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1. INTRODUCTION

Private information prevents achievement of efficiency within a small
market for the trade of a private good. If an appropriately designed
allocation mechanism is used, then its efficiency improves as the number of
traders participating grows. The reason is that, as the market grows, the
mechanism is increasingly able to utilize the private information that
traders' bids and offers reveal. This paper shows that the rate at which
increased numbers of traders can improve the efficiency of a market's
allocations is quite fast: the relative inefficiency of the market goes to
zero, at worst, almost as the inverse of the square of the number of traders.

That private information is responsible for small markets' inefficiency
may be seen by considering a market where no private information exists. 1In
such a market the demand curves of buyers and the cost curves of sellers are
common knowledge to both market participants and outsiders. Achieving
efficiency under such fortuitous circumstances is straightforward. An
outsider may be appointed auctioneer and instructed to announce the
competitive price on a take-it-or-leave—it basis. A competitive equilibrium
results because the auctioneer has sufficlent information to calculate the
competitive price and, given the once—and-for-all nature of his price
announcement, traders act as price takers.

No private information 1s an extreme assumption that is seldom
descriptive of actual markets. Usually traders' demand and supply curves are
private and not directly observable. 1If such private information exists in a
market, then the auctioneer has insufficient information to calculate the

1

perfectly competitive price and full efficiency is lost. The auctioneer must

infer from the responses of the buyers and sellers to trial prices what price



will clear the market. Each trader then has an incentive to choose his
responses to the trial prices so as to manipulate the auctioneer's final
selection of a price. Such manipulation tends to cause the number of units
being traded to be inefficiently small.

An example in which a single buyer and a single seller bargain over a
single indivisible object makes these ideas clear. Suppose the reservation
value of the seller is $48 and the reservation value of the buyer is $52. Ex

post efficiency requires that trade occurs because the object is more valuable

to the buyer than to the seller.?

If no private information exists, then an
auctioneer can set a price of $50, buyer and seller agree to trade, and ex
post efficiency is achieved.

1f, however, each trader's reservation value is private to himself, then,
depending on the traders' beliefs about each other's values, negotiations on a
satisfactory price may deadlock. Specifically, if the buyer is quite
confident that the seller's reservation value lies in the interval [25, 55],
he may hold out for a price less than $50. Similarly, if the seller is quite
confident that the buyer's value in [45, 75], he may hold out for a price
greater than $50. Holding out is rational for each in terms of an expected
utility calculation because not to hold out would allow the other trader to
extract a disproportionate share of the expected gains from trade. 1In the
language of Williamson (1975), behaving opportunistically is optimal for
each.

But if both hold out, no trade occurs and the outcome is ex post
inefficient. Myerson and Satterthwaite (1983) showed that, for bilateral
trade in the presence of private information, this inefficiency is general:
no mechanism exists such that a noncooperative Bayesian Nash equilibrium

always exists that is ex post efficient. Thus, incentives to engage in



opportunistic behavior are intrinsic to small markets.

In contrast to the small numbers case, private information is not a
problem within large markets. In the limit as a market becomes large each
trader has no effect on the market clearing price. Therefore each trader
reveals his true demand or supply curve and an ex post efficient, competitive
allocation results. These observations form the basis for economists'
intuition that as a market grows in size the importance of strategic behavior
as a source of inefficlency decreases.

Our goal in this paper is to help make this intuition precise by
identifying, as a function of the number of traders, an upper bound on the
relative inefficiency of a market where private information concerning costs
and demands exists. In other words, how quickly does making a market larger
reduce traders' opportunistic behavior. The importance of this question is
that one wants to know more than that as a market becomes large it becomes
increasingly efficient. One wants to know if four traders on each side of the
market is enough to induce approximately competitive behavior or whether one
hundred agents on each side is necessary. Experimental markets, as reported
by Smith (1982, Proposition 5), indicate that the former is more likely than
the latter. The results developed in this paper provide some theoretical
support for this empirical observation.

A reasonably precise statement of our result is this. Let the market
consist of 1My buyers and tN; sellers where My and N are positive integers
and T = 1,2,3,... 1s an index of the market's size. Each buyer i wishes to
buy a single unit of the good and has a reservation value of x; for that
unit. Each buyer's reservation value is private to him. Other traders regard
i's reservation value x; as drawn independently from a subjective probability

distribution function F(-). Each seller j wishes to sell a single unit of the



good and has a reservation value z3 for that unit. The value of Z3 is private

knowledge to j. Other traders regard zy as being independently drawn from the
distribution H(-).

Fix, for the moment, the value of t. Construct a trading mechanism that
(a) satisfies individual rationality and (b) maximizes the sum of buyers' and
sellers’' ex ante expected gains from trade. Individual rationality means that
the expected utility of a trader who knows his own reservation value but who
does not yet know the reservation values of the other traders is
nonnegative.3 Thus, for individually rational mechanisms, every trader, no
matter what his reservation value, wants to participate in the trading
mechanism because, in expectation, participation offers him gain. The sum of
the traders' ex ante expected utilities is the average gains from trade that
the mechanism would create if (a) it were utilized repeatedly and (b) on each
repetition every traders' reservation value were independently and freshly
drawn from the distributions F and H. Let T*(T) be this expected sum for a
mechanism that maximizes this expectation.

Let TO(T) be the sum of the ex ante expected gains from trade that an ex
post efficient mechanism would generate if such a mechanism existed. The ex
post efficient mechanism has the property that the tNy units brought to the
market by the sellers are assigned to the TNy buyers and sellers who have the
highest reservation values. Generally, as we pointed out above, such a

mechanism does not exist when private information exists. Nevertheless, the

value of TV is well defined and easily calculated. Finally define

*
W(t) =1 - IBLLl—; (1.01)
T (1)

W is the inefficiency of the ex ante efficient mechanism relative to the



(nonexistent) ex post efficient mechanism. Note that T*, TO, and W not only
depend explicitly on 1. but also implicitly on My, Ny, F, and H.

Our main result is that, for large values of 1 and all pairs of
distributions (F,H) that meet some regularity conditions, a constant K exists

such that

Wit) < K[“;]. (1.02)
T

Thus, as 1 becomes large, the relative inefficiency of the optimal ex ante
mechanism is of the order of (&n 1/12), which is to say it vanishes almost
quadratically.

The work we present here is related to several sets of of work in
economic theory. First, and most directly related, is the work that Chaterjee
and Samuelson (1983), Myerson and Satterthwaite (1983), Wilson (1982, 1985a,
1985b), and Williams (1985) have done using the same basic model (a one-shot
game representing a market where both buyers and sellers have private
information) that we study here. Chatterjee and Samuelson showed with a
bilateral example that one cannot expect ex post efficiency from the double
auction. Myerson and Satterthwaite showed that ex post efficiency is in
general, no matter how complicated the mechanism, not achievable in bilateral
trade if private information exists on both sides of the market and individual
rationality is required. The application of the revelation principle that
they developed for trade with double-sided uncertainty has been used by
Wilson, Williams, and us.4

Wilson (1982) showed that, for the special case where the number of
buyers equals the number of sellers and the underlying distributions (F,H) are

uniform, the double auction is ex ante efficient. For priors that satisfy



regularity conditions he (1985b) showed that asymptotically the double auction
is interim efficient. Finally, for the bilateral case, Williams (1985)
investigated ex ante efficient mechanisms where, instead of maximizing the
expected gains from trade, the buyer and seller are assigned arbitrary welfare
weights.

The second body of work to which this paper is related is auction
theory. Auction theory is concerned with markets where private information
exists only on the buyer's side of the market, not on both sides as is the
case in this paper and other papers concerned with trading mechanisms.

Auction theory, like trading mechanism theory, naturally divides into a
normative branch and a positive one. Our paper 1is most closely related to the
normative work that Myerson (1981) epitomizes. Less closely related is the
positive branch of auction theory such as Milgrom and Weber (1982).

The third body of work to which this paper 1s related is the general
equilibrium theory of perfect competition. Three distinct relationships exist
here. The first relationship is technical. Bhattacharya and Majumdar (1973),
Weller (1982), and Mendelson (1985) derive results on the asymptotic normality
of the prices that occur within an economy where equilibrium prices are random
variables because agents' preferences and endowments are assigned randomly.
Our work is similar in that it depends crucially on the asymptotic normality
of price-like random variables.

The second relationship is substantive. Roberts and Postlewalte (1976)
studied the noncooperative incentives that agents have to pursue strategic
behavior within complete information exchange economies. Specifically, they
considered an exchange economy where (a) the economic agents report
preferences, (b) a competitive equilibrium is computed based on the reported

preferences, and (c) goods are allocated as prescribed by the computed



equilibrium. They show that as the economy becomes large each agent's
incentive to misreport his preferences in order to manipulate the calculated
price in his favor becomes vanishingly small. This result formalizes nicely
the idea that for large, perfectly competitive economies strategic behavior
becomes unimportant. It, however, is not comparable with our result for three
reasons: (i) it is based on the assumption that private information does not
exist, (ii) it is not an equilibrium result because each agent's equilibrium
misrepresentation is not calculated, and (iii) the rate at which the incentive
to misrepresent vanishes is not calculated.

The third relationship to the general equilibrium literature is also
substnative. A number of authors, including Hildenbrand (1974), Debreu
(1975), and Dierker (1975) have studied the rate of convergence of core
allocations within an exchange to perfectly competitive allocations. Debreu,
for example, showed that core allocations converge to competitive allocations
as the inverse of the number of agents. This, and related results concerning
the "competitive gap” (see Anderson (1978, 1986)) can be interpreted as
showing that the gains traders earn from engaging in strategic rather than
price-taking behavior declines rapidly as the number of traders increase.
Thus the spirit of these results is the same as in our results. The
difference lies in the nature of the equilibrium concept used and the
informational assumptions. Specifically, the core is a cooperative concept

that assumes no private information.

2. PRELIMINARIES

In this section we present the model. Section 3 contains results. In
Sections 4, 5, and 6, respectively, we develop an example of an ex ante

efficient mechanism, contrast the ex ante efficient mechanism with the fixed



price mechanism, and discuss a set of questions that our results leave open.
Section 7 contains proofs.

Model. We use the model that Chatterjee and Samuelson introduced and
that has become standard within the trading mechanism literature. As stated
in the introduction, the number of buyers and the number of sellers in the
market are M = ™My and N = 1Ny, respectively, where t is the index of the
market's size. Let n =M + N be the total number of traders. There are N
identical objects, each of which is owned by a distinct seller. Each buyer
seeks to buy a single unit of the object, each seller seeks to sell his or her
single unit, and buyers pay for their purchases with money.

Buyer 1's reservation value for the object, which is the maximum amount
that he can pay to purchase it and not reduce his utiliy, is x3. It is
private to him. Sellers and the other buyers regard it as distributed with
positive density f(.) over some bounded interval {a, b]. Similarly seller j
knows Z3, his or her own reservation value. Buyers and other sellers regard
it as distributed with positive density h(-) over [a, b]. Let F(-) and H(-)
denote the distribution functions of these densities. Each buyer and seller
considers the reservation value of other buyers and sellers to be independent
of the reservation value of himself and of every other trader.5 The initial
numbers of buyers and sellers and the distribution functions of their
reservation values constitute the essential data of the trading problem.
Therefore we call the quadruplet <My, Ny, F, H> the trading problem.

A trading problem <My, Ny, F, B> is regular if: (i) F and H have
continuous and bounded first and second derivatives on (a, b), (ii) a
competitive price c € (a, b) exists such that My(1-F(c)) = NpH(e), and (iii)
the functions x; + (F(xi) - 1)/f(xi) and z. + H(zj)/h(zj) are both

J

nondecreasing over the interval (a, b). The price c is the competitive price



because M(1-F(c)) is the asymptotic expectation of the number of buyers whose
reservation values are greater than ¢ and NH(c) is the asymptotic expectation
of the number of sellers whose reservation values are less than c. Therefore
¢ is the price that almost balances supply and demand when the market becomes
large. The purpose of this regularity assumption is to restrict the set of
admissible trading problems sufficiently to permit us to construct ex ante
efficient mechanisms. Imposition of this restriction on F and H is quite
standard within the trading mechanism literature.

Before proceeding further we need additional notation. Let

x = (X),e0e3%y)s 2 = (21,000,2y), Xy = (X 000X 1, Xjg]reev,Xy), and
2 5 = (zl,...,zj_l, zj+1,...,zN). The density
glx,z) = H?=1f(xi) . H?=1h(zj) describes the joint distribution of all the

reservation values, the density g(x_j, z) = g(x, z)/f(xy) describes the
distribution of reservation values buyer 1 perceives himself as facing, and
the density g(x, z_j) = g(x, z)/h(zj) describes the distribution of
reservation values seller j perceives himself as facing.

For a particular trading problem <M, Ng, F, >, fix 1 so that size of
the market is n = T(MO + NO) traders., A trading mechanism consists of n
probability schedules and n payment schedules that determine the final
distribution of money and goods given the n declared valuations of the buyers
and sellers. Let the probabilities of an object being assigned to buyer i and
seller j in the final distribution of goods be p;(;,;) and q;(;,;),
respectively, where x and z are the vectors of buyers' and sellers' declared
valuations. The declared valuation a trader reports need not be his true
reservation value because that true reservation value 1is private to him. Let
the payments to buyer i and seller j be rg(;,;) and s;(;,;), respectively. A

negative value for r; indicates that buyer i pays negative rz units of money
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for receiving one unit of the traded object with probability p;.
The r; and s; payments are not necessarily conditional on whether buyer 1
actually receives an object or seller j actually gives up his object.6
A trading mechanism for n traders is therefore a 2n
vector (p, g, r, s) of probability and payment schedules. We assume that the
market size 1, the joint distribution of reservation values g, the probability
schedules p and q, and the payment schedules r and s are common knowledge
among all traders. The trading process is initiated when all players
simultaneously declare reservation values. These declared values are
restricted to the interval [a,b]. Given these bids and offers, the N objects
and money are reallocated as the trading mechanism (p, q, r, s) mandates.
Each trader has a von Neumann—-Morgenstern utility function that is
additively separable and linear both in money and in the reservation value of
the traded object. Thus buyer i's expected utility, given that his true
reservation value is x; and the vectors of declared reservation values

~

are x and z, is

~ ~

_ - oo BN
= + . 2-01
Ui(xi’ X, z) ri(x, z) xipi(x, z) ( )
Similarly, seller j's expected utility, given that his true reservation value
is Zj, is
V.o(z,, x, 2) = s.(x, 2) -z, (1 -q;(x, 2)). (2.02)
1] ] ] ]
Each trader's expected utility function is normalized so that if (x, z) are
such that he 1s certain to neither trade an object nor make or receive a cash
payment, then his expected utility is zero.
We constrain the trading mechanism in three ways to conform with our
notions of voluntary trade among a set of independent buyers and sellers,

First, in the final distribution of goods and money, the N objects are each

assigned to a trader; thus:



TioP o2 + TL aiGez) = (2.03)

for all (%,2).7 Second, payments are constrained to offset receipts:

S\M

. ri(x,z) + ZN_ s (x,z) =0 (2.04)
ci=1 i j=173

for all (%,2). The reason for this latter constraint is that trading connotes
individuals freely cooperating with one another without intervention or aid
from a third party. Third, the mechanism must be individually rational. This
requires that, given any admissible reservation value, each trader's expected
utility of participating is nonnegative. If this constraint were violated,
those individuals with unfavorable reservation values would decline to
participate in the trading, thus contradicting our assumption that they do
participate.

In addition to these three constraints that are intended to capture our
ideas about the nature of voluntary trade, we also impose a fourth constraint
on the mechanism: incentive compatibility. An incentive compatible mechanism
never gives any trader an incentive to declare a reservation value different
than his true reservation value, i.e., declaration of true values is a
Bayesian Nash equilibrium if the mechanism is incentive compatible. We impose
this constraint because it greatly simplifies the analytics of our problem.
Imposition of it is costless because the revelation principle states that for
every mechanism an equivalent incentive compatible mechanism exists.
Therefore, even though we do not consider all conceivable mechanisms, we know
that no mechanism exists outside the class we consider that ex ante dominate

the mechanisms we do consider.
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Formalization of the individual rationality and incentive compatibility

constraints requires additional notation and definitions. Let

Ei(xi) = f..-fp;(x,z)g(x_i,z)dx_idz, (2.05)

a;(zj) = f...fq;(x,z)g(x,z_j)dxdz_j, (2.06)

;;(xi) = f...fri(x,z)g(x_i,z)dx_idz, (2.07)
and

gj(zj) = f...fs;(x,z)g(x,z_j)dxdz_j. (2.08)

Conditional on buyer i's reservation value being x;, the quantities

E;(Xi) and ;z(xi) are respectively his expected probability of receiving an
object and his expected money receipts. The quantities a; and E; have
analogous meanings for seller j. The expected utilities of buyer i and seller

j conditional on their reservation values are

U, (%) Ei(xi) + XiEI(xi) (2.09)

and

V.(z,) = si(z,) - 2z, (1 - g (z.)). (2.10)
J ] J J) J qJ( J )
Individual rationality requires that, for all buyers i and all sellers
i, Ui(xi) > 0 for every X, € [a, b] and Vj(zj) > 0 for every z5 € [a, b].
Incentive compatibility requires that, for every buyer i and all Xy and X, in
[a, bl,
-T ~ -1 -
> + .
Ui(xi) > ri(xi) Xipi(xi) (2.11)
and, for every seller j and all z and z in [a, b],
V.(z,) > 5(z,) - z.(1 - ¢ (z,)). (2.12)
J J) J J) J( qJ J )
If (2.11) is violated for some x4y and Xi’ then buyer i has an incentive to
declare X, rather than his or her true reservation value, xj. The parallel
interpretation holds for (2.12). Inequalities (2.11) and (2.12) are therefore

a necessary and sufficient condition that the honest declaration of

reservation values is a Bayesian Nash equilibrium for the trading mechanism
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(p, q, T, s).8 Consequently, from this point forward, we assume that traders
always reveal their true reservation values.

Characterization of Incentive Feasible Mechanisms. A mechanism is called

incentive feasible if it is both individually rational and incentive
compatible., Theorem 1 characterizes all incentive feasible mechanisms. It
exactly generalizes Myerson and Satterthwaite's (1983) Theorem 1 from the
bilateral case to the general case of arbitrary numbers of buyers and

sellers.

Theorem 1. Consider a given replication 1 of a trading problem
My, Np, F, H>. Let pT(-,-) and qT(-,-) be the buyers and sellers
probability schedules respectively. Functions r (+,.) and s (-,e)
exist such that (pT,q?,r?,sT) is an incentive feasible mechanism if
and only if E;(-) is a nondecreasing function for all buyers

i, a;(-) is a nondecreasing function for all sellers j, and

M Fi(xi) -1
B T
iilf ”f(xi * W)pi(X,Z)g(X,Z)dxdz
(2.13)
N H (z))
T
- jzlf..-f(zj + Ejzzjjﬁll - qj(xrz)]g(x,z)dxdz 5 0.

Furthermore, given any incentive feasible mechanism, for all i and j,

U;(+) is nondecreasing, Vj(-) nonincreasing, and
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M N M N
YU (a,)+ JVv(d)= 17 min U, (x) + min  V_(z)
=1+ 1 j=1 3 i=1 xefa,b] 1 j=1 zela,b]

M )

= z [oorf(xy + —l?—%;—y——)pg(x,z)g(x,z)dxdz (2.14)
N .

- Z f---f(zj + Eiz;?y)[l - q;(x,z)]g(x,z)dxdz.

This theorem is the key to constructing ex ante optimal mechanisms because it
establishes that if the probability schedules (p?, q7) satisfy the relatively
simple constraint (3.01), then payment schedules (r7, s7) exist such that the
mechanism (p?, q7, rT, sT) is an incentive feasible trading mechanism.
Therefore the construction of an ex ante efficient mechanism reduces to a
constrained maximization problem that involves only the selection of the
probability schedules (pT, qT).g

Ex Ante Efficiency. A trader's ex ante expected utility from

participating in trade is his expected utility evaluated before he learns his
reservation value for the object. Thus ﬁi= IUi(t)fi(t)dt and

Vj = ij(t)hj(t)dt are buyer i and seller j's ex ante expected utilities
respectively. A trading mechanism is ex ante efficient if no trader's ex ante
expected utility can be increased without either (a) decreasing some other
trader's ex ante expected utility or (b) violating incentive feasibility. We
focus on a particular ex ante efficient mechanism: the one that places equal
welfare weights on every trader and maximizes the sum of the traders' ex ante
expected utilities. This maximization is equivalent to maximizing the sum of
all traders' expected gains from trade because each trader's utility function
is separable in money and the traded object's reservation value. Notice that

ex ante optimality is not as strong a requirement as ex post optimality. Ex
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post optimality requires that the potential gains from trade be exhausted by
assigning the N objects to the N traders who have the highest reservation
values.

Virtual Reservation Values and ag-Schedules. Virtual reservation values

play a crucial role in construction of ex ante efficient mechanisms. 10 Buyer
i's virtual reservation value (i = 1,..., M) is
B F(xi) -1
| = o (—L 2.15
Y (xi,a) X, + o ( f(xi) 1, ( )
and seller j's virtual reservation value (j = 1,..., N) is
S H(zj)
v (ZJ ,a) = Zj + o - F(-z? (2.16)

where o is a nonnegative, scalar parameter. Let the vector of virtual
reservation values be ¥(x, z, a) = [wB(xl,a),..., wS(zN,a)].

Define Ri(x, z, a) to be the rank of the element wB(xi, a) within y and

, a) within ¥. For

define Rj(x, z, a) to be the rank of the element ws(zj

= 1. 11

example, if M = N = 1 and ¢y = (.4, .2), then Ry_; = 2 and R Given

3=

this notation, a trading problem <M0, Ng, F, H>, and a value 1, we define a

class of buyer and seller probability schedules that are parameterized by o:
1 if Ri(x, z, a) > M

p;a(x,z) = { i
0 if Ri(x, z, a)

l,ee.,M; (2.17)

n
=

T 1 if R.(x, z, a) D M
q:%(x,2) = { J j = 1,...,N. (2.18)
J 0 if Rj(x, z, a)

n
=

Let p™ = (p1%, « + ., o™ and q"% = (q[%, . . ., qf®). This pair of

probability schedules, which we call an a-schedule, assigns the N available
objects to those N traders for whom the objects have the highest virtual
reservation values.

Before proceeding further we should discuss virtual reservation values



and a—schedules. Remember that o is a parameter that 1s restricted to be
nonnegative. First consider virtual reservation values. If a = 0, then
wB(xi,O) = X4 and ws(zj,o) = z3, i.e., the virtual reservation values equal
the true reservation values. If, however, o > 0, then wi(xi,a) < %3 and
wj(zj,a) > z3 almost everywhere. Thus, for o > 0, buyers' virtual reservation
values are distorted downward to be below their true reservation values and
sellers' virtual reservation values are distorted upward to be above their
true reservation values. Intuitively these distortions express the strategic
behavior that traders exhiblt when their reservation values are private:
buyers understate their true reservation values and sellers overstate theirs.
Now consider a-schedules. If g = 0, then no distortion of true
reservation values occurs and the N objects are assigned to the N traders who
have the highest reservation values. If o > 0, then the possibility exists
that the objects will not be assigned to the N traders whose reservation
values are highest. Specifically, if a > O, then pairs of reservation values
(xi,zj) exist such that x; > zj and wB(Xi,a) < ws(zj,a). Trade should occur
because the buyer values the object more than the seller, but may fail to
occur because the seller's virtual reservation value may be greater than the
buyer's. Thus, an a-sechedule does not necessarily achieve ex post optimality
whenever o > 0. Finally, notice that the closer a 1s to zero, the closer the

a—-schedule comes to achieving ex post optimality.
3. RESULTS

Ex Ante Efficient Mechanisms and a*—Schedules. Fix the value of the

parameter a > O and consider the a-schedule (p'®*,q"'®). Theorem 1 states

necessary and sufficient conditions for payment schedules (r, s) to exist such

that the trading mechanism (pra,qra,r,s) is incentive feasible. Central to
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the theorem's requirements is inequality (2.13), the incentive feasibility
(IF) constraint. TFor the case of an a—schedule, substitution of (2.15) and
(2.16) into (2.13) yields the requirement:

M N
Sy 1) = funn ] MB(xi,ini“(x,z) -3 wS(zj,1)[1—qJT.a(x,z)]}g(x,z)dxdz (3.01)
i=1 =1

\Y%
(@]

This function G(a,T) plays a central role in proving the theorems that follow.
An ag-schedule (pTa, qTG) is an a*-schedule if and only if an o* € [0,1)
exists such that
a. either (i) G(a*,t) = 0 or (ii) G(0,t) > 0 and o* = 0, and
b. ETg*(-) and E;a*(-) are nondecreasing over [a, b] for all buyers i
and all sellers j.
By definition, an a*-schedule satisfies Theorem 1's requirements. Therefore
payment schedules (ra*,sa*) exist such that the mechanism (pTd*,qu*,rd*,sd*)

is incentive feasible. We call this mechanism the g*-mechanism for the market

of size 1t for the trading problem Mpy, Ny, F, H>.

Theorem 2 states sufficient conditions for the a*-mechanism——if it
exists——to be an ex ante efficient mechanism. Theorem 3 states sufficient
conditions for the a*-mechanism to exist and be ex ante efficient for a given

market size of a trading problem.

Theorem 2: Suppose an a*-mechanism exists for market size 1 of the
trading problem <My, Ng, F, H>. The g*-trading mechanism
a* g* g* *

(p% ,q% ,r% ,s*") is ex ante efficient and has positive expected gains

from trade.

Theorem 3: TIf <My, Ny, F, H> is a regular trading problem, then, for

every market size 1, the a*-mechanism exists, is incentive feasible and



ex ante efficlent, and has positive expected gains from trade.

Convergence to Ex Post Optimality. Before we determine the rate at which

the ex ante optimal mechanism converges to ex post optimality, we need to show
that it converges as T » =, Theorem 4 establishes this convergence both as it
approaches the limit and in the limit. In order to understand the theorem,
recall two facts. First, the closer the parameter a is to zero, the less
virtual reservation values are distorted from true reservation values and the
closer the a—schedule comes to achieving ex post optimal assignment of the
objects. Second, for given value of a and given market size 1, if G(a,t) 2> O,
then payment schedules (r,s) exist such that (p®T,q%T,r,s) is incentive

feasible.

Theorem 4: Pick an a € (0,1). If the trading problem <My, Ny, F, H>
is regular, then a T' > 0 exists such that, for all market sizes

|
t>1 , Gla,1) » 0. Moreover lim_,, G(0,1) = O.

The content of the theorem is that, no matter how close to zero we set o, 1f
the market becomes large enough, then that a-schedule and its associated
payment schedule 1s incentive feasible. Thus the ex ante efficiency of the
optimal mechanism can be made arbitrarily close to ex post efficiency by
making the number of traders large enough.

Rate of Convergence. We present two results. The first is an upper

bound on the size of the parameter a* as a function of 1. Recall that the
nearer a* is to zero, the less traders' virtual reservation values are
distorted from their true reservation values and the closer the mechanism
comes to achieving ex post efficiency. Therefore the magnitude of a* as a
function of 1 is a measure of the mechanism's optimal convergence to ex post

optimality.
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Theorem 5: Consider a regular trading problem <My, Ny, F, H>. The
parameter a* of the ex ante efficient «*-mechanism 1is at

1/2

most O((&n 1) /t) for large 1, i.e., for large 1, a K exists such

that o*(1) < K((an 1)1/2/7).

The second result, which is our main result, states an upper bound on the

expected proportion of the gains from trade that the optimal mechanism fails

to realize.

Theorem 6: Consider a regular trading problem <MO, Ng, F, B>. The
gains from trade that the ex ante efficient trading mechanism fails to
realize relative to the gains that an ex post efficient trading
mechanism would realize are asymptotically O(gn 1/12), i.e., for large

T, a K exists such that

*
wit) =1 - TO(T) < KKHZT. (3.02)
T (1) T

As we defined earlier, the notation (1) represents the expected gains from
trade that the ex ante efficient a*—mechanism realizes for the trading problem
My, Ng, F, B> with market size 1. Similarly TO(T) represents the expected
gains from trade that an ex post efficient mechanism (if one existed) would
realize for the same trading problem and same market size.

Two comments about Theorem 6 are in order. First, the order of W as a
function of T indicates the mechanism's relative rate of convergence towards
ex post optimality and is independent of the choice of the underlying
distributions F and H. For a given value of 1, however, the absolute size of
W is a function of F and H, i.e., the value of K in the theorem depends on F

and H. Second, we conjecture that the bounds stated in Theorems 5 and 6 are
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not tight. Specifically, we suspect the true bound for Theorem 5 is 0(1/t1)

and, for Theorem 6, 0(1/12).
4. AN EXAMPLE

In this section we numerically calculate for varying market sizes t1 the
ex ante efficient, incentive feasible trading mechanisms that maximize the
expected gains from trade for the special class of trading problems
My, Ng, F, H> for which My = Ng = 1 and traders' reservation values are
identically and uniformly distributed on the unit interval. This
distributional assumption guarantees that the training problem is regular as
Theorem 3 requires. Therefore an ex ante efficient g*-mechanism exists for
all market sizes T.

The key step in constructing an efficient mechanism for a given number of
traders is to calculate the solution to G(a,r) = 0. Given that traders'
reservation values are uniformly distributed over [0, 1],
wB(xi,a) = (1 + oc)xi - a and ¢S(zj,a) = (1 + a)zj. Since Ny = My = 1 the

equation G(a,t) = O reduces to
6la,0) = 1 { f§ PO DPECx - 3 32,1 1-4"%(=) Ih(z)dz | .01)
- { 2 - DR - [p2201 - Tz } = 0.

where all i and j subscripts have been supressed because all traders are
symmetric with each other. It may be rewritten as:
fo {12 = 115%G0 - 2x01 = ()1} dx = 0. (4.02)
Calculation of the marginal probabilities Ba(x) and aa(z) is messy, but
straightforward.12
Table 1 presents the numerical results. The calculated values of a* have

the following interpretation. If buyer 1 with reservation value x; and seller
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. are each the marginal trader on his side of the

j with reservation value zj

market, then necessarily i's virtual reservation value is greater than j's
virtual reservation value, i.e. wB(xi, a*) > ws(zj, a*)., Substitution of
explicit forms for wB and wS into this inequality followed by some algebraic
manipulation shows that necessarily the marginal buyer's reservation value,

b. 3

i, exceeds the seller's reservation value, zj, by at least o*/(1+o*). 1In

other words, a necessary condition for both buyer i and seller j to be the
marginal traders is

xg =2y > L (4.03)
This required, positive difference in reservation values is the wedge that
privacy of traders' reservation values creates within finite sized markets.
Its presence makes achievement of ex post efficiency impossible. Note that as
a* becomes small, the size of this wedge becomes essentially equal to the
value of a* itself. The fourth column displays 1/a* and shows that o* is
apparently bounded from below by 1/21. Therefore as the number of traders
becomes large the order of the rate at which the wedge vanishes equals the
order of the rate at which 1/t approaches zero.

Recall from either the Introduction or Theorem 6 the definitions of
T*(r), TO(T), and W(t1). The table shows (in agreement with the theorem) that
W(t), the relative inefficiency of this simple market, vanishes almost as
(l/rz). By the time the market reaches ten or twelve traders (1 = 5 or 6) its
relative inefficiency is down to the negligible level of approximately 1

percent,
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Table 1

Properties of the a*-Mechanism as the Number of Traders Increases
T a* o/ (1+a*) 1/o* T (1) ) W(1)
1 .3333 . 2500 3.00 . 14060 .16667 . 1564
2 «2256 . 1841 4,43 .37746 .39999 .0563
3 .1603 .1382 6.24 .62572 .64286 .0267
4 .1225 .1091 8.17 .87527 .88887 .0153
6 .0827 .0764 12.09 1.37507 1.38462 .0069
8 .0622 .0586 16.08 1.87504 1.88235 .0039
10 .0499 .0475 20.04 2.37501 2.38095 .0025
12 L0416 .0399 24,04 2.87501 2.88000 .0017

5. COMPARISON WITH FIXED PRICE MECHANISM

The mechanisms we consider are designed for situations where reservation
values are private. The optimal mechanism assigns, in effect, the traded
objects on the basis of prices that it calculates using private information
the traders have voluntarily and rationally revealed. The importance of
eliciting and using this private information is dramatized by comparing the
order of W(t1) for the optimal mechanism with the order of W(t) for the fixed
price mechanism.13

The fixed price mechanism works as follows. Price is fixed at the
competitive level ¢ that would obtain if our simple market were perfectly

14

competitive. All buyers whose reservation values are greater than c
indicate that they want to buy one unit and all sellers whose reservation
values are less than c¢ indicate that they want to sell one unit. The strategy
of reporting honestly the desire to trade or not to trade is a dominant
strategy for each trader because price is fixed. 1If the market does not
clear, which is almost always the case, then rationing is done by random

selection from among the traders on whichever side of the market is long. The

problem with random exclusion is that a buyer i whose gains from trade,
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x: — ¢, are large is just as likely to be excluded as a buyer k whose gains

i
from trade, %, - ¢, are small. Therefore, as 1 becomes large, the average
loss per excluded trader remains a constant. This is unlike the optimal
mechanism where, as T becomes large, the average loss per unrealized trade
declines rapidly.

Asymptotically, for the fixed price mechanism, the number of traders who

1/2).15 This is also the order of

wish to trade but who are excluded is O(rt
the gains from trade that the mechanism fails to realize. The number of
traders who wish to trade at this fixed price ¢ is 0(t1); therefore, the gains
from trade that a hypothetical ex post efficient mechanism would be expected
to realize are 0(t). Dividing the order of the expected inefficiency by the
order of the total gains available gives the result W(z) = 0(1/11/2) for the
fixed price mechanism, which constrasts starkly with W(t) = 0{(2n T)/TZ} for
the optimal trading mechanism. This emphasizes the importance of eliciting
valuation information from traders and--within the limits of incentive

compatibility--using it to assign the objects appropriately.
6. FURTHER QUESTIONS

Our results are only a starting point for understanding how fast market
mechanisms converge to perfect competition in the presence of private
information. Four questions that need attention are as follows. First, are
asymptotic results useful when studying trading problems? While the numerical
results of Section 4 are supportive of the idea that even for small numbers
the asymptotic rate is a good approximation, we cannot conclude without
further investigation that it is an equally good, small number approximation
for prior distributions other than the uniform. Second, if traders are risk

averse, does the 0((gn T)/TZ) result continue to hold? A recent paper of
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Ledyard (1986) emphasizes the importance of this question.16 He shows, within
the context of a somewhat different model, how careful selection of utility
functions for a fixed set of agents can lead to almost any desired equilibrium
behavior.

Third, if agents' reservation values are not independent of each other,
but rather are positively correlated, then does our convergence result hold?
Milgrom and Weber (1982) have shown in their studies of auctions that such
distinctions are important. Fourth is our focus on optimal mechanisms
constructed using the revelation principle appropriate. In practice direct
revelation mechanisms are seldom used to allocate goods. The reason is that a
direct revelation mechanism's allocation and payment rules must be changed
each time the traders' prior distributions concerning other traders'
reservation values change. This cannot be done practically because traders'
priors are unobservable. Consequently, the rules of a real trading mechanism-
-for example on a stock exchange—~—are kept constant and not changed each time
traders' expectations about each others' reservation values change. This
makes the results of Wilson (1982, 1985a, 1985b) concerning the properties of

the double auction mechanism very desirable.
7. PROOFS

Preliminaries. Detailed proofs of Theorems 1, 2, and 3 are contained in

Gresik and Satterthwaite (1983) and in less detailed form in Gresik and
Satterthwaite (1985) and Wilson (1982, 1985a). The proofs' techniques are a
straightforward generalizations of Myerson and Satterthwaite's (1983)
treatment of the bilateral case.

Proofs of Theorems 4, 5, and 6 require a detailed understanding of the

asymptotic behavior of the marginal distribution p'® and q'®. We defined
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5Ta(xi) to be the marginal probability that a buyer i with reservation value

17 1ts interpretation in terms of a simple random trial

Xi receives an object.
is this. Fix a. Draw independently M-1 = TtMy-1 buyers' reservation values
from F and N = 1Ny sellers' reservation values from H. Transform these
reservation values into virtual reservation values using wB(-,a) and ws(-,a)
respectively. The probability ETa(xi) is the probability that buyer i's
virtual reservation value wB(Xi,a) is greater than the Mth order statistic of

18 1 4B(xy,a) is

the M+N-1 virtual reservation values of the other traders.
less than the Mth order statistic, then buyer i is not assigned an object.
Denote with EpT this Mth order statistic.l? Then
ETa(xi) = Pr{gpT < wB(xi,a)}. Thus, in order to understand p '~ we must
understand the Mth order statistic ng.

A standard result is that the Mth order statistic of a sample of
n = T(MO + NO) random variables independently drawn from a single distribution
function is asymptotically normally distributed.20 A second, less well-known
result is that the expected value of the Mth order statistic of a size n
random sample drawn from a distribution converges asymptotically towards the
population quantile of order MO/(M0 + Ng) at a rate O(l/r).21 Two reasons
exist why these results cannot be applied directly to our problem. The first
is this. The M-1 buyers' reservation values are drawn from the distribution F
and transformed into virtual reservation values by wB. Similarly the N
sellers' reservation values are drawn from the distribution H and transformed
by ws. Therefore the resulting sample of virtual reservation values are not
drawn, as the standard theorems require, from a single distribution; it is a
sample of nonidentically distributed random variables. The second problem is

that p'® is the distribution for the Mth order statistic of a sample of size

n-1, not a sample of size n. In other words, as t1 increases the ratio of
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buyers to sellers in the sample underlying p'® changes. Theorem 7 below
resolves both problems.
In order state Theorem 7 some amended notation is necessary. Let for

now Z, yene,yZ denote the vector of virtual reservation values

{Xl""’XM—l’ N}

1°
where each virtual reservation value x; is drawn independently from F and each
z3 is independently drawn from H. The distribution ¥ is the distribution that
is obtained by drawing a reservation value from F and then transforming that

value into a virtual reservation value by means of wB(.,a), H is similarly

defined. Let [a',b'] be the union of the supports of F and H. The dependence

~

of F on o is suppressed because we use only the asymptotic behavior of BTQ

for

fixed values of a. We emphasize that for this theorem

{Xl""’XM—l’ zl,...,zN} is the vector of virtual reservation values, not the
vector of reservation values as is the case elsewhere in the paper. Define,
for any t € [a',b'], the average distribution function to be

r(t) = p?(t) + (1 - p)ﬁ(t) where p = MO/(MO + Ng). The population quantile of
order p is Ep = infy {y: I'(y) » p}. Finally, define

a(t) = Moﬁ(t)[l - F(t)] + Noﬁ(t)[l - H(t)]. 1t is the standard deviation of

the random number of virtual reservation values that are no greater than t

whenever the sample is My buyer and Ny sellers.

Theorem 7: Let EDT be the Mth order statistic of a sample

(Xl,...,XM_l, Zl""’ZN) where M = 1My, N = 1Ny, all x; are drawn from

the distribution F and all z; are drawn from the distribution H. Let
n=1Mg + Ng) and p = My/(My+Ng). 1If in a neighborhood of Ep’ T has
positive continuous density T'' and bounded second derivative T, then,

for any t,

[t(M, + NO)]I/z(E - £)
o < t) = a(t) (7.01)

r'(go)}

0

lim Pr ( I
T o (g )/ {(Mg+NG)
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and, as 1 > =,

1/2
E(’gp - )| (“—“{)—} (7.02)
The theorem is stated from the buyer's point of view. A simple relabeling of
the variables permits us to apply it to sellers. 1Its proof is found in Gresik
and Satterthwaite (1985, Th. 6.5). The theorem is almost a restatement of the
standard results for the special case of the paper. The aspect that differs
from the standard results in that we have been unable to obtain an O{I/T}

bound on 'E(EDT

We conjecture, however, that our bound is slack and
that 0{1/t} 1s a valid tighter bound.

Proof of Theorem 4: Before proceeding with the proof we must show how

Theorem 7 applies to ETG and q T, Consider some buyer i. For 1 to be

assigned an object his virtual reservation value must be greater than the Mth
order statistic of the virtual reservation values of the N sellers and the
other M-1 buyers. Denote by w?;) this order statistic and let Afa be 1its
distribution function. Theorem 7 applies to w?;). It 1s asymptotic normal
with an asymptotic expected value 6?§) and asymptotic variance og/r.

The density function ETQ(-) describes the distribution of the random

variable x(a,t) = [wB] ) where [yB]~ 1(.) is the inverse of vB(e,a): 1t

(
k”(M)
1s the critical value that 1's reservation value must exceed if i is to be

22

assigned an object. The variate x(a,T) 1s also asymptotically normal with

asymptotic expectation x* = [wB]—l(ﬁ?;)) and asymptotic variance JZO%/T where
-1
]

J = a[wB

/Bx1 evaluated at 6?;)- Consequently as 1 becomes large the
distribution of x(a,t) approaches a step function with the step at x*.

Sa 2 Tk s
Define w(M)’ . w(M)’ og , z(a,1), and z* in parallel fashion. As 1

becomes large the distribution z(a,t) approaches a step function with the step
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at z* wyhere z* ¢ x*. The reason for the inequality z* ¢ x* is this. First,
as 1 becomes large, |$?;) - a?g) approaches zero because the samples that
generate ¢?;) and w?;) become essentially identical as 1 increases. Second,
for all y in the ranges of wB(-, a) and ws(-, a), necessarily
[wB]_l(y) - [wS]—l(y) > 0 because wB(x,a) - x < 0 and ws(x,a) - x > 0. Third,
(2.15) and (2.16) imply that if o > 0 and w € (a, b), then
05w, a ) = ¢ (w, a ) > 0.

We can now prove the theorem's second part: 11mT+mG(O, ) = 0. One form

in which the IF constraint, equation (3.01), can be written 1is:
_ (b B =Ta b S =TQ,
Gla, 1) = Mjaw (x, Dp "(x)f(x)dx - N[a¢ (z, D[l-q (2)Ih(z)dz (7.03)

> 0.
Theorem 7 implies that, as T increases, the variances of BTG(-) and aTa(-)
approach zero. This means that in the limit, if a = O, both distributions

become step functions with the step at the competitive price, c¢. Thus

=0 _ 1 01f x < ¢
P o) = { | x> e (7.04)
and
—o() 0 1f z < ¢
= 7.
a2 = {] ¢, o (7.05)

Substitution of these into (7.03) and integrating the resulting expression

shows that, for o« = 0 and 1 » =, the IF constraint is satisfied:

Lim 600,7) = ¥ 0x, Dp 60 £60dx - N (2, D11 0 (@) In(2)dz

T
b -1,—=0 b -0
= an[x +-E%%£S—ﬂp X)f(x)dx - Nfa[z +-§%§%ﬂ{1—q () |n(z)dz
= Mfg(xf(x) + F(x))dx - NfZ(zh(z) + H(z))dz - Mfgdx (7.06)

- 12400 - NfSalz(z)] - ] e

= M[b - cF(c)] - N[cH(c)] - M(b - ¢)



- 29 -

because H(a) = 0, F(b) = 1, and M(1-F(c)) = NH(c). Therefore in the limit,
when the number of traders becomes infinite, the competitive price, c,
satisfies the IF constraint, describes the ex ante efficient mechanism, and is
ex post efficient.

We now prove the first half of the theorem. Fix the value of a within
(0,1). The resulting a-mechanism transforms the vector of traders'
reservation values (xl,...,xM, zl,...,zN) into a vector of virtual reservation
values (wB(xl,a),...,wS(zN,a)) and assigns the N objects to the N traders who
have the highest virtual reservation values. Suppose, for some %,

G(a,;) < 0. As 1 increases from 1 the distributions ETG and arc approach step

functions. Therefore, as with (7.06),

lim G(a, 1) = llm{MIZ wB(x, l)gTa(x)f(x)dx

T+ T¥+®

b _
- Nfa wS(Z, D1 - qTa(z)]h(z)dz}

fb dxF(x) - Nfz* dzH(z) - be dx
x* a x*

M[bF(b) - x*F(x*)] - Nz*H(z*) - M(b - x*) (7.07)

X*M(1 — F(x*)) — z*NH(z*)

(x* - z*)M(1 - F(x*))
>0

because: (a) asymptotically M(1l - F(x*)) 1s the expected number of buyers

whose reservation values are greater than w?;) and are therefore assigned an

object; (b) asymptotically NH(z*) 1s the expected number of sellers whose

reservation values are less than w?;) and are therefore assigned to sell their

objects; (c) M(1 - F(§*)) = NH(z*) > O because the balance of goods constraint

requires that supply equal demand; and (d) x* - z* > 0 1s shown at the proof's
Ba Sa

beginning. The asymptotic normality of A and A and the differentiabiltiy
T T
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of ¥B(+, o) and 95(+, a) 1mply that, as t increases, G(a,t) approaches

lim;,,G(a,7) continuously. Therefore, a 1' must exist such that, for all
T >1', G(a, T) 2 O.

Proof of Theorem 5: The proof is based on an analysis of the asymptotic

properties of the IF constraint, G(a,t) = 0. Recall that, for a given 1, the
ex ante efficient mechanism is the a*-mechanism where a* 1s the root of

G(a,t) = 0. Rewriting (3.01) and reversing its order of integration gives

Gla,t) = Mle(t)pB(t;a,T)dt + NfzJ(t)pS(t;a,T)dt - NK =0 (7.08)

where
1(t) = f: WBlx, DE(x)dx,  J(t) = fE 05(z, Dh(z)dz, (7.09)
pp(xia,1) = dp “(x)/dx, pg(zia,1) = da'*(2)/dz, (7.10)
P U(x) = [T o (tsa,T)de, a"%(2) = [7 pg(t;a,1)dt, (7.11)
K = fz 05(2,1)h(z)dz = b. (7.12)

The functions Py and Pg are probability density functions

for ETa and aTa’ respectively. As the first part of the proof of Theorem 4

points out, ETG and aTa are asymptotically normal distribution functions with

variances that are 0(l/1); thus asymptotically Py and pg are normal

densitles.23
Taylor series expansions around c, the competitive price, may be taken of

I(t) and J(t) and substituted into (7.08):

2
6a,0) = M1 + T'()(t0) + T + R (Do (tia,10dt
2
+ NfZ{J(c) + J'(c)(t—c) + J"(c)% + Rs(t)}ps(t;a"[)dt - NK (7.13)

=0

where I'(c) and J'(c) are first derivatives of I and J evaluated at ¢, I"(e)

and J"(c) are second derivatives, and Rp(t) and Rs(t) are the remainder terms
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for the expansions. Two sets of terms may be dropped. First, a derivation
similar to that of equation (7.06) shows that, for large T,

M2 1(edpg(tsa,m)dt + N2 J(edp (t30,7)dE - NK = 0; (7.14)
therefore these three terms may be dropped.24 Second, the two remainder
terms, Ry and Rg, may be dropped because, for large 1, they are
inconsequential in comparison with the remaining terms. This follows from
three facts: (1) both terms are O[(t—c)z], (11) the densities
pB(-; a, 1) and ps(-; @, T) become spikes centered on ¢ as 1 becomes large and
as a approaches zero, and (11ii) the region of integration 1s a bounded

interval. Integrating each remaining term and dividing both sides by T gives:

ST -y (1 () [RGa,0me] + M7 [GRlay -0 + 02w, 0]]  (7.15)
+ N3 () 2(a,)me] + 237 ([ (2 D-0)" + 05(a,0)])

where ;(G,T) 1s the mean of pB(t; a,T), oé(a’T) is the variance of
PB>» E(G,T) is the mean of Pg» and oé(a,T) is the variance of pg-
Our target is how a varies with 1. Equation (7.15) implicitly defines a

as a function of 1. Therefore let a = a(1), a' = da/dT,

;a = 5x(a,1)/3a, §T = 3x(a,7)/31, etc. Differentiation of (7.15) by 1 gives

- _ 1 30]23 9 }23
MO{I (xaa +xT) +5 T [Z(X(a T)—c)(X a +X ) - a! +— }
2 2
v o [ ]- " - - P aoS ' ‘O’S (7 16)
NO{J (zaa +ZT) +-§-J [Z(Z(G,T)—C)(zaa +zT) +'—5&-a +-§; ]} .

= 0.
where 1 denotes I'(c), etc. The plan 1s to solve this equation for a' and
evaluate it as 1 + = and a = 0. Setting a = 0 1s correct because, according
to Theorem 4, as 1 goes to infinity the ex ante efficient mechanism is the a-

mechanism for which o = 0. Solving for a' gives a differential equation whose
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solution can be approximated for large T.

- —%
Note that, when a = O and as 1 becomes large, X(0,T1) = X~ + c and

7(0,1) = 2% 5 c. Therefore, solving (7.16) gives, for large T,

2 2
_ _ 1 aoB aos
' B MOI XT + NOJ ZT + E(MOI —3—‘[_ + NOJ '5;-) ;
a'(1) = - 5 5 (7.17)
_ _ BoB aos
1] A —- ' JE—
M0I X * NOJ za * (MOI %a * NOJ %a )

We need to integrate its right hand side.

Consider the x and 0% in the denominator. They respectively refer to the

mean and variance of the random variable x(a,T1) whose distribution is BTQ(-).

1
(,Ba

()
Mth order statistic of the virtual utilities of M-1 buyers and N sellers.

Exactly as in the proof of Theorem 4, x(a,1) = [wB]— ) where w?g) is the

Theorem 7 applies to w?;); it 1s asymptotically normal with variance that 1is

0(1/1). We use this fact to pin down the asymptotic behavior of x(a,t).
S] Ba
¢))

The standard result that the asymptotic expectation of

Let z(a,1) = [y —l(w ). Therefore wB[X(a,T),a] =

ws[;(a,T),a] = w?;).

a function of a random variable equals the function of the variable's

asymptotic expectation applies to x(a,t1) and z(a,t). Therefore, for large T,
B~ S~
v [xCa,t), al = v [z(a,1), 2] (7.18)

where x(a,r) 1s the expected value of x(a,t), etc.

For any realization of reservation values, exactly M traders must have

Ba
m*

that the expected number of traders with virtual reservation values less than

virtual utilities less than or equal to the realization of y This means

or equal to w?;) is M. Therefore, asymptotically,
(M - DDF[(x(a,t)] + Na[z(a,7)] = M (7.19)
where F[{x(a,7)] is the probability that a buyer will have a reservation value

(M-1)F[x(a,1)) 1s the expected number of the M-1

such that wB(xl,a) < w?a

M)’
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buyers who will not be assigned an object because their virtual utility values

are too low, etc.
Equations (7.18) and (7.19) implicitly define x(a,t) and z (a,t1).

Holding Tt constant, they may be differentiated with respect to o:

M - l)f;a + Nhz =0

a
2~ .=
_ F o~ 1 f7x - (F - 1)f'x
x + + o o (7.20)
o f 2
f
2% . 's
= i h z, Hh z,
_za+ﬁ+a hl

where H = H(c), F = F(c¢), £ = f(c), h = h(c), f' = df(c)/x;, h' = dh(c)/dzj,

x, = 3x(0,1)/3a, ;a = 32(0,7)/3a, and ¢ 1s the competitive price. The

derivatives are evaluated at o = 0 and c because, as 1 becomes large,

o > 0, x > ¢, and Ea + ¢. Solving the system for ia and evaluating it for

large 1 at a = 0 gives

- NUfH - (F - Dh] o, (7.21)

& Nhf + (M - 1)£2

where K' 1s some constant. Similar calculations show that Ea = K",
agé/aa = 0(1/t), and aoé/aa = 0(1/7t). The denominator of (7.17) is therefore
dominated by constant terms and, for large 1, 1is 0(1).

For large T both sides of (7.17) can be integrated because its

denominator 1is essentially constant:

- ~ 1 B S

' + ' + = 2 3 w__ Y

T _ T MOI ¥ NOJ Zr Z(MOI 3T NOJ 3T )
fw a'(t)dr = - fw 57— dt

_ 1 ag aos

! + ! + = — + .

MT'x + NoJ'z 5(MyI 3 N33 )

(7.22)
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1 - -
- E{Mol'fl XTdT + NOJ' fl szT}
] 2 ] 2
1 w T 98 w T g
- EE{MOI fw 3?—'dT + NOJ fw 5?—dT}

where ;T, z_, aoi/aT, and aog/aT are evaluated at a = 0 and where
T

| ] !

K=MIZK + N.,JK . Therefore, for large 7,

0 0
a(1) = al=) = PMUI'(X(0,1) = X(0,2)) - gNoI'(2(0,7) = 2(0,2))
1. ., 2 2
- 5T (05(0,7) = 0 (0,=))
1 g 2 2
T (o 55(0,1) - os(O,w)) (7.23)
1/2
(¢n 1) 1
o(2 D 4+ ochy
1/2
O((Qn i) ).

This follows from three facts. First, when a = 0, x(a,t) = z(a,1) = wBa and

(M)
lim [w?;)) = ¢. Second, Theorem 7 implies that

1/2
[EQuES - o] = o0y, (7.26)

T

Third, Theorem 4 states that a(=) =

Proof of Theorem 7: A Taylor series expansion of the ex ante expected

gains from trade, T{a(t),t], that an a*-mechanism realizes 1is:
100,7) + (0BT 4 Tra(oy)? CEGRI] (7.25)
o
where (1) € [0,a(1)]. Three facts allow us to derive (7.25). First, for
large 1, the ex post optimal mechanism assigns the N objects to those N agents
whose reservation values are greater than ¢, the competitive price. Therefore
10,1) = [ P(t-)E(D)dt + T8, [S(e-h(B)dt = 0(1) (7.26)
for large 7.

Second, the last two terms on the the right-hand-side of (7.25) represent
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the ex post gains from trade that the ex ante optimal mechanism fails to
realize as a consequence of a(t) being greater than zero. Let S(a,t)
represent these two terms. S may be evaluated, for large 1, as follows.
Recall from the proof of Theorem 4 the meaning of x(a,t) and z(a,t). For
large 1 the expected number of buyers excluded from trading as a increases
from zero to a(t) 1s

TMOIE(G’T) £(t)dt (7.27)
and the gains from trade that are lost from this exclusion are

TMofi(a’T) (t-c)f(t)dt. (7.28)
A similar expression exists for the gains from trade that the o*-mechanism
fails to realize on the sellers' side. Consequently, for large T,

s, 1) = TN, ff( )(c-t)h(t)dt + fi(a’T)(t—c)f(t)dt. (7.29)
z(a,t

Differentiation gives:

éééglll = —tN_[e-z(a,1)Ihiz(a,1)lz + ™. [x(a,1)-clflx(a,1)]x (7.30)
Q 0 a 0 a
and
aZS(d ‘[') - - ' -2 -2
: 2) = — TNO((C - Z)[hzaa + h (za) ] - h(za) ) (7.31)
o

+ (G- Olfx + £ & )T) + £z ).

where z = z(a,1), h = hlz(a,0], z_ = 92(a,t)/3a, 2__ = 322¢0, 1) /302,

h' = dh[z}/dz, etc. Evaluated for large 1 and a = 0 these derivatives are
and
321(0,1) _ 3%5(0,1) - 2 _
- = 5 = T(+N0h(c)(za) + MOf(c)(Xa) ) = 0(1) (7.33)
aa a ' .

because a(t) » 0, x(a,7) > ¢, z(a,1) + c, ;a > K, and Ea > K as 1 > .

Finally, the third fact is Theorem 5's result that, for large T,
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/2

a(t) = o((2n T)l /1).

These facts are sufficient to evaluate the expression of interest:

2
T(0,1) + a(T)ing—’T)+ Sla(o)]’ A T(e(n),T)
| - TleCo),ed _ L ..
TOO T(0,1)
2 2
1 [a(t)]” 37°T(0,1)
" 270, 7 (7.34)
do
1/2 2
_ JolGn 07 /1)) n T
B o(t) 0(r) = 0f 51

which proves the theorem.
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Notes

lother mechanisms besides the one described here exist that are efficient
if no private information exists. All of them break down when private
information is admitted. For example, Dubey's (1982) trading post economy is

not efficient i1f traders' demand and supply curves are private information.

23ee Holmstrom and Myerson (1983) for a definition and discussion of the
three concepts: ex post efficiency, interim efficiency, and ex ante
efficiency.

3Thus a trading mechanism is individually rational if and only i1f the
interim expected utility of every trader is nonnegative.

4The revelation principle has its origins in Gibbard's paper (1973) on
straightforward mechanisms and was developed by Myerson (1979 and 1981),
Harris and Townsend (1981), and Harris and Raviv (1981).

51n auction theory this 1s known as the independent private values
model. See Milgrom and Weber (1982).

6We would like to regard the payments ry and S 3 to be certainty
equivalents of payments that are made only when an individual is involved in a
trade. Such a no-regret property seems desirable, but we have not
investigated the conditions under which 1t can be imposed.

"Note that (2.03) requires a balance of goods only in expectation.
Balance of goods can always be achieved in fact by making the assignments of
the N objects to the N + M individuals correlated across individuals. Thus,
for a given set of declared valuations, buyer 1 can be assigned an object with
probability p; through an independent draw of a random number in the [0, 1]
interval. Buyer 2 can next be assigned an object with probability ps through
a second independent draw, etc. This process of assigning objects through
independent draws first to the M buyers and then to the N sellers can be
continued until either (a) all N objects have been assigned or (b) K objects
remain and exactly K buyers and sellers remain to have an object assigned to
them. If eventuality (a) occurs, then the remaining buyers and sellers should
be excluded from receiving an object. If eventuality (b) occurs, then the K
remaining buyers and sellers should each receive an object. This rule
guarantees that exactly N objects are distributed. The dependence that this
rule induces between the probability of buyer 1 being assigned an object and
seller N not being assigned an object has no effect on our results.
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8Harsany1 (1967-68) 1introduced these concepts.
9The assumption that trader's utility functions are linear in money 1is
important in this simplification. Maximization of the expected gains from
trade i1s dependent only on the final allocation of goods, not on the payments
among the traders. Therefore the payment schedules for a mechanism are
important in our problem only insofar as they affect the constraints of
individual rationality and incentive compatibility.

10Myerson (1984) 1introduced the concept of virtual utility. A virtual

reservation value 1s a special case of virtual utility.

e several elements of  have the same value so that it is ambiguous
which buyers and sellers should be classified as having virtual reservation
prices as ranking within the top N, then the probability schedules should
randomize among the several candidates so as to guarantee that exactly N
traders are assigned an object. Thus 1if seller 2 and buyer 3 are tied for
rank M, then each should be given a nonindependent probability of .5 of
receiving an object in the final allocation.

12Detalls are in Gresik and Satterthwaite (1983).

B3yi111am Rogerson suggested to us that the fixed price mechanism is an
lnteresting alternative to the double-auction. See Hagerty and Rogerson
(1985) for a discussion of its properties for the two trader case.

14The competitive price ¢ is defined in Section 2 as part of the
definition of a regular trading problem.

15This follows from the fact that the number of buyers who wish to trade
at the fixed price c is a binomial variable that can be approximated
asymptotically by a normal distribution with standard deviation 0(c1/2). This
calculation i1s a special case of Bhattacharya and Majumdar's (1973) Theorem
3.1.

16Ledyard's argument as it stands does not address the focus of this
paper: how does a Bayesian equilibrium converge towards the competitive
allocation as the 1initial set of traders i1s replaced repeatedly.

177he 1 subscript i1dentifying the buyer is suppressed because, given our
assumption that each buyer's reservation value is drawn from F and given our

focus on a*-mechanisms, every buyer's p'% distribution is identical.
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18The first order statistic is the smallest element of the sample, the
second order statistic is the second smallest element, etc.

197he meaning of the p subscript on ng is made clear later in this
section.

20506 Theorem 9.2 1n David (1981, pp. 254-255) and Theorem A of Section
2.3.3 1in Serfling (1980, p. 77).

2lgee Hall (1978), David and Johnson (1954), and expression 4.6.3 1in
David (1981, p. 80).
B

22The inverses exist because regularity implies monotonicity of
and 'S

235ee footnote 24 for a qualification of this statement.

24The reason that we must make (7.14) conditional on T being large 1s
that qTa(a) > 0 and pTa(b) <1 for small 1, 1.e., they are improper
distribution functions for small 1. As 1 becomes larger, p'®(a) » 0 and
pt®(b) » 1 very quickly. Specifically, Theorem 6.1 in Gresik and
Satterthwaite (1985) implies that both pT“(a) and 1 - pTa(b) are 0(e”T)., For

large 1 these quantities are negligible and we may neglect them.
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