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THE VALUE OF INFORMATION IN A STRATEGIC CONFLICT
by

Morton I. Kamien, Yair Tauman and Shmuel Zamir

Abstract

We define the value of information as the profit that can be realized
by its sole holder when facing the individuais involved in a strategic
conflict affected by the information he possesses. The key requirement
implied by this definition of the value of information is that the
information holder only uses modes of disclosure which induce unambiguous
value to each of the players concerned (i.e., the potential buyers). We
analyze this problem in two stages:

First, we ask: What changes the information holder can induce in the
game? We capture this by the notion of the inducible set. This is the set
of payoff vectors each of which is the unique Nash equilibrium payoff in a
game that can be induced by the information holder via an appropriate
signalling strategy. These signalling strategies are more sophisticated
than simply "disclosing" or "not disclosing” the information. We
characterize the inducible set of any finite two person zero-sum game and
demonstrate this concept for finite non-zero sum games.

The next guestion is: What is the profit that can be realized by the
information holder using his power to change the game? 1In other words: How
and for how much can he sell his signals? Here we let him design a game in
which he is a leader asking money for his signals. This game is so designed
that it is a dominant strategy for each player to pay what he is asked for.
The value of information is defined to be the maximum payoff the information
holder can get by such mechanisms. We prove that if the information holder
can make binding commitments, the value of information is the difference
between the players' (excluding himself) largest collective payoff and the
sum of their individually lowest possible payoffs in the inducible set.




THE VALUE OF INFORMATION IN A
STRATEGIC CONFLICT
by

Morton I. Kamien, Yair Tauman, and Shmuel Zamir

Introduction

The presence of uncertainty imparts value to information. In a
decision theoretic framework the value of information equals the increment
in expected utility an individual can realize by possessing it (see
Hirshliefer and Riley, 1979). This value of information is the most an
individual would be willing to pnay to acduire it. In determining the value
of information the individual does not, in the decision theoretic
framework, explicitly consider how the actions of others will affect it nor
what information others possess, Neither feature remains valid in a
general conflict situation under uncertainty involving more than one
decision maker, namely a game.

The question we address is: What is an appropriate definition of the
"value of information" in an extensive form game? Intuitively, such a
value has to measure the profit a sole holder of information can realize
facing the individuals involved in the conflict who are affected by the
information he possesses. Cur approach to defining the value of
information is the following: given an extensive form game G and an
outsider possessing information relevant to it, one defines a suitable
{"natural") game, G*, in which the information holder is one of the
players. We define the value of information as the maximum payoff its
holder can achieve in the game G*. By that we mean that it will be his

*
payoff in a unique equilibrium of an appropriately designed game G
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We will show that the vaiue of information equals the difference
between the players', excluding the information holder, collectively
largest payoff and the sum of their individually lowest payoffs. The modes
of sale of information employed by the information holder to obtain this
value are also indicated.

There is a vast literature dealing with the value of information both
in economics and game theory. We refer to only a small subset of it. The
relationship between the value of information to its possessor and the
number of others having the information was analyzed by Hirshliefer (1971)
in the context of the return to inventive activity, see also Marshall
(1974) and Novos and Waldman (1982). A survey of the role of information
in market transactions is provided by Rothschild (1973). Ponssard (1976,
1977) analyzed the implications of differences in information between
duopvolistic firms, while Sakai (1985) has also included the effects of
these differences on consumers. The incentives for information sharing
among oligopolistic firms have been studied by Novshek and Sonnenschein
(1982), Gal-Or (1985), and Li (1985) among others. Green and Stokey (1981)
studied the value of information in the context of the principal-agent
problem. Allen (1986) studied the value of information to consumers in a
general equilibrium framework. Levine and Ponssard (1977) compared the
values of public, private, and secret information to the players involved
in a game of incomplete information. However, they did not consider the
strategic behavior of the owner of information in assessing the values of
the different types of information. Analyses of the value of information
when its owner behaves strategically have been conducted by Kamien and

Tauman (1984, 1986), and Katz and Shapiro (1985, 1986) in the context of
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patent licensing, and by Admati and Pfleiderer (1986a,b), in the context of
stock market information. Guth (1984) and Muto (1986) analyze the
dissemination of information regarding a superior technology as it is
resold by its initial purchasers.

In the next section we analyze the value of information in terms of an
example involving two players engaged in an extensive form game. Our
analysis is restricted to the case when the only options available to the
information owner are: sell complete information to both, neither, or one
of them. In the subsequent section we take up the general value of
information when there are any number of potential buyers of information.
We then turn to situations in which its owner may sell partial as well as
complete information. A section dealing with the value of information in
two-person, zero-sum games follows. The final section contains a summary

of results and indications for further extensions.

1. An Example

Suppose two farmers have to decide simultaneously which one of two
crops to plant at the beginning of the growing season, one of which is
suitable for a rainy or wet growing season, and the other for a dry season.
For simplicity we rule out the possibility of their planting some of each
crop. They are uncertain whether the season will be wet or dry. However,
they know the probability distribution over these two events. If they both
plant the wet crop and the season is wet they will be involved in a duopoly
situation with a homogeneous product, the equilibrium of which will
determine their respective payoffs. The same will happen if they both

plant the dry crop and the season is dry. However, if they plant different
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crops, the one whose crop matches the realized season will obtain a

monopoiy profit while the other will be completely wiped out. Obviously,

if they both plant the wrong crop they will both be wiped out. Let us
suppose further thai the probability of each of the seasons is the same.

The situation confronting the farmers can be depicted by the following

figure:

NATURE

w d
W 2,2 5,0 i w i 0,0 0,15 i
d i 0,5 0,0 : d 15,0 6,6

Figure i depicts the fact thal nature chooses either a wet season, W,
or a dry season, D, each with probability .3. If nature chooses wet, the
farmers will be engaged in the lefi game G_.; otherwise they will be engaged
in the right game GD' Each game is nonzero sum and there is symmetry

between the two games in the sense that it is most profitable to be the

exciusive seller of the crop suited to the realized season. However, the

dry crop is three times as profitable as the wet crop. (We employ this
assumption to avoid the multiplicity of Nash equilibria that occur when the

corps are equally profitable. Later we show how to deal with multiple
equilibria situations.) The strategies available to each farmer are to
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piant the wet crop, w, or the dry crop, d. We assume that they must choose
their crops simultaneously. The entries in the matrices represent the
payoffs to each when the respective strategies are played. The uncertainty
faced by the farmers is which game will be played.
In the absence of information to either farmer, they would each regard

their expected payoffs to be the average of the two possible games, namely,

Player 2
w d
w | 1,1 2.5,7.5 |
Player 1 : :
i |
d | 7.5,2.5 3.3 i

In this game there is a unique Nash equilibrium yielding the expected
payoff (3,3).

If both plavers were informed of which season would be realized, each
would plant the crop that suits the season as these are dominant strategies
in the respective games. Their expected pavoff is (4,4). It follows that
both players would prefer to be informed for they then both gain one over
their payoffs when they are uninformed.

If one of the players, say the row player, is informed, and if this
fact is common knowledge, he will choose to plant the crop that matches the
forthcoming season, as these are his respective doﬁinant strategies in each
game. The column player, who is uninformed, but who knows that the row
player is informed, can choose either the pure strategy w, yielding an

expected payoff (8.5, 1), or d, vielding an expected payoff (5.5, 3). (He
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cannot take advantage of his knowledge that the row player is informed by
postponing his choice of a crop until his rival has chosen, for we have
assumed that they must choose simultaneously.) Therefore, he will choose d
and the resulting expected payoff will be (5.5, 3)
The expected Nash equilibrium payoffs to each player, when they are
both informed, both uninformed, and only one is informed, can be summarized

in the following I-U matrix:

Player 2

Plaver 1

where T denotes informed and U uninformed. It is clear from this matrix
that it is advantageous to be informed when the rival is informed., but even
more when the rival is uninformed. However, there is no "free lunch" and
if a player wants to get information, he has to pay for it. The
interaction of the players with the information holder, who is to become an
active player in a bigger game led by him, occurs here.

Let us suppose now that there is a sole weather forecaster who is
completely accurate and who knows the situation faced by the two farmers as
represented by the two games. How much can the forecaster realize for his
information and what mode of sale should he employ? One alternative is for
him to set a pbrice of 1 - € for the information. The farmers are now

confronted with a situation that can be represented by the following
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matrix, where the entries represent their net payoffs

Player 2
Pay Do Not Pay

Pay ! 3+¢, 3+¢ 4.5 + €, 3 i
i l

| j

Player 1 ! j
! !

| I

Do Not Pay ! 3, 4.5 + ¢ 3,3 !

The dominant Nash equilibrium strategies in this matrix are for both
players to pay and become informed, and realize the net payoff

(3 + €, 3+ ¢). The weather forecaster realizes a total pavoff of almost
2, by seiling the information at the price 1 - €.

Alternatively, the seller of information can auction it exclusively to
the highest bidder with the proviso that the winner will be selected at
random in the event of a tie. It is readily seen that the only Nash
equilibrium of such an auction is for each player to bid 2.5. The winner
is chosen at random and both he and the loser of the auction realize net
payoffs of 3. The weather forecaster realizes a payoff of 2.5 under this
alternative and therefore prefers it to the fixed price.

Remark

(1) It is important to notice that the information holder in this
situation is a Stackelberg leader in a very strong sense: he can set the
rules of the game he wants to play. He can make credible commitments since

he may offer and sign a contract to be supervised and implemented by the

authorities (attorneys, courts, police, etc.). In our example, for
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instance, he prefers and therefore implements the auction game rather than
the fixed price game since it yields him an equilibrium payoff of 2.5,
instead of almost 2 in the fixed price game.

This example illustrates that the problem of assessing the value of
information in a strategic conflict involves two stages:

(a) Given a strategic conflict, what changes in the conflict
situation can be induced when partial or full information is disclosed to
the players by the information holder? 1In the above example these changes
are summarized by the I-U matrix.

(b) What is the revenue that an outside information holder can
extract from his ability to induce changes in the conflict situation by
various disclosures of information? This involves determining the optimal
mode of sale of the information.

We now turn to a general model involving an information holder and n
potential buvers of information in which we formalize and study stages (a)

and (b).

2. The Value of Information

In this section we discuss and provide the answer to stage (b).

The Model

We consider an n-person game G in extensive form, in which the set of
players is N = {1,...,n}. Player H € N (agent, planner, expert, etc.),
also called the information holder, has certain information that may be
relevant to the plavers in G. More precisely player H has a set A of

feasible actions such that any action a € A induces a game, Ga’ with the
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same set of players N. We may think of a as a particuliar disclosure

activity by player H to some (or all) of the players in N.

Definition 1: Let x € R". wWe say that x is inducible if there is an
action a € A such that the game Ga has a unigque Nash equilibrium payoff x.
The set X of all inducible outcomes is called the inducible set of (G,A).
A Special Case

The discussion in the previous section was confined to the special
case:

(i) N = {1,2}

(ii) G has one chance move that determines a state of nature. The
probability distribution of this move is known but the resulting state is
unknown to the plavers.

(iii) Player H knows the state of nature chosen and his feasible
action set is A = {(I,I), (I,U), (U,I}, (U,U)}, with the natural
interpretation namely: (I,U) is the action of informing player 1, not
informing player 2, and making it common knowledge. Other elements of A
are interpreted similarly.

If G is the game described in the above example then the inducible set
X ={(4,4), (5.5,3), (3,5.5), (3,3)}.

The definition of the action set A for a general game G and the
characterization of the inducible set of (G,A) turn out to be the major
focus of this research. This refers to (a) above and is dealt with in
Section 3. In this section we assume that the inducible set X is common

knowledge and define the value of information in terms of X only. For the
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following definitions we fix the set of players N and the inducible set X.

Definition 2: A feasible mechanism M for player H is an (n + 1)-person
game in extensive form with finite length in which the set of players is
N = {1,...,n;H} and the outcomes (at the terminal points) are

(n + 1)-tuples (al,,..,an:x) where & ; i=1,...,n are real numbers and

X € X, so that the following property holds:

(P) Each player i € N has a strategy that guarantees him an outcome

with ai = 0, whatever the other players do.

Interpretation: An outcome (al,...,ah;x) means that each player i pays H
the amount ai, (i = 1,...,n) and player H induces the outcome x. Property
(P) indicates that we consider only mechanisms in which the players in N
pay player H voluntarily as they can aiso choose not to pay without risking

a consequence other than some outcome in X.
Denote by M the set of all feasible mechanisms generated by X.

efinition 3: Given a mechanism M we denote by M* the (n + 1)-person game

which is obtained from M by replacing each outcome (al,...,an;x) by

LX)

n+1
a = (x, - o ,...,Xx_ - O ;A + ... + an) € R where x = (xl,.. n

1 1’ n n 1

Definition 4: We say that player H can guarantee the payoff z if ¥V ¢ > 0,

— 3
3 Me € M such that the game Me has a unique Nash equilibrium point which
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yields player H a payoff of z - € and consists of a dominant strategy for
every player in N.

We now define the main object of this paper:

Definition 5: The value of information to its holder H is v = max{z|player

H can guarantee z}.

Theorem 1: Let X be the inducible set of (G,A). The value of information

to its holder H is given by:

n n
(1) v = sup{ ¥ Xx.|(x ,...,xn) € X} - ¥ inf{xi!xi € pi(X)}

ji=1 11 i=1
where pi(X) is the projection of X on the i-th coordinate.

ES
Proof: Given € > 0 let x € X be such that

n

n *
¥ x. >sup{ ¥ x.|/x € X)} - .5¢
A i . i’
i=1 i=1
For i = 1 n, let 4, = inf{x,i{x. € 0.(X.,)} and let xi = (xi xi) € X
SRR Hy i1% € P18y 17 %n
be such that xi < HyoF €/4n. (Note that we may have x1 = xJ for i # j.)

Consider the following mechanism implemented by player H:

(i) Each player i € N has the option of paying x? - “i - €/2n or not

paying. Let N {i € N|i chooses not to pay}.

1
(ii) If N

1 ¢, i.e., all players pay the fee, player H induces x¥.
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(iii) 1If N1 # ¢ each player i € N \ N1 gets a refund from H of x? -

My and then xk is implemented where

k =min{j eN.| T x' € ¥ x~, vee N}

—

Proposition 1: In the above described mechanism it is a dominant strategy

for each i € N to pay x? ~ My T €/2n.

Proof: Consider a player i € N and any strategy S_; of the players
N_i = N\{i}.

(i) 1If c_i is such that all members of N_i pay, then if i pays, x* is
implemented and his net payoff is K + €/2n. If he does not pay, xi is
implemented and his payoff is xi < My + €/4n. Therefore, it is strictly
better for i to pay.

(ii) If according to c‘i’not all players in N—i pay let

N—i = {j € N_i!j does not pay} and let

k = arg min ( ¥ x%)
jeN .
-i

If player i pays then his net payoff is x? + €/2n. If he does not pay then

his payoff is x? where
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r = arg min (x? + ¥ x?)
JGN~1

So in particular

but by definition

therefore x? < x? < x? + €/2n. Again, it is strictly better for player i
to pay.

Consequently, player H can guarantee v given by (1). To see that
player H cannot guarantee more than v, observe that if (ai,...,an.x) is any

Nash equilibrium of some feasible mechanism then by property (P) we must

have ai < Xy = My i=1,...,n, and therefore
Zalsixi—iulsv
ieN i€eN i€eN

In words, player H cannot guarantee more than v in any Nash equilibrium
(and a fortiori not in one consisting of dominant strategies). This

completes the proof of the theorem. I
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Example 2

Let us illustrate the operation of this mechanism with the following
example. Suppose there are three players engaged in a strategic conflict
and that the set of all inducible payoffs through all the alternative
disclosures of information is X = {(4,4,4), (0,1,1), (2,0,3), (3,3.0)}.
The information holder asks each of them to pay him 4 - €, for his
implementation of the payoff (4,4,4). If one of the plavers alone does not
pay he will implement the point in which that player's payoff is zero, and
refund the other players 4 each. If only two players, say 2 and 3, do not
pay he will implement the point in {(2,0,3), (3,3,0)} in which the total
payoff to 2 and 3 is minimal and refund player 1. (Since it is 3 in both
cases, he chooses (2,0,3)). If none of them pay, all three points in which
they have zero payoffs will be considered and (0,1,1) will be implemented,
being the one with the lowest total payoff. The subgame between the three

players 1, 2 and 3, is described below:

Player 2
Pay Do Not Pay
! |
Pay | €,€,€ 2 +¢, 0, 83+¢ |
Player 1 i 5
Do Not Pay ; 0, 1 +¢, 1 +¢ 0, 1, 1 + ¢ }
|
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Player 2
Pay Do Not Pay
; |
Pay ! 3+¢g, 3+¢,0 2 +¢€, 0, 3 F
Player 1 ; ;
Do Not Pay : 0, 1+¢, 1 6, 1, 1, i
! !

Player 3 Does Not Pay

Here player 1 chooses a row, player 2 chooses a column, and player 3
chooses a matrix. It is readily seen that "pay" is a dominant strategy of

each player,

Remarks :

(2) The leadership of player H and his ability to make commitments is
very crucial here. 1If we think of the mechanism as a regular game in
extensive form then the Nash equilibrium we found is not subgame perfect.
It is a unique and dominant strategy only in the game in which player H has
only one action: to choose a mechanism which is then implemented by a
machine or a referee. Whenever this scenario is not realistic one should
seek a different set-up, for instance a bargaining procedure between H and
the members of N.

(3) In the special case in which the information holder's action set

is
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A= {(I,I),(1,U),(0,1I),(U,U)},

and for which each of these actions leads to a unigue Nash equilibrium, the

value of information is:

(2) v = max{a,., + b,.) —min a,, - min b, ,
o ij A A
i,]j 1,) 1,]
where [a, . ,b..l, i,j = 1,2 is the I-U matrix.
1i'71j
3. General Mechanisms for Information Disclosure

In the previous section we defined and characterized the value of
information to its possessor in terms of the inducible set X only. This
set is derived from the original game G and the set of actions A employed
by the information holder. The action set of our special class consisted
of just four elements ((1,1), (I,U), (U,I), (U,U)}. However, there are
more sophisticated actions (or strategies) that the information holder can
use to disclose part or all of his information to the players of G.
Obviously, the larger the set A the larger the inducible set X and by
Theorem 1, the higher the information holder's profits.

In this section we define a general set of actions available to the
information holder, prove some properties of the inducible set, and provide
examples where we characterize the resulting inducible set X and the
corresponding value of information.

Example 3: Consider the following game G, of our special class:

0
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Chance
///
’/
5 5
4 \
L%t SR
Player 2
L R L R
T | 3, 3 6, 2 i T | -6, -6 -3, -4
f f I j
Player 1 j } ! ]
i i | !
B | 2, 6 4, 4 i B | -4, -3 -2, -2
Figure 2

If player H, knowing which game is actually being plaved, GL or GR’
restricts himself to the actions "inform" and "do not inform," he can
induce the following games:

(I1,1): Informing both players' results in the only Nash equilibrium
expected payoff (.5, .5)

(I,U0): Informing player 1 only. The informed player then uses his

dominant strategies (T in G, and B in GR) leaving the uninformed player

L
with the choice L., with expected payoff (-.5, 0), or R, with expected
payoff (2,0). Any mixture (v, 1-y), 0 £y £1, of L and R by the
uninformed player yields a Nash equilibrium with expected payoffs

(2 - 2.5y, 0). Therefore, in the game induced by informing the row player

only there is a continuum of Nash equilibria with payoffs consisting of the

line segment 7(-.5, 0), (2,0)}. Similarly, the action (U;I) induces a game
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in which each point of the line segment [(0, -.5), (0,2)] is a Nash
equilibrium payoff.
(U,U0): If neither player is informed, they play the original game

which is equivalent to

-1.5, -1.5 1.5, -1

This game has two pure Nash equilibria with payoffs (1.5, -1) and (-1, 1.5)
and a mixed Nash equilibrium in which each player plays the pure strategies
with equal probability, yielding the expected payoff (0,0).

The I-U "matrix" summarizing the outcome of these four actions is

I U
i I
I 1 (.5, .5) [(-.5, 0), (2,0)] i
i |
| |
U | 1(0, -.5), (0,2)] {(1.5, -1), (-1, 1.5), (0,0)} |

What is the inducible set? According to our definition, only the outcome
(.5, .5) is inducible, by (I,I). Any other action leads to a game with a
multiplicity of Nash equilibrium payoffs which makes it impossible to
unambiguously define the payff to the seller of information. What, for
instance, can player H sell the information to player 1 for, if the payoff
plaver 1 may expect as a result can be anything between -.5 and 29

Evidently {(.5, .5)} is a too small and uninteresting inducible set.
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One feels, correctly, that the information holder can do more than just
induce the outcome (.5, .5). Indeed, we will show that there are modes of
information disclosure that enable player H to induce any point in a rather

large set X which contains the convex-hull of all the Nash equilibrium

payoffs described in the T-U matrix above, and more.
Proposition 2: The information holder can induce any payoff in the set X

which is the open convex hull of {(2,0), (0,2), (1.5, -1), (-1, 1.5),

(-1, 0), (0, -1)}.

(-2, 5)F

-5, €

0 ©,-2)

Figure 3

In figure 3 the polyhedron ABCDEFG is the set of all possible outcomes
(i.e., payoffs for 1 and 2) which are of the form x = .SxL + .5xR where XL

is a point in the convex hull of {(3,3), (6,2), (2,6), (4,4)} and Xp is a
point in the convex hull of {(-6, -6), (-3, -4), (-4, -8), (-2, -2)}. The
polyhedron ABCRSG is the convex hull of all Nash equilibrium payoffs in the

I-U matrix and strictly larger than it, is the shaded open polyhedron

ABCMNG, each point of which is inducible by the information holider.
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Provosition 2 will be demonstrated later, after the general model for
information disclosure is exhibited and some results about the inducible
set are proved. At this point let us illustrate the idea by showing how a

payoff arbitrarily close to (.75, .75) can be induced.

A _strategy inducing almost (.75, .75)

Given € > 0, player H announces the following strategy: with
probability .5 + € he will disclose the true game to both of them by

signaling  if the game is G_ and r if the game is G With probability

L R’

.5 - € he will signal r to them regardless of the true state of nature.

The posteriors after receiving the signal are the same for both

players as they receive identical signals and by Bayes' rule these are:

P(GL[Q) = 1 (when receiving Q both know that the game is GL)

]

.5(.5 - ¢)/.5(1.5 ~ ¢g) < 1/3

T
1

= P(GLIr)

Clearly when receiving @, (T,L) will be played yielding (3,3). When

receiving r the conditional expected payoffs are given by:

L R

T 9p - 6, 9p - 6 9p - 3, 6p - 4

(3) G(p) = G, + {1 - p)GR =

L B 6p - 4, 9p - 3 6p - 2, 6p — 2

where p = pr. Since pr < 1/3, B and R are dominant strategies. We

conclude that the only Nash equilibrium in the induced game is for player 1
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to play T if ¢ and B if r and for player 2 is to play L if @ and R if r.
The resulting Nash equilibrium pavoff is P(%)(3,3}) + P(r)(Gpr -2, 6pr - 2)
= .5(.5 + €)(3,3) + .5(1.5 - e)(epr -2, 6pr -2) = (.75 - .5¢, .75 - .b5¢),
where P(%) and P(r) are the probabilities of receiving ¢ and r,
respectively. Note that by Proposition 2 below (.75 - .5¢, .75 - .5€) can
be induced for € = 0. However, this involves a different signalling
strategy than the one described above.

We proceed now to formalize a general framework for information

disclosure.

Signalling Strategies

Let G0 be an n-person game in extensive form in which the set of

players is N = {1,...,n},. Let H € N be the information holder.

Definition 6: The information of player H is a partition E of the set of
nodes in G0 which are neither its origin nor a terminal point of it.

Note that this definition provides considerable generality in the
information that player H may have: information about chance moves, about
players' moves and any combination of the two. E may be a refinement of
the information sets of each of the players but it is not necessarily so.
An information set e,K € E of player H may intersect two information sets of

a certain player i:



This means that playver H does not know some information known to player 1.

Furthermore, € nay intersect two information sets of two players i and j:

AT o\
| "' )
\

\;‘\ e
N

K '/

which means that player H does not know in €y which player's move it is but

still he has some information that may be relevant to one or both of them.

Example 4: The example discussed at the end of the last section, when

described in extensive form is:

Chance
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The information of player H, which is just about the chance move, is the

partition: E = {{a,c,d}, {b,e,f}}

Exampie 53: Consider a sequential variant of the previous example. That is

player 2 moves after observing the move of player i

Chance

Figure 5

Information that player H may hold is, for instance:

(i) E = {{a},{b},{c},{d},{e},{f}}, that is, player H knows both
the outcome of the chance move and the move of player 1.

(ii) E = {{a,c,d}, {b.e,f}}. Player H knows only the outcome of
the chance move.

(iidi) E = {{a,b},{c},{e},{d,f}}. Player H does not know the
outcome of the chance move prior to plaver 1's move, but he
gets to know it if plaver 1 chooses T.

(iv) E = {{a,b},{c,f},{d,e}}. Plaver H only knows whether or not

player 1 "played T in GL or B in GR."
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Definition 7: The signal set of player H is a set S of any alphabet (with

the interpretation that the elements of S are the messages that plaver H

can communicate to each of the players.)

Definition 8: The set of pure strategies of player H is EO = (SN)E and the
set of mixed strategies is £ = n(zo), i.e., the set of all probability
distributions on EO.

Remarks:

{4) The interpretation of a pure strategy is: at each element of his
partition E, player H sends an n-tuple of messages (elements of S) one for
each member of N.

{5) It is easily seen that the maximum number of signals player H may
need is the one which allows him to distinguish between any two elements in
his partition. Therefore [S! need not be larger than !E! where E = E U
{0}, with 0 interpreted as a neutral signal. We may think of SN as an n
duplication of é, one for each player. In particular, if E is finite
{e.g., if the game GO is finite), S may be assumed, without loss of
generality, to be finite and allowing all informative communications that
player H may want to transmit to the players.

{6) One may also define the set of "behavioral strategies" for

player H:

;: = [n(sN)]E,
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that is, in é € i, player H chooses at random an n-tuple of messages, one
for each player, at each of his partition elements. As usual, to any 8 € i
there is a mixed strategy ¢ € £ which is equivalent to it. The other
direction needs more care: since player H is not a player in GO, the
notion of perfect recall is not meaningful here. There is no clear order
in the elements of E. As a matter of fact without imposing additional
structure on the game, the set of hehavioral strategies is too restrictive
and may not be sufficient. As a very simple illusitration consider Example
3: if player H wants to reveal the game with probability 0 < & < 1, and
with probabiiity (1 - o) do nothing, he can do this with a mixed strategy
but not with a behavioral one.

Any strategy o € L of player K modifies the game G0 to another game
with the same set of N players that we denote by GG and call it the game

induced by the strategy g. If I, is a pure strategy then Gc is obtained

0
from GO by refining the information sets o{ each player by the signals he
receives. If g =p 01 + ... + D ck, where aj are pure strategies, then G
Y170 k¢ 0 © a

is the following extensive form ganme:

Chance

The loop in the figure indicates that none of the players distinguishes
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between the same node in G ., and G q unless the signals he receives there
% So
are distinct.

Definition 9: A payoff vector x € R" is inducible by player H in the game

G0 if there exists a ¢ € ¥ such that Go has a unique Nash equilibrium

payoff x. We denote by X = X(G the set of all inducible vector payoffs.

o)

Note that Definition 9 is a version of Definition 1 in which the

action set A = E.

Remark: (7) It is possible that a particular x € X may be inducible by
two different strategies ¢ and ¢'. 1In such a case Gc and Gc' have a unique
Nash equilibrium payoff Xx.

It is natural to assume that player H may also execute lotteries prior

to G0 (for instance to perform a mixed strategy) and to communicate a

message to the players at the end of the lottery (for instance to inform

some of them which vure strategy was chosen). Then we have:
Lemma 1: The set X is convex.

Proof: Let x = X\ X

1% + ... Akxk, where Ai > 0, EAi = 1, and xi € X. Let

Gi € ¥ be such that Xy is the unique Nash equilibrium payoff in Gc . Let o
i
be the strategy in which plaver H chooses (ci)ll.(=1 with probabilities

k

Oy

)

i then announces the chosen Gi to all players and implements it. It

is readily seen GG has a unique Nash equilibrium with payoff x.

An interesting case worth looking at is when in G0 there is a chance

move with k possible outcomes and probability distribution p = (p ,...,pk).
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Assume that player H knows {among other things) the outcome of the chance
move. View p as a parameter of the game and write GO(p), Gc(p), etc.,

where p € A and

) e R|p. 2 0, Ep. = 1}.

4= {(plv-rpk i i

Lemma 2: Consider the game Go(p) where p is a probability vector in A.

Suppose that p = ¥ . kij where pl,...,pk and A = (XA,,...,A are vectors

—J=1 1 k)

in A. Then player H can induce a game which is equivalent to the
following: a chance move determines an element of {pl,...,pk} according to

the probabilities kl,...,k all players are informed of the outcome pl and

K’
then Go(pl) is played.

Proof: This is a quite well-known observation (see Mertens and Zamir,
(1971), Lemma 2, p. 46). However, we provide the rather simple proof for

the sake of completeness. Let 0 = {o ...,ok} the set of outcomes at the

1!
chance move in GO' For each i € {1,...,k} define a probability
distribution Vi = (Vi Yi) ocn O by: Vi = A nj/ i3 =1 k
1,.-., k y- _i jLi piv v.] yor oy M

Consider the following signalling strategy of player H: 1if the true

state is oi perform the lottery 71 and announce the outcome to all plavers.

The probability of announcement o, is: E.p.V% = E.k.pq = A,, and for X, >
J 11 ) 131 J J

0 the conditional probability on O given the anncuncement oj is:

1 ) = i =
Pr(State is oilannouncement oj) inj/k. p

That is, the conditional distribution following announcement oj is pJ. The
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resulting game is therefore:

Chance

///: /

This concludes the proof of the lemma.

Denote now by X(p) the inducible set of GO(p). X can then be viewed
as a set valued function from the k-simplex A to subsets of Rn. The set
X{p) may be empty for some or even for each p € A. Examples (although not
very interesting) are easy to find: it is enough to observe that in a game

of the type discussed in our examples:

playver H has no role if p = 0 or p = 1. Therefore if say GL has more than

one equilibrium payoff we have X{1) = @§. However, a consequence of Lemma 2

is that the set D = {p € AiX(p) # @} is convex. Actually the same argument
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proves a stronger result, namely:

Theorem 2: The graph of the set valued function X(p) defined on D is a

. n
convex set in A x R .

Proof: Let X, € X(pl), X, € X(pz), and p = Apl + (1 - A)pz, for 0 £ X £ 1.

We have to show x = Axl + (1 ~ >\)x2 € X(p). If p1 = p2 the result follows

from Lemma 1, so assume p1 # p2, 0 < X< 1. x1 € X(pl) means that 3 cl € X
s.t. Gc (pl) has a unigue Nash equilibrium payoff Xy Similarly, 3 o, €L
1
s.t. Gc (p2) has a unique Nash equilibrium payoff x2. Let E be the state
2

dependent lottery which exists by Lemma 2 and induces the game:

Chance
/
/
bY 1 -2
7 N
t'/
1 2
/ '
1 2
Go(p7) Gy(p%)

Let o be the strategy of player H consisting of o followed by (61,62).

That is, perform the lottery o announce the outcome 1 or 2 and apply o, or

o] respectively. Finally, this can be written as a signalling strategy

2 b4
{(mixed or behavioral) based on the set {1,2} X §. The resulting game is

eqguivalent to:
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Chance
P 1 -
f'/ “““K
1/ 2
; \\\
1 2
G, (07) G, (0°)
1 2

where it is common knowledge to all players whether 1 or 2 is reached.
Clearly the unigue Nash equilibrium payoff in this game is

Axl + (1 - A)x2 = X. Therefore X € X(p), completing the proof of the

theorem. [
As an application of Theorem 2 let us now prove Proposition 2

concerning the inducible set of the game in Example 3.

Proof of Proposition 2: Let Go(p) be the game starting with a chance

which selects one of the two games G_ and GR with probabilities p and

L

1 - p, respectively. Thus the game under consideration is GO(.5) and

are interested in the inducible set X(.5). The games Go(l) and GO(O)

GI and GR’ respectively. These are ordinary games with Nash equilibri

move

we

are

um

payoffs (3,3) and (-2, -2), respectively, and player H has no role there.

Therefore, we have:

(4) X(0) = {(-2,-2)} and X(1) = {(8,3)}
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Consider now Go(p) and the pure signalling strategy:

61: Qe at GL and rQ at GR

This strategy tells player 1 the true game and provides player 2 no
information (i.e., always ). Since for 1, T is a dominant strategy in G

L

and B is dominant in GR’ playver 2 faces the choice between:

L with payoffs p(3,3) + (1 - p)(-4, -3)

1

(7p - 4, 6p - 3)

and

R with payoffs p(6,2) + (1 - p)(-2, -2) (8p - 2, 4p - 2)
Therefore, for p < .5, the best reply is R, yielding a unique Nash
equilibrium with payoffs (8p - 2, 4p - 2). For p > .5, player 2's best
reply is L, yielding a unique Nash equilibrium with payoffs

(7p - 4, 6p - 3). We conclude:

(5) (8p - 2, 4p - 2) € X(p) for 0 £ p < .5
{(Tp — 4, 6p - 3) € X(p) for .5 < p <1

Notice that (5) implies (4).

Now for 0 < € < .5, .5 = (.5 -¢)/(1 + 2¢}) + 2¢/(1 + 2e}. By (5),

(2 - 8¢, -4¢) € X(.5 - €); (3,3) € X(1). So by Theorem 2, (2

8¢, -4g)/(1

+ 2¢) + 2e(3,3)/(1 + 2¢) € X(.5), i.e., (2 - 2e, 2e)/(1 + 2€) € X(.5).

It

Since € is arbitrarily small this means that the point A (2,0) in
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figure 3 is in X(.5) (the closure of X{.5)). Similarly, switching the
roles of players 1 and 2 we have that (0,2) € X(.5). Although similar use
of Theorem 2 may be employed to vrove that (-1, 0) and (-1, 1.5) are in
i(.S), it may be instructive to exhibit directly signalling strategies

which induce these outcomes in GO(.S).

Inducing (-1 + 1.5¢, Q). Consider the following (behavioral) signalling

strategy by player H:

If GL: (1/3 - €)% + 2erg + (2/3 - e)rr

If GR: (2/3 + €)8Q + (1/3 — €)rr.

Interpretation: If the game is G with probability (1/3 - €) communicate

L’
@ to both players, with probability 2¢ communicate r to player 1 and Q to
player 2, etc.

We claim that the only Nash equilibrium in the game induced by this
strategy is for player 1 to play B if he hears & and play T if r, and for

player 2 to always play L. In fact, the posterior probabilities after

receiving the signals are:

For 1: pg = P(GLIQ) =1/3 - € < 1/83
p,. = P(GLIr) =2/3 +¢ > 2/3

For 2: q, = P(GIiR) = (1/3 + e)/(1 + 2e) > 1/38
qr = P(GLlr) = (2/3 - €)/(1 - 2¢e) > 2/3
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Since it is common Knowledge that, in any event, neither player will know
the true game after the signal, the available moves after the signalling
will still be T,B for 1 and L,R for 2. Each plaver will therefore face an
expected payoff matrix G(p) given by (3), in which p equals his posterior

probability for G Now, since Py < 1/3 and P, > 2/3 it is a dominant

L
strategy for 1 to play B when hearing Q and T when hearing r. For the same
reason it is dominant for 2 to play L when hearing r. Finally, when 2
hears Q then either 1 also heard &, in which case he, 1, plays B and 2's

best response is L (since a. < 1/8) or 1 heard r, which implies that the

game must be GI’ in which case L is again a dominant strategy. This proves

our claim about the unique Nash equilibrium. The corresponding payoff is
.5[(1/3 - g)(2,6) + 2¢(38,3) + (2/3 - €)(3,3) + (2/3 + €)(-4,~-8) + (1/3 -
€)(-6,-6)] = (-1 + 1.5, 0). Since € > Q0 is arbitrarily small we have

shown that (-1, 0) € i(.S) and similarly (0, -1) € X(.5).

Inducing (-1 + 4.5¢, 1.5 - 3¢). With the same notation as before, consider

the following (behavioral) sighalling strategy:

if GL: (1/3 - €)% + 2eg + egr + (2/3 - 2¢)rr

If GR: (2/3 - 2¢)8% + e®s + 2ers + (1/3 -~ g)rr

It is readily verified that the posteriors after receiving the signals
satisfy:

For 1: < 1/8; P, <2/3; p_=1

pQ g
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For 2: dq > 1/3; qa, > 2/3; qq = 0.

A discussion simiiar to the one for the previous case leads to the
conclusion that in the game induced by this strategy there is a unique Nash
equilibrium in which player 1 plays B when receiving Q or r and T when
receiving g, and player 2 plays L when receiving 2 or r and R when
receiving s. The corresvonding payoff is .5[(1 - 3¢)(2,6) + 3e(3,3) +

(1 - 3¢)(-4,-3) + 3¢(-2,-2)] = (-1 + 4.5¢, 1.5 - 3¢), proving that (-1,

1.5) € X(.5) and similarly (1.5, -1) € X(.5). This concludes the proof of
Proposition 2.

Notice that Proposition 2 does not fully determine X(.5) (although we
conjecture that the set we found is in fact the whole of X(.5).) However,

it enable us to conclude:

orollary: The vaiue of information in the game in Example 3 is 4.

Proof: It is clear from figure 3 that no outcome in this game has total
payoff greater than 2. Therefore, by Proposition 1:

sup{x1 + X X € X(.5)} = 2. Next observe that each player can

2:( 1'X2)

guarantee -1 in GO(.S) {by playing B or R, respectively). This implies

€ X(.5), x, 2 -1 and x, 2 -1i, therefore, by Proposition 1:

that v (xl,x 1 5 2

2)
inf{xil(xl,xz) € X(.5)} = -1; i = 1,2. Finally, by Theorem 1,
v=2-(-1) - (-1) = 4.

In the next example, of interest in its own right, we completely

characterize the set X.



35

Example 6: Consider the following two person game, GO' in extensive form:

at stage 0, a black (B) or white (W) card is drawn and placed face down.
Each color is equally likely. At stage 1, player 1 announces a color B or
W. At stage 2, player 2, knowing the color announced by player 1,
announces a color B or W. The following tree describes GO’

Chance

(" \ )
a/ & // \

2
2 /(
AN A \ - v\
(2.2) oY (0,5 (2,2) (2,2) (o.s) 6,0 @2)
Figure 6

That is, if both players announce the same color, then each obtains 2. 1If
they announce different colors then the player who announced the correct
color of the card obtains 5 and the other player obtains 0. The strategic

form of G, is:

0
2

1 [ (B,B) | (B,W) l (W,B) | (W,W) |
| | | | l

B | 2,2 ( 2,2 | 2.5, 2.5 | 2.5, 2.5 |
1 | l l !

l I | I |

W | 2.5, 2.5 | 2,2 | 2.5, 2.5 | 2,2 |

|

where the strategy (B,B) of player 2 means that he plays B regardless of
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player 1's choiée, and (B,W) means that he plays B if player 1 chooses B
and W if player 1 chooses W, etc. Obviously, (W,B) is a (weakly) dominant
strategy for player 2 and the unigue equilibrium payoff is (2.5,>2.5).
That is, the dominant strategy of player 2 is to choose the color not
chosen by player 1.

Suppose next that'a third player, player H, alone knows the color of
the card. He can inform either one or both of the other players about its
actual color. An interesting f?ature of this example is that player 1
becomes worse off if he alone is told, before he makes his move, about the

color of the card. The resulting game is depicted in figure 7.

Chance

VAN 7
/[ \

(3,2)

A

(5,0) (6, (2, 2,2 (,8) (5,0 .» (272)

Figure 7
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Player 1's dominant strategy is to announce the same color as the color of
the drawn card and player 2's best reply strategy is to announce the same
color as announced by player 1. The unique equilibrium payoff is thus
(2,2). This is also the unique Nash equilibrium payoff if both players are
informed. Finally, if only player 2 is %nformed the unique Nash

equilibrium payoff is (1, 3.5). The resulting I-U matrix is

Player 2

2,2 2,2

Player 1

1, 8.5 2.5, 2.5

Furthermore, it can be shown that by using signalling strategies the set X
is the quadrilateral ABCD in Figure 8. (The triangle ACE is the convex

hull of the Nash equilibrium payoffs in the I-U matrix.)
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Consedguently, the value of the information about the color of the drawn

card is 5 -1 - 2 = 2,

Remark: (8) Note that in general X(p) may not be continuous. This is so
because in general the set X{p) is not closed. 1In fact it can be shown,
for instance, that in Example 3 no point on the line segment {(2,0), (0,2)]
can be induced as a unique Nash equilibrium in GO(.S). Thus, to have any

continuity, we have to consider X(p), the closure of X(p).

Lemma 3: Let D be a convex subset of R" and let f be a set valued function
from D into subsets of Rk. Suppose that the graph of f is convex on D X Rk
and that f(x) is a closed subset of RK for each x € D. Then f is

continuous on Int D, the interior of D.

Proof: Lower semicontinuity follows directly from the convexity of the
graph of f. It remains to prove that f is upper semicontinuous on Int D.

Let xO € Int D, Xn - XO’ yn - yo and yn € f(xn). Let us prove that yo €

fix Suppose to the contrary that Yo g f(xo). Since f(xo) is convex and

O)'

closed, by the separation theorem there is a linear functional ¢ on Rk such

that
* o} > ) ty >
(*) (vy) SuPy'ef(xO)¢(y ) 20
Let Zi""’zk+1 be kK + 1 points in D such that x0 € Int Conv (zl,...,zk+1).

Then for each € > 0 there exists an n sufficiently large such that XO can
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be represented as a convex combination of the form

where a,ai >0, a+ Eai =landa=>1 -~ ¢.
Now since the graph of f is convex

: k+1
f(xo) > af(xn) + Yi=1 aif(zi).

L

Thus,

S

. k+1
[ (1] . "
upy'ef(xo)Q(V ) 2 &(y") for each y" € af(x ) + ¥, ; a,f(z,).

By the linearity of ¢ we have

k+1 = -
' T
supylef(xo)¢(y ) 2 ad(y ) + T L a0y, vy, € f(z))
Now fix §i € f(zl) and let C = max{l¢(§i)[§i=1,...,k + 1}. Taking the

limit when n - ®» we obtain

sup )¢(y') 2 ab(y,) - eC 2 (1 - €)d(y
0

yv'ef({x

Since this is true for any £ > 0, we have

d(v') = ¢(y0)
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contradicting (*}).

Corollary: The set valued function X(p) is continuous on Int D.

4. The Value of Information in a two-person zero-sum game.

We devote this section to the special case in which GO is a two-
person, zero-sum game. We will confirm the well-known statement that
information has a vositive value in this case: the best an information
holder can do for one player is to disclose to him all the information he
holds and not to disclose any information to his opponent. The fact the
opponent is aware of this does not matter and no sophisticated signalling
can do better than that.

To state this result formally, let GO be a two-person, Zero-sum game.
Let E = {el,...,em} be the information of playver H. Take S = {0,1,2,...,m}
to be the set of signals and define as before the set ¥ of (mixed)
signalling strategies. For each o € I denote, as usual, by Go the game

induced by o and its value by VG. Let o and c be the (pure) strategies of

player H given by:

c(ei) = (i,0), g(ei) = (0,i), v e, € E,

with the interpretation that according to o: at e, communicate i to player

1 and O {the neutral signal) to plaver 2. Similarly for o.

Theorem 3: v €v_<v,VYoEEL.
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Proof: Let us first introduce some notation. The set T1 is the set of

player 1's nodes in GO' It is partitioned by his information set. Denote

the partition by U, (U, is similarly defined). For two partitions P and P’

1 2

of the same player we write P > P' to indicate that P is a (weak)
refinement of P'.
Given a mixed strategy o € £ of player H with kK pure strategies in its

support, the game Go in extensive form has !Tl}k and [T2]k as the set of

nodes of 1 and 2, respectively. The partitions U1 and U2 of T1 and T2
define (cylindrical) partitions of [lek and [Tz]k, which we will also

denote by U1 and U2, respectively. The strategy c© defines a mapping from

T lk K

(T, to § X 8§ which is E measurable in each component. Any such

1
x [T2_E

mapping defines a partition of [Tl]k which we denote by Pl(c) (and a

partition of [Tzik. which we denote by Pz(c)). Let U1 A P (o)

1

(respectively, U2 A Pz(c)) denote the minimal (in the partial order >)

common refinement of U1 and Pl(c) (respectively, U, and Pz(c)). A pure

2

strategy of 1 in Gc is a mapping from [lek which is (U1 N Pl(c))—

measurable. Similarly for player 2's pure strategies.

Given any ¢ € £, let @ € £ be the mixed strategy of H obtained from o
by replacing all the signals to player 2 by 0 (i.e., no information) and
leaving the signals to 1 unchanged.

Clearly, Pltc) = P1(8) and Pz(c) > P (8) and hence

2

= o ] o~
Uy AP (o) = U, AP (o) and U, A P,(5) > U, A P,(0).

That is, plaver 1 has the same pure strategies set in G, and G_ while

0

player 2 has in G_, a smaller pure strategies set than in GG. Since in
c
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other respects {payoffs function and probability distributions on random

moves ) Gc and G_ are the same, it readily follows that vO v _.
(o]
Modify now o to & by changing any signal to 1, at a certain node, into

i, where ei is the partition eiement in E containing that node. Since the
signaling to 1 in ¢ (and in E) is E-measurable we have Pl(g) > Pl(g), hence

u. A Pl(czr) > U

1 A Pl(g), meaning that 1 has more pure strategies in G_ than

(o)
in G_. As there are no other differences between the two games, we have

1

(o]

v_< v, SO Vc < V.- But é is clearly eguivalent to the pure strategy o,

(o) g

so we conclude that Vc £ v . The ineguality v_ < Vc is proved in the same
(o]

way, concluding the proof of the theorem. [

— 1Q

Corollary: The inducible set of GO is given by
2
X={(X,-x)€[Rfvc$,x5v}

and thus the value of information is v - Vc
G —

3. Summary
We have addressed the aquestion of the value of information in a
strategic conflict, posed as a game, by positing the existence of an
information holder who is not a party to the conflict. The information
holder acts strategically in disclosing information to the participants in
the conflict. His strategic disclosure of information, in the form of
signailing strategies that are more sophisticated than merely disclosing or

not disclosing it, comprises the first stage involved in determining its

value. The product of this stage is the inducible set, i.e., the set of
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Nash equilibrium payoffs to the parties to the conflict. Characterization
of the inducible set in a specific situation can give rise to a technically
intriguing problem. An interesting guestion is the characterization of
inducible sets that arise from information regarding the outcome of a
chance move whose probability distribution p is common knowledge. We
characterize it here for general two person zero-sum games and for two
examples of non-zero-sur games.

The inducible set is the input for the second phase in determining the

value of information: selling mechanisms, i.e., the modes of selling it.

These involve the elements of prices, threats, auctions, bargaining,
leadership, etc. We analyze this part of the problem in terms of the
inducible set X only. The determination of the value of information from
the inducible set X turned out to be surprisingly simple. However, it was
obtained under the assumption that player H can make binding commitments
that are recognized as such by the players involved. Without this
assumption the set of feasible selling mechanisms and therefore the value
of the information will be different. Exploration of the conseguences of

relaxing this assumption may be worthwhile.
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