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ON COMMUNICATION. BOUNDED COMPLEXITY AND COOPERATION

Abstract

Neyman has shown that bounded rationality can lead to cooperation in the
Finitely Repeated Prisoner's Dilemma Game, if the game is conducted by finite
automata of fixed size. We view Neyman's work from the perspective of
communication. In particular we present an extremely simple, universal and
effective communication protocol that can be used for virtually any finitely
repeated game, and for any set of individual rational actions, yielding this
set as an equilibrium, provided a wide enough communication channel is
available. When the communication channel is narrow, say binary, we give
tight upper and lower bounds on the number of states which still allow for
cooperation. The communication scheme can be used in situations other than
finitely repeated games, in general allowing players to effectively diminish

the computational power of their opponents.



The effect of bounded computational power on the behavior of players in a
competitive situation has been recently analyzed in a variety of settings
[A2, AR, B, XS, MW, N, R]. 1In particular, Neyman [N] has shown that bounded
complexity can lead to cooperation in the Finitely Repeated Prisoner's Dilemma
Game (FRPDG) where the play is conducted by finite automata of fixed size. 1In

this note we view Neyman's results from the perspective of communication.

Specifically, we demonstrate how the ability to communicate, in the context of
bounded rationality, enables players to reach equilibria which are not
attainable otherwise. To demonstrate the broad principle, we start with the
following example.

Consider a card game such as "Black Jack.” It is well-known that players
who "count” in such games can achieve higher payoffs than could be sustained
in a long term equilibrium. One could prevent counting by frequent
reshuffling of the deck or by expelling apparent offenders, but there is also
another way. Specifically, one can require players to perform, from time to
time, some simple memory or arithmetic tasks such as repeating long sequences
of digits, adding several numbers, etc. Such tasks, while easily done on
their own, can be designed such that they are excessively difficult if one is
also concentrating on counting cards. Thus, a successful performance of the

task can serve as a proof that player is not counting. On the whole, the

existence of such a proof can benefit all parties involved.

We follow in this note closely the basic framework and notation of Neyman
[N]. The only new feature we add here is equipping the players with a formal
channel of communication which allows them to send messages to each other,
independently of the actual moves of the game. As will be revealed shortly,

this ability offers several advantages. First, it allows players to achieve



complete cooperation, avoiding the waste which is inherent in the scheme of
[N}. Also, the approach can yeild extremely natural and simple strategies,
employing an effective communication scheme which is independent of the game
being played and which can be used universally in situations in which it is
desirable to waste a certain fraction of one's opponents' computational
power. As an added bonus, the analysis is quite simple and one can get exact
(as opposed to asymptotic) results.

We begin by introducing the results of [N]. 1In particular, consider the
Finitely Repeated Prisoners' Dilemma Game (FRPDG), whose basic stage game is

given by the matrix G below.

Dy Fa
D; 1,1 4,0
F 0,4 3,3

Let GN denote the N stage repeated version of G. For a general repeated game,
denote the set of actions available to a player at each stage by Ai, to his
opponents by A_i, and to the entire set of players by A. A finite automaton
for player i is a four-tuple Fal = <Si,qi,fi,gi> where S1 is a finite set,

qi € Si, £l si 5 ALl and gi: st x a7t 5 si, Intuitively, st is the set of

i

possible states of the automaton, q! is the initial state, fi(q) is the action

taken by player i when in state q, and gi describes the transition from state
i

to state; if at state g the other players choose the action tuple a™ 1, the

automaton's next state is gi(q,a—i). The size of the finite automaton is the



number of states.

For the prisoners' dilemma game, let the possible actions Al in each
stage be F and D ("Friendly" and "Deviate”). For any N = 1,2,... and positive
integers sj,sy, define the two person game GN(Sl,sz) as follows: the pure
strategies of player i (i = 1,2) are all the finite automata of size sj. We
use as payoff for the repeated game the sum of payoffs in each of the
stages. However, the results hold virtually unchanged for any reasonable
definition of payoffs, for example discounted sum. It is well known that the

only equilibrium strategy in 6N is to play D continuously. However, for

GN(Sl,sz), Neyman has shown:

Al If 2 < S1, 89 < N - 1, then there are equilibrium strategies in GN(sl,sz)
which result in the play (F,F) at each stage.
A.2 If either s; or sy is at least N, there are no equilibrium strategies in

GN(sl,sz) which result in the play (F,F) at each stage.

Another simple observation of a similar nature is in the spirit of Proposition

2.3 of Megiddo and Wigderson [MW]:

A.3 If both s, and sy are at least N, then no fixed trajectory of moves,
except for the constant play of (D,D), can be achieved as a result of an

equilibrium of GN(sy,sy).

The main contribution of [N] is an elegant and surprising result for the case
of machines with more than N states. 1Its effect is, asymptotically, to

mitigate A.2 and A.3 considerably:



A.4 For any integer k there is Np, such that if N > Ny, and
Nl/k < 81,89 < Nk, there is a mixed strategy equilibrium in which the

payoff to each player is at least 3 - 1/k.

A,]1 is due to the fact that the only possible profitable deviation from the
friendly strategy is at the last stage of the game where no reprisal is
possible; however, a machine with less than N states cannot recognize that
stage and thus cannot implement such a deviation. The basic idea behind A.4
is the following. Each player (machine) plays according to a complex pattern
of F's and D's which requires it to spend a large fraction of its
computational resources (states) just for determining at each stage what is
the next move. Any deviation from the required pattern immediately leads the
opponent to stop cooperation and play D throughout. The pattern of F's and
D's is chosen so that the number of states which remain free is seen to be too
small to allow for deviating precisely at the last stage (counting to N).
This leads naturally to the basic idea of this note, namely, equipping
the machines with a separate channel of communication which is independent of
the actual "play” of the game. Specifically, at each stage of the game, in
addition to choosing an actual action aj, each machine also sends a message

chosen from a given domain, M. Both the action, a and the message, m;

i» i»
become available to all players and both could be used as a basis for their
response in subsequent stages.

We start the analysis by considering the case of a wide communication

channel (large message space). Subsequently, we analyze the case of a small

(binary) message space.

2, Large Message Space

We address in this section the case of a large message space. We start



by analyzing the situation for two players, playing (FRPDG).

A.5 Let Sg > 81 > 2. Then, for N > max { 3, 2.5 + (s2 - 2/'M| } there
exists an equilibrium of GN(sl,sz) which results in the constant F play

for both players.

Proof: Let M) = M, and My ¢ M be two specified subsets of the message space.

Each machine i chooses randomly a message m_; € M_; and sends it to its

-i
opponent at stage 1, together with a friendly F move. The receiving machine

(machine -i) is expected to repeat message m_ together with the play F, at

i
each subsequent stage of the game. Any other combination of message-action
pair, at any stage of the game, causes machine 1 to stop cooperation and play

D through the end of the game. To show that these strategies are in

equilibrium, we have to demonstrate two facts:

(a) Each player can implement his part of the strategy using a machine
with s; states.
(b) No machimre with s; states can achieve a higher expected payoff by

using a different strategy.

First, we note that player i can implement the strategy using a machine
with IMi‘ + 2 states: one beginning state, one "deviating" state (to which
the machine reverts if it detects a deviation by its opponent), and a set of
|Mi| states, one for each possible message sent to him by his opponent. Next
examine the number of states needed to implement the strategy of deviating at
the last stage without incurring any risk of being detected by the opponent.

By the Myhill-Nerode Theorem (see, e.g., [AHU]), this number is



equal to the different number of equivalence classes of histories faced by
each player, where two histories are called equivalent only if any possible
continuation of these two histories requires the same response for both.

Since a player deviating at the last stage is effectively counting to N, no
two histories of different lengths

1 < t7 < tgp < N-1 could be equivalent; also, for each stage 2 < t < N - 1,
there are lMi‘ possible nonequivalent histories, one for each possible message
received by player i. This comes to a total of 2 + (N - 2)|Mil. A player
with a smaller number of states, which is nevertheless counting to N, must run
a certain risk of sending the wrong message at some stage during the game,
causing his opponent to stop cooperating. Such a risk is worth taking only if
it results in expected payoff of more than 3N. A short reflection will reveal
that such a risk should be taken only at the N - lst stage, and only if the
probability of being detected does not exceed 1/2. This allows one to count
with up to (1/2)|Mi| fewer states, i.e., a total of at least

2 + (N - 5/2)|Mi|. We thus need to show that Mj can be chosen such that

IMiI +2< 853 <2+ (N- 5/2) !Mil. This can be done by letting 'Mi|

smallest integer such that s; < (N - 5/2) lMi" {1

To demonstrate the scope of A.5, consider the message space consisting of
potential telephone numbers, i.e. 7 decimal digits. Any pair of machines with
3 < 81 < sy states for any length of game N > 2.5 + <52 - 2)10_7, can achieve
complete cooperation using the very simple protocol of A.5.

It is instructive to examine the role of randomization in the equilibrium
achieved in A.5. As can be easily verified, it is limited to the
"communication” part of the strategy (namely, a random choice of a message).
It is not possible to remove randomization completely, even for a large

message space M. In fact, one can establish the following analog of A.3:



A.6. If both sy and sy are at least N, the only pure equilibrium of GN(sl,sz)

is the constant D play for both players, even if messages are allowed.

Proof: Any predetermined set of moves and messages, of size not exceeding N
can be achieved with N states by a machine by simply labeling the states
l1,...,N, and defining the function f so that the right action-messsage is sent
at each stage. In particular, it is always possible for each machine to
deviate at the last stage, and the standard argument of the finitely repeated

game applies. 1]

Clearly, A.5 can be generalized to a general two person finitely repeated
game. It can be interpreted as asserting that, in the presence of a wide
communication channel, cooperation can be maintained in the sense that the
constant play of any pair of actions whose payoffs are above the individually
rational levels can be made into an equilibrium. For the case of several
players, we basically have the same result, provided some joint randomization,
[Al}, can be achieved prior to the beginning of the game. Below we
demonstrate this result for games with at least four players. Specifically,
let V be a given r-person, r > 4, game and let F = (Fl,...,Fr) be a set of

actions. For each player i, let P; = (Pl

is+++,P]) be an action set which

achieves player i individually rational level. We refer to the set P; as
"punishment” for i. We assume that for each player, either Fl ig a best
response to F 1 (such players have no incentives to deviate from F), or that
his payoff from F exceeds his individually rational level (such players can be
"punished”). For each player in the latter set, we assume that the gain from

deviation (relative to the payoff from F) is at most equal to the loss due to

punishment. (This assumption is made for convenience and so that the results



parallel those of A.5. In its absence, some of the constants of A.7. may have

to be slightly modified.)

A.7: Let 8. > Sp] > eee 2> 8] 2 2r+ 1, r > 4. Then for
N >max { 2.5 + (s1 - 2)/(s1 - 2r), 2.5 + (sr - 2)/|M| } there

exists an equilibrium of Vn(sl,...,sr) which results in the constant F

play.

Proof: 1In the action space, each player is expected to play constantly
according to F, with any deviation resulting in all players reverting to the
punishment strategy P;.

In the rest of the proof we examine the communication protocol. Let the
indices 1,...,r be regarded as integers modulo r, so that one could think of
the players as positioned on a circle. For each player i, we nominate a
committee, C(i), composed of all players excluding i himself with player i - 1
acting as chairman. Let M; c M be a specified subset of the communication
domain. Before the game starts, each committee C(i) agrees on a random
message, My € M;j, unknown to i. At stage one, each chairman i - 1 announces
the message my chosen by the committee he chairs. In subsequent stages, each
player is expected to repeat the message announced by his chairman. If i
fails to repeat the correct message at any stage, then all players revert to
P;. 1If a chairman i - 1 sends the wrong message, mi # my in stage 1, then all
players in C(i) send an agreed upon message mz, which identifies 1 - 1 as an
offender. 1In the subsequent stage, all players punish i — 1 by playing
Pi_1. If the members of C(i) do not agree on the message mz, one uses
majority rule. 1In case of more than one violator, one uses any consistent
tie—-breaking rule, e.g., always punish the lowest indexed offender. The

number of states required for implementing this protocol is as follows. Each



nondeviating player needs one starting stage, a set of [Mil playing states, a
set of r punishing states, and a set of r — 1 states for identifying a
deviating chairman. This comes to a total of |Mi| + 2r states. On the other
hand, a player who contemplates counting to N needs at least 2 + (N - 5/2)|Mi|
states. Thus, the theorem is proved if subsets M; ¢ M, i = 1,...,r, can be

chosen so that, for each player:
[Mi| + 2r < 55 < 2+ (W - 5/2)|my|

This can be achieved by letting lMi| be the smallest integer such that the

right inequality holds. []

To demonstrate the scope of A.7, consider the case of 10 players. Then,

for |M| = 107, $1>25 one can get cooperation for N>5 + (s, ~ 2) 1077,

3. Binary Message Space

We now consider the case of a small message space, say M = {0,1}. We
refer back to FRPDG with sy > sy. Naturally, one can "blow up” the size of M
by using messages which extend throughout several stages of the game. Using
strings of length ¢, one gets a message space of size 22, so that one expects

a version of A.5 to work as long as sy < 20(N). This is basically true:

(sl—l)/2 .
A.8. Let 6 < sy < sp <2 + Then, if

N Z_min { sl , 4 log 52 + 7 } there egists an equilibrium in GN(Sl,sz) which
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(Sl“l)/z
A.8. Let 6 < sy < s9 < 2 . Then, if

N > min { Sy > 4 log s, + 7 } there exists an equilibrium in GN(sl,sz) which

2

results in the constant F action at each stage.

Proof:

We analyze below the communication protocol.

(a) First, assume that s; < N < sy, i.e., player 1 cannot count to N.
Thus, we need not worry about him deviating at the last stage. To make sure
player 2 does not deviate, player 1 sends k binary bits, my,...,m for the
first k stages of the game, repeating these bits in a cycle after that (i.e.,
in stage kr + j the bit my is sent again. Player 2 is required to send O for
the first k periods, and then repeat the cycle of messages, mj,ee.,m to the
end of the game. The number of states required by player 1 for this policy is
2k + 1 (k states for the first k stages, additional k states for the cycle,
and one state in case the opponent deviates). On the other hand, player 2
needs at most 2 + 2K states if he is not counting and at least
(N - 2k + 2)2k - 2 states if he wishes to count to N without any risk of being
detected. (1 + 2 + ... + 2¥71 states for the first k stages, in which the
message is being transmitted, ok=1 4 9k-2 4 .eoe + 2+ 1 for the last k stages,
and 2K states for each of the middle N - 2k stages. Allowing for a risk of at
most one-half of being detected before stage N reduces this number by at most

2k/2.) Thus, if an integer k >2N can be found such that

2+2k<32<(N—2k+1.5)2k—2

I + 2k < sy
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then the cooperative strategy is in equilibrium. A choice which works is k =
l_}og(sz - 2{_'.

If 81 > N, then both machines need to monitor each other. Let K and k be
constants to be determined later such that K » k. Let x and y be random
binary vectors of sizes k and K and chosen by player 2 and 1, respectively.

In stages 1,...,K, player 1 sends the message y and player 2 sends the message
a,x, where 6 is a sequence of K - k zeroes. Then, player 1 is expected to
repeat x and player 2 is expected to repeat y cyclically throughout the

game. The number of states needed for doing this is (k + 1)-2K and

(K - k) + (K + 1).2k by players 2 and 1, respectively. (Player 1, for
instance, can achieve this with the following states: K - k for the first

K - k stages in which he is receiving no information; 1 + ... + 2k=1 for the
following k stages, in which he is gradually being informed about the message
X} K+2K for the following N - K stages, in which he needs to monitor y and
repeat %, and 1 state in case player 2 deviates).

On the other hand, if a player expects to increase his expected payoff by
“"counting” to N, then the required number of states is at least
(N - 2k + 1.5)-2K - 2 for player 2 and at least

(N - 2K + 1.5)2k + 2(K - k¥ ~ 1) for player 1. Thus, the theorem is proved if

we can find k and K such that

(R + 102K+ (K - k) < sy < (N = 2K + 1.5)+2K + 2(K - k = 1)

(e + 1)e28% ¢ 5, < (N - 2K+ 1.5).2K - 2

This can be achieved by letting K be the largest integer such that
(k + 1)2K ¢ s, and k be the largest integer such that

(R +2)28+ (K - %) < sy ]
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The protocols of A.5, A.7 and A.8 are extremely simple, basically
requiring each player to repeat indefinitely a sequence of bits sent to him at
the beginning stages of the game. Naturally, one can devise much more complex
protocols, which should be harder to compute. A natural question to ask is
whether a complex protocol could be used to “"waste” more states than allowed
by A.8. This may be the case,but the room for improvement is rather small.
Below we establish that O(ZN/Z) for M = {0,1} is the maximal number of states

which still allow cooperation.

A.9. Llet K, = 2-2N/2 - 2 for n even and 3.2(N-1)/2 _ 5 for n odd. Then if
sy9 > K, there exist no pattern of communication over M = {0,1} which yields
the  trajectory (F,F) as an equilibrium. In fact, the only fixed trajectory

which can be in equilibrium is the constant (D,D) play.

Proof: Denote the history of messages sent by player i up to stage t by hi.
We can think of h% as an integer in the range O to 2t=l _ (i.e., the integer
whose binary representation is h%). Let the communication protocol be
summarized as follows. 1In stage t, if the messages sequence, h;i has been
observed by machine i, it is required to respond with message

gi(h;i) e {0,1}. Clearly gi can be implemented directly by f1 1f machine i
possesses one state for each possible message history. That requires a total
of § = 'gl 2j—1 = 2N - 1 states. To get away with fewer states, we have to
combineJ;everal equivalent histories into each state. This can be done as
follows. Obviously, for the last stage a player needs to keep only one state,
since he plans to deviate anyhow and the message he sends is of no
consequence. For the N - 18t stage a player needs only two states, one "for

each” of the two possible messages O and 1. For the N — 2 stage 4 states are

needed, representing the message to send in that stage and which of the two
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possible N — 1 stage states to enter upon receiving a message of 0 and 1 in
state N - 2. Continuing in this fashion we get that the total number of

states required is

2(N/Z)—l + 2(N/Z)-l + /2

1+2+ ... ...2+1=2(2N - 1)

2(N—1)/2

for n even, and 3 . ~ 2 for the case of n odd. 1]

We note that for the case of sy < N, one can acheive cooperation as long
as sy < 0(2Y/2) yhich is the same order of magnitude as the upper bound of
A.9. Thus we have a rather sharp definition of what can or cannot be
achieved, using a binary communication protocol. It is still an open question
whether for the case of s; > N, one can achieve cooperation for the case of
sy > O(ZN/4). I conjecture that this can be done iff

log s; + log sy < O(N/2).
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