out to be particularly important.

n
Lemma l. Given the matrix A as above and a vector v € B such that
pv = 0. If all p-auxiliary numbers are non-positive, al,...,a 1 < 0, then
-

LIAVE < Byl

Proof: If pv = 0, then



n
+oo- = - +.oo+
u(al/k)v1 + u(an/k )vn u(pzv1 P Vi1

Thus

1 Avl - teuut - -
wiav | Gepy P )V, (e P Vo1 T P

Ip )

+ p.(lvllp2 +eoot |vn_1 N

(|Vl|pl +ooot Ivnlpn) + vl

N

ol + zili(°k+|°k|)lpk| = Iy,

since al,...,a < 0, q.e.d.

n-1
Lemma 2. If (a.) satisfies (8) and p < A + an/xn(l - (a, /) - (an/x“)),

then U ERRER-N < 0.

Proof: Using (12) one has for k = 1,...,n = 2, that

% T %y T (“')‘)akﬂ/)‘k+1 + (ak+1—ak)/kk' (14)

Note that an—l = —an/kn < 0. It follows from (8) and (14) that

= - +toeot - +
% (ak ak+1) (an—Z an-l) an—l

kk+1

+ a . (15)

< (uA)(ay, *oatoa /A -



If p < A, then clearly ak < 0. If p > A then al € 0 implies a2""’ah—1 < 0,
by (15). Furthermore, (15) implies that al < 0 if
(p—k)(l - (al/k) - (an/kn)) < an/kn. _ (16)

In fact, (16) constitutes the upper bound on p stated in the lemma, q.e.d.

The assumption of f being linear will now be relaxed to piecewise

linearity. This concept is discussed in the Appendix.

Lemma 3. Suppose f is piecewise linear and S—~convex over D. Then

equation (2) is strongly stable.

Proof: Since A > 1 one can assume that f is piecewise linear over a
finite number of cones all containing the ray generated by (hn,...,h), which
is interior to D. Thus on some cone of the subdivision containing'zt, f
equals a linear function ft with gradient (ai) satisfying (8). Let At be the
matrix associated with (a;), see (11). Note that zt+l = Atzt and Ate = e for

t
all t. Let p be the left-eigenvector of At’ see (12).

Due to Lemma 1 and 2 one can find p > A such that for all t > n + 1,

n” t n t
zi=1lct+1_i - elpi < (l/u)zi=1lct—i - elpi. (17)

Define Y, = ,Ct-elut. Rearranging (17) gives

n t
- < 0. 18
zi=1 (Vpggog = YeylPg €0 (18)
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t t
From (12) it follows that every p € D. Thus every p 1is a positive

combination of the following n vectors

h i
Ji=18 » h=1l,..en (19)
where el denotes unit wvector i of Rn. Consequently, for every t > n + 1 there

exists kt € {1,...,n} such that

k

t
- < -
121 Veg1og 7 Yep) € 0 (20)

Otherwise, (18) could not hold. By (20) it follows that Yt < Yt— thus

L N ] > .
Y, < max{yn, ,Yl}, t>n+ 1 (21)
This proves that limtICt - GIBt = (0 if 8 < p, q.e.d.

The proof of Lemma 3 is simpler if f is linear. 1In that case pt = p does
not depend on t hence the desired convergence follows immediately from (17).
Indeed, (17) means that Hzt+1H < (l/u)Hth where I+l is generated by p. Thus
strong stability for a linear S-convex difference equation can be derived as a
consequence of the Shrinking Mapping Theorem. The main result of this paper

is the following.

Theorem 1. Suppose f is S—convex over D. Then the equation (2) is
weakly absolutely stable. If f is continuously differentiable, then (2) is

strongly stable.
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Proof: The function f can be approximated by a piecewise linear S—convex
function f', see the Appendix. Let (Cé)i be the solution sequence for f'.
Then boundedness in (21) holds uniformly over all f' in a neighborhood of f.
Thus |CE - e|xt is upper bounded, uniformly over f'. Since the solution
sequence (Ct)i belongs to the pointwise closure of the set of sequences
(Cé)? it must be the case that |Ct - 9|Xt is bounded in t. If f is

continuously differentiable this conclusion can be improved to strong

stability, but I shall not discuss the details here q.e.d.

In growth theory, see Section 6, one is interested in the non-stationary

equation

t
Feoot ani -0’ t>n+1 (22)
By the proof of Lemma 3 one has the following:

t t
Corollary 1. Suppose in (22) that a Zeeed a_ > € > 0 and that for some
t
A1, (ai) has rate of return A - 1, for all t > n + 1. Then equation (22)

is strongly stable.

4. Comparative Statics
The solution (gt)i of (2) is described by two parameters 8 and A in the
t . t
sense that &t = On + P where llmtp = 0. Of course A does not depend on the
initial vector x = (&n,...,il) but so does 6. It is easy to see that O is
increasing in every &i. The problem then arises what can be said about 6(x)

and 6(x') for 22=1§i - &i = 0. For example, it is tempting to suggest that if
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x € D, zigi = 1, then
8(1/n,eee,1/n) € B(x) € 8(1,0,44.,0) (23)

Actually, as f is S—-convex one can prove, using (7), that for any t > n + 1,
ét and Ct are S—convex functions of the initial vector x € D. This fact
reflects a convenient feature of S—-convexity: 1its preservation under certain
compositions of functions. Consequently the limit 6 = limtl;t must be S-convex
over D, see Marshall and Olkin [8; Ch. 3C].

Motivated by applications to growth theory, see Section 6, call x € D of

smaller aggregate age than x' € D if

Lio8: > LigEls k= 1,eeu,n (24)
By S-convexity, if x has smaller age than x' in the sense of (24), then
8(x) > 6(x'"). 1In particular, (23) follows from (24) and S—convexity of 8; see
the Appendix.

Finally, if f = (ai) is linear then © is a linear function of én,---,ilo
Thus there exist b;,...,b such that o = blgn tooot bnin- Due to S—convexity

1

over D, it follows that b1 Zeeo2 bn > 0.

5. Special Cases

The technique employed here makes it possible to assert at what rate the
solution of (2) converges. 1In many cases the rate of convergence will be
considerably larger than A - 1. This is illustrated by two examples from
growth theory.

In models of "radioactive decay" one encounters the geometric equation
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n
B, = B(OE,_| +eeet 87, ) (25)

where 0 < 6§ < 1, B(§ +...+ 6n) > 1. By computing the p-auxiliary numbers, see

(12), (13), one gets the following upper bound on u,

-2
b1+ (A8)(1-6/M)/(1 = (5/M)" ), (26)
meaning that if p satisfies (26), then Tseees® o € 0., If n is large the

bound in (26) is close to A/S.

If in (25) one takes B > 1/n, § = 1, then one obtains the equation
considered by Domar [2]. The bound of Lemma 2 yields (n >3)

w < A+ g(ATQ-B/n - s/x“))"1 (27)

In particular, if B = 1/n, then we have the arithmetic equation

g, = (I/m)(E, | +eet B ) (28)

n

Inéquality (27) gives p € 1 + (n—2)—l. Thus if (gt) solves (28), then for
some 6
1m |z -8 (D" - o. (29)
t'7t n-2
Curiously, despite the simple structure of the arithmetic equation, it does

not seem possible to give a simple direct proof of (29), essentially because

0 is not explicitly known.
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6. Stable Growth in a Non—-Stationary Economy

The vintage model of economic growth due to Johansen [4,5] leads to the
study of S—convex homogeneous difference equations. In these models
S—-convexity means that one unit of capital of vintage i is not less productive
than one unit of capital of vintage i + 1l; productivity of a given capital
stock declines over time. This interpretation is clear from (7).

I consider a non-stationary variant of the one-sector vintage model in
[5]. Denote by nt total consumption and by Et total investments in period
t. Let az, i =1,.0.,n be the productivity of capital of vintage i in period
t. Consequently (Et)j and (nt)T are governed by the non-stationary equation
St T ZIil=1a§£t:—i’ (30)
where (az) satisfies (8).

At the beginning of each period the planners of that period determines
the investment ratio Bt, defined by Et = Bt(£t+nt). Thus

& = Bt:zril=1a§£t—i (31)

If (az) does not depend on t, then choosing Bt =8 will lead to a strongly
stable development of both consumption and investment. In the non-stationary
case one can still obtain strong stability, for example of investments. Such
a goal can be achieved as follows. The planner at the initial period knows
the future in the following limited sense. There exists A* > 1 such that the
rate of return for all (az) is not less than A, — 1 and the initial planner is

assumed to know A*. Therefore if Bt is chosen such that
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B, = [(ai/x*) +out (a;/)\:)]_l, (32)

then Bt € [0,1] is a feasible choice of investment ratio. The decision rule
is the following. The planner at period t chooses Bt according to (32)
meaning that every (Btaz) has internal rate of return A, — l. Thus by
Corollary 1 the solution of (31) will be strongly stable and grow at the
rate A, - l. Note that determination of (Bt)j is partially decentralized.
The planner at period t need know X* as well as the current capital
coefficients (az). However, no further information about technology and
actions in successive periods is required.

Alternatively (Bt)j can be determined such that consumption (nt)T becomes
strongly stable. 1In general, strong stability of both consumption and
investment are incompatible goals except if the model is stationary.

One may think of the above planner's decision rule as an implementation
of decéﬁtralized decision making in a team (see Marschak and Radner [7]). The
team consists of all the planners among which the initial one plays a
particular role. The goal of the team is that of minimizing the occurence of
business cycles meaning that investments should grow at a rate as constant as
possible. The term "team” may be justified by the fact that intergenerational
conflicts of interest are not given any explicit treatment. On the other
hand, all teams members, even the initial planner, have very limited
information. Note that the model may turn out to be stationary ex post, but
that fact will not be useful to any planner ex ante, given the present
limitations on information. 1In fact, if one assumes stationarity and let some
central planning board choose a constant investment rate, then, of course,

strong stability will be achieved. However, such a procedure requires
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extraneous information as the planning board must know the technology for all

future periods.

7. Conclusion

The asymptotic properties of higher degree linear difference equations
traditionally has been analysed by complex, polynomial theory. Introduction
of an alternative approach, not involving complex numbers, leads to more
general asymptotic results. This has been demonstrated for relative stability
by Sato [11] and Fujimoto [3] and the present paper contains a method suitable
for absolute stability.

Here, only asymptotic properties have been studied. If one is interested
primarily in the solution within a finite number of periods, then one cannot
completely dispense with the polynomial approach. Thus the method presented
here is highly relevant for vintage models of economic growth but it is
probably of less interest to for example the familiar multiplier-accelerator
model due to Samuelson. Nevertheless, the present method has several
advantages. As it has been shown above, it allows extension to non-linear and
non-stationary equations and it makes clear the crucial assumption of S-
convexity. Finally, extensions to difference equations of several real
variables seem possible and results for such equations would be of interest to

multi-sectoral growth models.
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Appendix

1t K ={z¢e 2 |]"

i=1%1 > 0, k = 1,.e0.,n}, then f is increasing S—convex

over D if

X, X + z € D, z € K implies f(x) € f(x+z) (A.1)

see [8; Ch. 14C]. For a given simplexial subdivision of {x € DIE:=1X1 = 1},
define the piecewise linear approximation g of f by g(x) = 22=16if(vi)
whenever x = 22=161Vi’ 6i > 0 and vl,...,vn generate a simplex of the
subdivision. Since f is homogeneous, one can scale the Vi such that

£(vh) mee= £GV™) = 1. (4.2)

1
By (A.1), (A.2) and (1) there exists a vector q such that qv =...= qvn >0

and qz > 0 if z € K. Thus if x = 22=151V1 and x + z = 2?=191Vi’ z € K,

then f{x+z) - f(x) = 2?=19i - 6i, by (A.2). Furthermore, 492 > O thus

2:=l(ei—6i)qvl > 0 i.e. f(x+z) > £(x). The following lemma has been proven

Lemma A.l. If f is positive, homogeneous and increasing S—-convex over D,

then any piecewise linear approximation g of f has these properties as well.
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