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L. Introduction

In this paper we present a model of the demand for differentiated
products which has as special cases two popular models used to analyze welfare
and competition in monopolistically competitive markets. In one model
aggregate demand for a group of products is generated by consumers distributed
uniformly on a circle; the different products are available at stores located
in various places on the circle; except for location all products are
identical. The second model does not have such an appealing physical
description; aggregate demand for a group of commodities is simply a function
from the nonnegative orthant of ® into itself. The physical description of
the first model permits a straightforward analysis of competitive equilibrium
given specifications of utility functions and costs of producing transported
products. Salop (1979) provides an exemplary modern analysis. This model is
attractive both because demand and costs have a definite (and easy to
visualize) physical foundation and because it is relatively tractable. The
amount of product variety is easily identified with the number of different
stores located around the circle. One of the most compelling aspects of the
model is that it permits strong conclusions about the relationship between the
optimal amount of product variety and the amount which will result from the
operation of a (monopolistically) competitive market. In many plausible cases
competition will produce too much variety. Salop (1979) proves this for the
case of linear transportation costs. Such a definite conclusion raises
questions of robustness. Almost simultaneously Spence (1976) and Dixit-
Stiglitz (1977) developed models of monopolistic competition which showed that
the "too much variety” conclusion did not necessarily hold in general.

Standard procedure for analyzing market demand is to specify the demand



functions of the individuals in the market and then to aggregate to obtain the
market demand function. This is the way in which Salop (and his predecessors)
analyzed competition on the circle. Spence and Dixit-Stiglitz did not do
this. Instead they simply wrote down an aggregate benefit function which
showed how social welfare depended on the amounts of the various products
produced. It is easy to obtain market demand functions from this aggregate
benefit function. Spence assumed a constant marginal utility of income so
that demand functions are derivatives of the aggregate benefit function.
Dixit-Stiglitz allowed for a diminishing marginal utility of income but the
analysis is the same in spirit. Both Spence and Dixit-Stiglitz are silent on
the origin of the aggregate benefit function. Spence says nothing and Dixit-
Stiglitz (p. 298) state only that their utility function "can be regarded as
representing Samuelsonian social indifference curves, or (assuming the
appropriate aggregation conditions to be fulfilled) as a multiple of a
representative consumer's utility.”

While mute on the economic foundations of the aggregate benefit function,
both Spence and Dixit-Stiglitz analyzed the econowmic consequences of the
mathematical properties of the aggregate benefit function. Because symmetry
encourages analysis, Spence and Dixit-Stiglitz paid particular attention to
the case where the benefit function (and the resulting demand function) was
symmetric. Note that demand functions and welfare functions are not symmetric
in the model of competition on a circle. 1f, for example, only two of N
possible stores are operating, it matters whether the two stores are next-—door
neighbors or whether they are as far apart from each other as possible. This
violates symmetry, which means roughly that all that matters for the
determination of prices is the frequency distribution of amounts which each

store sells and not how these amounts are allocated to the different stores.



Spence and Dixit-Stiglitz were able to show that the conclusions reached
in the model of competition on a circle were not robust, that in equilibrium
there could be, depending on the form of the demand function, either too many
or too few varieties produced.

The idea of starting the analysis with a particular multiproduct demand
function has proved a fruitful one. Variants of Spence and Dixit-Stiglitz
have been used to analyze many economic problems, including trade and
technology transfer (Krugman, 1979; Feenstra and Judd, 1982), optimal tariffs
(Venables, 1979), patent policy {(Judd, 1985), public finance (Atkinson and
Stiglitz, 1980, p. 208-217), and the incentives for merger {(Deneckere and
Davidson, 1985). Special cases of the model, in particular the so-called CES

case where the aggregate benefit function has the form,

X
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are tractable and lead to strong conclusions. Since this model is so
attractive, it is natural to ask (as Spence and Dixit-Stiglitz did not) what
lies behind it. The model's developers did not specify what distribution of
tastes would give rise to the general symmetric demand function D(x). This
problem motivates the recent papers by Sattinger (1984) and Perloff and Salop
(1985). Each of these papers describes probability models which give rise to
symmetric demand and welfare functions. The idea in each of these papers is
that tastes are random. In the Perloff-Salop model the utility which an
individual gets from a particular product is a random variable; the utility
the same person gets from another product is also a random variable with the
same distribution. These two random variables (and the random variable which

is the utility from any other actual or potential product) are independently



distributed. By changing the distribution of this random variable one gets
different specifications of the model. Using a similar model Sattinger shows
that if utility has a Pareto distribution then one obtains demand functions
which look very much like those Dixit and Stiglitz obtained from the CES
benefit function-—the special case which has figured so prominently in
applications. Like Spence and Dixit-Stiglitz, Sattinger shows that his model
can lead in equilibrium to the provision of too few or too many products;
Perloff and Salop do not treat these welfare issues.

Although this work does explain concretely what could give rise to a
symmetric model, it does not clarify the relationship of the symmetric model
to the earlier model of competition on the circle. The aim of this paper is
to do precisely that. Th?t is, we will describe a single model which has as
special cases the model of competition on a circle and the symmetric models of
Spence and Dixit-Stiglitz. We think our model explains why the competition on
a circle model produces too many brands in competitive equilibrium while the
symmetric model does not. The reason is that the symmetric model is much more
competitive than the competition on the circle model; other things equal,
equilibrium prices and (short run) profits are lower in the first model than
in the second. Since (short run) profits are needed to cover fixed or set-up
costs there are fewer stores or brands in zero profit equilibrium in the
symmetric model than in the other model. Welfare analysis in the two models
is different also. 1In the model of competition on a circle, there is a sense
in which customers are quite similar. A few stores can efficiently supply
most customers; the social gains from additional variety thus fall off
quickly. In the symmetric model, tastes are very different; regardless of how
many different varieties are marketed, some group will always benefit

substantially from the introduction of a new variety. Other things equal the



benefits from additional choice fall off more slowly.

A short way of describing our purpose in this paper is to say that it is
to make precise this intuitive argument by giving meaning to the phrase "other
things equal” in the preceding paragraph. In the next section we set out our
basic model. 1t is a wmodel most easily described in discrete terms where
there are a finite number of goods and types of customers. This discreteness
allows us in section III to use linear programming to characterize the
relationship between demand and welfare in our model. 1In sections II and IV,
we show how special cases of our model give rise to the demand functions
associated with competition on a circle and with the symmetric representative
consumer. While discreteness is attractive for some purposes, it makes
analysis of welfare and competition clumsy. 1In sections V and VI we show how
a limiting version of the model may be derived in which the number of
potentially different brands is infinite. This limit model gives rise to
exactly the same demand and welfare functions as used in the analysis of
competition on the circle and in the Perloff-Salop version of the
representative consumer model. These sections are quite technical and are
good candidates for casual reading. 1In section VII we use the continuum model
to show both that (for some attractive cases) symmetric models are more
competitive than models of competition on the circle and that the social value
of additional variety is greater in the symmetric model than in the model of

competition on the circle.

ITI. The Discrete Model

A. Generalities

Our model is one of a market for a single good. It is a partial
equilibrium model in that we consider interaction with other commodities in

only the most rudimentary way--we assume, as does Spence, a constant marginal



utility of income; the generalization to a diminishing marginal utility of
income ; la Dixit-Stiglitz is straightforward. The good sold on this market
is lumpy and can be consumed only in integer units. Each consumer can
consume, at most, one unit of the goods in question.

Suppose that there are T possible types (or brands) of the good: types
are indexed by t running from 1 to T. It may aid the intuition to think of
the market for washing machines. Each consumer must decide whether or not to
purchase a washing machine; if he purchases one he must decide what brand to
buy. The consumer decides what to do by computing costs and benefits of each
choice and maximizing. Our partial equilibrium assumptions give this problem
a particularly simple structure. Since marginal utility of income is
constant, a consumer's preferences are completely described by the dollar
value of consuming a particular type of washing machine. Thus, for consumer
i, bj, is the benefit which consumer i reaps from consuming type t. If o is

the cost of type t, he will consume s if s = argmax(bit - pt) and

b 2 0.

is 7 Ps
The list by = (bil,biz""’biT) is a complete specification of consumer
i's preferences. 1t has two, separable, aspects; one aspect is ordinal, the
other is cardinal. The ordinal aspect of preferences is the ordering of
brands. Let di(l) be i's most preferred brand, 01(2) his second most
preferred brand, and so on up to di(T), his least preferred brand. The list

of brands in order of preference, o, = (Gi(l),...,ci(T)), is a permutation of

i
the first T integers. The permutation o; has an easily interpreted inverse.
Let m; satisfy o;(m;(t)) = t, for t € {1,2,...,T}; then m;(t) is the rank
which customer i gives to machine t. 1If ni(7) = 2, then brand 7 is i's second

most favorite brand. The permutations oy (or ni) comprise an ordinal

description of i's preferences.



The second, cardinal, aspect of preferences concerns how satisfaction
changes as consumer i moves from his most to his least preferred brand. Let
Vi(k) be the utility which consumer i gets from consuming his kth favorite
brand. Clearly V;(k) is a decreasing function of k. We will choose units so
that 1 > V;(1). Furthermore, the Vi(k) are nonnegative as we are measuring
utility in dollars. We illustrate the relationship of the two aspects of

preference by writing

(1) bit = Vi(ni(t)).

In our model we assume that all consumers have the same kind of cardinal
preferences but that their ordinal preferences differ. Everyone agrees about
the value of the best, the next best, and the worst washing machine. People
disagree about the identity of the best, the next best, and so on. This means

that we can remove the subscript i from V in (1) and write

(2) bit = V(ni(t)).

For an example of a model which gives rise to preferences of the sort,
consider a circle of circumference 1. Store t is located at points
(2t - 1)/2T, t = 1,...,T. Consumers of type i live at points [2(i - 1)/2T],
i=1,2,...,T. Stores supply (on an f.o.b. basis) washing machines of the
same kind. See Figure l. A washing machine is worth 1 (monetary) unit to a
consumer when installed. Consumers pay transportation costs which depend on

the distance from the store to their home measured in the clockwise

direction. 1If ¢ is an increasing function which gives delivery costs as a

function of distance, and if T = 3, then



by =1 = &(1/6), by, = 1 = &(3/6), byy = 1 — &(5/6)
by; = 1 = &(5/6), bypy = 1 ~ &(1/6), bjz = 1 - &(3/6)
by = 1 = &(3/6), b3y = 1 ~ &(5/6), by =1 = &(1/6)

This fits the model with

V(1) =1 - ¢(1/6), V(2)

!
—

= ¢(3/6) and V(3) =1 - ¢(5/6)

as the utility which consumers get from consuming their first, second, and
third choices.

This model is considerably less competitive than the standard model of
competition on the circle. Suppose that all stores are charging the same
price. Then customer 1 will buy from store 1, customer 2 from store 2 and
customer 3 from store 3. Suppose store 1 attempts to gain more customers by
lowering its price. No consumer is just on the margin; a small price decrease
will attract no customers. To attract customer 3 store 1 will have to lower
its price enough to compensate for an increase in transportation costs from
&(1/6) to ¢(3/6). To lure customer 2 away from store 2 the price decrease
will have to make up for an increase in transportation costs from ¢(1/6) to
$(5/6). 1If deliveries could be made in either direction then the model would
be more competitive. But when deliveries can be made in two directions then
the function V(+) is no longer strictly monotonic; consumer 1l is then
indifferent between purchasing at store 1l and store 3.

However, this does not seem to be a particular problem. A little
reflection should convince the reader that the development of our model of

consumer demand in no way depends on the monotonicity of the value function.



If V(*) is any function mapping T into {0,1] and m is a permutation of

T = {l,...,T} then V(m(t)) is the value which a consumer of type 7 places on

brand t. Since we are free to pick V(¢) we will, in section VI, pick V(*) to

have a form which leads to the standard model of competition on the circle.
For this is suffices to have V(t) be an increasing function of the

distance of t from the midpoint of T, m(T) = (T + 1)/2. Assume for simplicity

that T is even. Let V(t) =1 - &(It - m(T)|) where & is an increasing

1 2 T-1

35 s 5 } to [0,1]. & represents delivery or

function from {
transportation costs which are either real or psychological. We can further
refine our model by defining transport costs in a way which does not depend on

the value of T. Let
-1 - t_1
(3) v(e) = 1 - ]z - 5]

where ¢ is an increasing function from [0, 1/2] to 1. Again ¢ is a transport
cost function. In the sequel we will use this specification frequently. If
¢(*) is linear we say transport costs are linear; if ¢(°*) is convex we say
transport costs are convex.
As we indicated, a customer type is identified with a permutation of
T = {l,Z,...,T}. As there are T! distinct permutations there are T! distinct
types of customers. !
The demand side of the market is determined completely by a listing of

the numbers of customers of each type. Let p; be the fraction of consumers ir

the market with preferences of type i. Then p = (ul,...,uT|) specifies the

lThis is somewhat of an oversimplification. When V(+) has the form of
equation (3) some permutations give rise to identical demand functions. This
point is of no importance in the sequel and we shall ignore it.



- 10 -

structure of demand. More abstractly, demand is represented by a measure on

the set of permutations of T.

B, Examples

1. The Symmetric Case

The perfectly symmetric model of Spence and Dixit-Stiglitz results when

all preferences are equally likely, that is when

(4) b= Tl =1,

In section IV below we show formally that (4) gives rise to demand functions

which are symmetric.

2. The Case of Competition on the Circle

Now we examine demand structures, specifications of p, which lead to the
model of competition on the circle. It is best to start with an example.
Suppose that T = 6 and let p = (1,2,3,4,5,6) be the identity permutation.
According to (2) this permutation represents the preferences of someone who
lives halfway between stores 6 and 1 when stores are arranged on the circle as
in Figure 2. Let { denote the shift operator so that Z(p) = (6,1,2,3,4,5).
Then L(p) represents the preferences of someone who lives between stores 5 and
6 on the same circle. Continuing Cz(p) = (5,6,1,2,3,4) is the preferences of
the person living between 4 and 5; C3(p) lives betwen 3 and 4, Ca(p) between 2
and 3, and Cs(p) between 1 and 2. With Cé(p) = p we have literally come full
circle and are back home again between 6 and 1. The permutations Ci(p),
i=1,2,...,6 constitute a rotation group. If all elements of the rotation

group contribute equally to demand so that



(5) wlctr =1, 1= 1,00t

the demand is as in the standard model of competition on the circle. Notice
that only some permutations get positive weight in this scheme. The
preference of someone with permutation (6,2,5,3,1,4) cannot be represented in
terns of a location on the circle of Figure 2. 1In the sequel we define
competition on the circle as preferences which can be represented in the form
of equation (5) for some permutation p. We will also speak of the set of
permutations Ci(p) as the rotation group. For most purposes the identity of
the permutation p which generates the rotation group is immaterial and we will

take p to be the identity.

This completes the development of the demand side of the model. Supply
is very simple; it is a list of the amount of each type of brand available.

Thus supply is represented by a vector x € R,

III. Equilibrium and Welfare

With this specification of the market and the parameters which determine
supply and demand, we can ask (i) how supplies should be distributed to
maximize welfare; (ii) how a competitive process would distribute supplies;
and (iii) what prices are determined in the competitive equilibrium. As is
often the case, considering a particular maximization problem (and its dual)
provides answers to all three questions and shows once again that competition
will allocate resources efficiently.

The problem of allocating supplies to customers so as to maximize
consumer welfare is a straightforward linear programming problem. With the
assumptions we have made about utility aggregate welfare is the sum of

individual utilities. Thus, to allocate supplies to maximize welfare, it is



only necessary to solve the following linear programming problem: find o, to

maximize:

(W)

Il o~
i o~13

a, V(n (t))
LA

subject to
a, >0, i=1,ee.,T!l; t=1,...,T.
T
Y @, <u,, i=l,...,T!
T
Z a, <x, t=1,...,T,

In this problem, « is the amount of good t allocated to people of type
T
is necessarily nonnegative. The constraint 2 ait < xt guarantees
t=1

that no more of a type of good is allocated than is available. An allocation

it

13 ait

which satisfies the constraints of (W) is a feasible allocation.
Competition will solve (W). To see this, consider, as usual, the dual to
(W): find vy, Py to minimize
) T T
(M) L yu + ) px
subject to

y.+p »V(rn (t)), i=1,...,T!; t=1,...,T.
1 t 1

yi)o, izl,..o,T!
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The dual has the usual interpretation as the problem of finding nonnegative
prices for resources (consumers and goods) which minimizes the total value of
resources subject to the constraint that the revenue from sale of resources
exceeds the returns obtained by using the resources to produce utility (which
is measured in monetary units). A more interesting interpretation of the dual

is available if we introduce the functions

f (p) = max (0, max (V(m (t)) - p. )).
i i t
t
Thus, f;(p) measures the surplus consumer i gets if goods are sold at prices
P = (p),++-,Pp)+ At these prices consumer i will buy good t only if fi(P) >0
and if V(ni(t)) - pe = £1(p).
Consider now the problem: find py ? O to minimize

M) X p

tt

o~
Il o~

£ (pp, +
1 1
1 t

1

We claim that (M) and (ﬁ) are equivalent.

Proposition l: The solutions to (ﬁ) and (M) have the same value. If (p*,y*)

solves (ﬁ), then p* solves (M). Furthermore, if p; > 0, then y: = fi(p*).

Conversely, if p* solves (M), then (p*,f(p*)) solves ﬁ.

Proof: Since (ﬁ) is feasible and bounded, it has a solution (p*,y*). Since

* * * *

yi is feasible, yi ? max (V(ni(t)) - pt) = fi(p ) > 0. If p; > 0, then the
" t

solution to (M) makes y. as small as possible subject to this constraint.
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. * *
Thus, ) b (£,(p ) - y,) = 0 and
i

T! T T
-. * * *
1%1 £.(p u, * tz PX. = L Yyt E P X, -

if p* is not a solution to (M) then there exists 5 » 0 such that

T!
) £ (pu, +
i=1 * Lot

~ §! * § *
p X y.u, t P, X, .
P Pee e it T f P

Il o~3 03

Since (E, f(E)) is feasible for (ﬁ), this contradicts the optimality of
(p*,y*). The converse is easily proven, and is left as an exercise to the

reader. 1l

A competitive equilibrium for the market with preferences distributed

. . . * . .
according to p and stocks x is a price vector p° » 0 and a feasible allocation

*
a.. such that

ij
(1) {t'a:t > 0} < {th(ﬂi(t)) - p: = fi(p*)};
(2) b >0 = g 0, = %,
and

(3) £ >0 > ] o = u-

t

This definition is the natural one. Condition (1) states that if consumer i
. . . <1 . *

buys good t, good t must maximize his utility at prices p . The next two

constraints are complementary slackness constraints. (2) states that if good

t has a positive price, then it must be entirely allocated, while (3) says
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. . * . .
that if at prices p consumers of type i get positive consumer surplus, then
all consumers of type i must consume one unit of some good. Together with

(1), this constraint implies that the allocation is consistent with consumer
* , . .
preference maximization at prices p . Straightforward linear programming

arguments establish that an equilibrium exists.

A . * k.o L s , . *
Proposition 2: (a ,p ) is a competitive equilibrium if and only if a 1is a

*
solution to (W) and p a solution to (M).

Proof: Suppose («*) is a solution to (W) and (p*) a solution to (M). Then

* . . * * . .
aje > 0 implies p; > 0 and f;(p) = y ; complementary slackness implies
V(ni(t)) - p: = y: = fi(p*). Also complementary slackness implies that (2)
and (3) hold.

Conversely, suppose (a*,p*) is a competitive equilibrium. Let

* * * . * ,
yi = fi(p ), then a" is feasible for (W) and p is feasible for (M). It will

suffice to show that

- * % *
% w . (p )+ Z X P, = g g o, V(m ().

Let 1 = {i: fi(p*) > 0} and J = {t: Pe > 0}. Then (1), (2) and (3) imply

) “ifi(p*) + xtpt =1 uifi(p*) + ) xtp:
i t i€l j€J
= ] § af (V(m, (t)) - p*) + ) E! af p*
ier e=1 &1t t7 ey 45 it't
T N ™" T, , T! T
= izl tzl ait(V(ni(t)) - Pt) + izl tzl ® P = izl tzl aitv(ni(t)). 0

This result establishes that in our model social welfare is a function of
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aggregate supplies of goods, x, and that market clearing (inverse) demands
exist and are "derivatives” of the social welfare function. To see this,
suppose that the distribution of preferences, p, is fixed and define W(x) to
be the value of the solution to the problem (W) when supplies of goods are
given by x € rY. Cleary W(x) measures social welfare as a function of
supplies x. 1If pt(x) is the dual variable corresponding to the constraint x;
in (W), then p(x) = (pl(x),...,pT(x)) satisfies p(x) = dW(x), where OW is the
subgradient of W(*). Proposition 2 establishes that pt(x) are the equilibrium
inverse demands. (M) shows that W(x) can be decomposed as the sum of consumer

surplus and producer surplus.

1v. Symmeftry

For a given transport function ¢(*) different distributions of taste,
i.e., different measures u, give rise to different welfare and demand
functions. 1In section II.A above we stated that the symmetric model arose
when all tastes were equally likely. 1In this section we justify this
assertion.

The essence of the symmetric model is that welfare and demand depend only
on the distribution of supplies. It does not matter which firm produces which
amount. For example, to determine aggregate welfare it is enough to know that
one firm produces two units, another five, and all others nothing. With this
in mind we formally define symmetric functions as follows: let
y = (yl,yz,...,yN) € RY and let o be a permutation of the integers

1,2,...,N. Then let

Yo = (yO(l)’yO(Z)""’yG(N))

We will say a function u: A C ®’ > R is symmetric if u(x) = u(xy) for all x
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€ A and all permutations o. A correspondence D: A < R’ -» B(HDN is symmetric
if D(xg4) = (D(x))c, where B(Hy) are the Borel subsets of RN. Note that if
u: A< RY > R is symmetric and if D: A ¢ RY > ®Y is the gradient of u(e),
then D(*) is symmetric. We say the measure p is symmetric if u; = 1/T!,

i=1,.e.,T!s Under symmetric measures all tastes are equally likely.

Proposition 3: If y is symmetric, then surplus W(x) is a symmetric function

and (inverse) demand p(x) is a symmetric correspondence.

Proof: For o any permutation of T = {1,...,T} and x any point in RL we have

to prove that

(9 W(x ) = W(x) and p (x ) p(x).
o o ¢
Let p* = p(x). We have shown that p*, f(p*) are solutions to the dual problem
(&0): find py,y; > O to minimize
T!

()} (T!)_lyi +
i=1 ¢

i o~ 3
x
o

1

subject to

p +y. > V(n (t))
t 1 1

? ?
P, 0, vy 0

1f supplies are changed to x; the corresponding dual changes to: find y; and

(o1

Py ? O to minimize
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- T! -1 T
(My) Z (T!) v, + Z

X ()P
i1 . o(t)"t

1

subject to
+ y, » V(r, (¢t
pt i ( i( )
> 0 > 0
pt ’ yi

The constraints of (ﬁo) and (ﬁc) are the same. The problems differ only in
their objective function. Note that from the definition of f(p*),

pZ’f(p;) is feasible for (&0). Furthermore, there is a one-to-one
correspondence between the elements of f(p*) and f(pZ). Each consumer 1
corresponds to a permutation of T. ULet p be the implied permutation. Then
fp(p*) is the consumer surplus derived by an individual when his first choice
costs P;(l)’ his second choice p;(z), etc. Let T be another permutation of
T. Then fr(P;) is the consumer surplus derived by an individual when his
first choice costs p:(p(l))’ his second choice Pz(p(Z)’ etc. These amounts
will be the same when o(t) = t(p(t)), an equation which determines T uniquely

as
() T = op_1

Since (1) defines a one~to-one correspondence between permutations, there is
also a one—to-one correspondence between the elements of the two T! vectors
* * .
f(p ) and f(pp). In particular
T! T!

(2) I anTe e = ) an”

i=1 i=1

Lo ( *
i pp)-
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The facts (1) and (2) are all we need to prove the theorem. pz,f(pZ) are
*
o(t)*o(t)

* *
gives the same value to the objective function of (M) as p ,E(p") does to the

feasible for (M_). Since ) =7 p'x, it follows that p*,£(p¥)

o) nce ) p P x> Py tiPg
objective function of (&O). 1f pz,f(pZ) do not solve (ﬁc), then there is a
vector q such that q,f(q) is feasible for (ﬁc) and gives a lower value to the

-1

objective function. But then the arguments just made show that if n = p *,

then qp,f(q,) are feasible for (ﬁo) and give a lower value to the objective

function than p*,f(p*). This contradiction establishes that pz = p(x,4) and

W(xg) = W(x). [

V. Limiting Results

The linear programs (W) and (M) do not yield inverse demands P (x,u) or
aggregate benefit functions W(x,u) which lend themselves easily to
computational analyses. In particular, Pt(x,p) is a piecewise constant convex
valued correspoundence. Correspondingly, the benefit function W(x,u) is
concave and differentiable almost everywhere. In this section, we show that
when the number of produceable brands is limited to a (possibly large but)
finite number, and when the number of conceivable brands is very large (in
some precise fashion), demand functions for both the symmetric model and the
model of competition on the circle become tractable. The set of conceivable
brands should be interpreted here as the largest set of products any
individual consumer could possibly imagine (such as the spectrum of colors
cars may come in). Due to the presence of fixed costs, however, only a finite
number of these brands may ever be produced. We refer to the latter set as
the set of produceable brands. As the construction below shows, the limiting
demand functions are not sensitive to the initial specification of the set of

1]
produceable brands. Thus, if P and P are two specifications of produceable
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sets such that P > P, the limiting demand functions corresponding to P', when
restricted to the set P, will be identical to the limiting demand functions
obtained from P. In other words, there is an internally consistent way of
letting the set of produceable brands increase due to, e.g., a decrease in the
fixed cost of setting up a plant.

Let there by N produceable brands, positioned equidistantly in the half

open unit interval I:
P={j/N, j = 1,...N} <1 =(0,1]

At each stage k (k = 0,1,2,...), the number of conceivable brands will be
doubled by placing the new brands midway between the pre-existing conceivable

brands. Thus:

Tk = {conceivable brands at stage k} = {j/Tk; j= 1,...,Tk}
where T = 2KN. Both the set of produceable brands P, and the set of
conceivable brands at stage k, T, are embedded in the half-open interval
(0,1] so that we can accommodate the model of spatial competition on the
circle. This is accomplished by identifying the point O with the point 1, as
if by bending the unit interval around itself and glueing the endpoints
together.

Since at each stage k the number of conceivable brands is doubled, the
number of possible preference patterns increases from (2511 at stage
(k = 1) to (sz)! at stage k. One way to visualize what is going on is to
imagine that each preference pattern at stage (k — 1) is replaced, at stage k,

by I = (ZkN)!/(Zk"lN)! preference patterns, each of which is equally
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likely. In other words, the consumer at stage (k — 1) can be thought of as
not distinguishing between the conceivable brands at stage (k - 1) and the
neighboring brands that are introduced at stage k. He is then split up into
Iy consumers who do distinguish between all brands at stage k, and whose

preference patterns are, in some sense, close to his. Formally, let

Hk = {permutations of Tk}

The cardinality of I, is thus Ty! Corresponding to Iy, we also have ¥, the

set of preferences at stage k:

Wk = {V(n); n € Hk}

where V: I » [0,1] is the valuation function of the “"representative" consumer.

We can extend the permutation m € Il to the whole interval as follows:

(@) = wG (@) + (- § (@), @€ (G (@) - %? i (0]
where
jk(a) = argmin Ij - al,
{jer : i>a}

5 , . .
7" is a member of I, the set of measure preserving bijections of I. II can be

thought of as the set of permutations of I. Figure 3 illustrates this

* *
extension process for the case k = 0, N = 4. Let Hk = {n:

n € Hk} and

* * * * * *
Yk = {V(n ); m € Hk}. The purpose of this construction is to let I and ¥

live in the infinite space of permutations and preferences that will be
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* * * *
constructed in section VI. Observe that Hk c Hk+l and Yk c Yk+l for all
k > U.

Corresponding to Hi and Yi, we can define stage—k "symmetric"” measures

and "distance” measures v as follows:

b =mr 1 P
kST T L P
T er
* . L. %
where p , is the point measure at m (i.e., p 4(E) = 0 if == # E and
T T

p x(E) = 1 otherwise). If we define RE c Hi as the stage k rotation group, we
T

can express Vj as

o=t L o»

k Tk K*GR: n*
Thus, pp gives equal weight to all preference patterns in Wz, whereas v, only
gives equal weight to those preference patterns that correspond to rotations
of the representative preference pattern V.

The plan for the remainder of this section is to try and describe the
limiting joint distribution of the valuations for any subsets of goods in P.
This will allow us to describe the limiting direct demand functions
explicitly. We also show that the demand correspondences of the finite models
converge uniformly to the limiting demand functions. This implies that the
solutions to the programs (W) and (M) can, for k large enough, be approximated

arbitrarily closely by their limiting counterparts.

A, The Symmetric Case

For each k, the probability space (Hi, pk) defines two stochastic

processes on I:
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* *
(a); @ € T} and {V(m (a)); a €1
(o } and (v(r, }

The random variable Zk: n: > n:(a) describes the distribution of values that «
is permuted to at stage k. Similarly, the random variable V(;k) describes the
distribution of valuations for good a. In appendix I (Lemma 1), we prove
that Zk => a (the arrow "=>" denotes weak convergeance), where « is uniform on
I. Furthermore, for any finite collection {a,B,Y,...} contained in P (or, for
that matter, I), the joint distribution of {;k’ék’;k""} converges weakly to
the joint distribution of i.i.d. uniformly distributed random variables.
Hence, the distribution of valuatioans {V(n:(a)); a € P} for any finite
subset P of I converges weakly to a collection of i.i.d. random variables,
each with wmeasure AV'!. The measure AVT! is defined, for every Borel set B,
as KV—I(B) = k(V_l(B)), where A\ is the Lebesgue measure on I. Thus, when V is
strictly decreasing, the distribution of this random variable can be expressed

1 - vl

as: Prob[v < v] (v). When V is smooth with first derivative bounded

<1

away from zero, has a continuous density given by 1/[V'(V-l(v))].

B. Competition on the Circle

Again, the probability spaces (Hi, vk) define two stochastic processes on
1: {ni(a); a € I} and {V(ni(a)); a € I}. Lemmas 1 and 2 of Appendix I apply,
and for all a € I: ;k => ;, where a is uniform on I. However, for any finite
subcollection P of I, {a, a € P} are no longer independent for any k, nor in
the limit. We describe the limiting distribution below (proof omitted).

For any a € I, define ¢5: T > I by ¢,(x) = (x - a)mod 1. Let {B ; a € P}

?

be sets of the form [a,b), where a < b € I. The system of all sets of the

form {x e ®’N; x| € Bal”"’xN € BaN} (called cylinder sets), form a semi-ring

N

on I, where N is the cardinality of P. In order to describe the limiting

distribution, it is sufficient to describe it on this semi-ring (see, e.g.,
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Aliprantis and Burkinshaw, Chapter 3). Letting P = {al,...,aN}, we have:

where A is the Lebesgue measure on I. Figure 4 illustates this for the case
N = 2. The limiting joint distribution of valuations can now be described.
Define Vy: N > N by VN(xl"°"XN) = (V(xl),...,V(xN)). Then if we let v be

the measure constructed above, the distribution of
v ,...,V ) is W
a a N

1 N
Let us denote the limiting distribution of valuations for the set of

b i.e., for all H < IV wyl(n) = v(vgl(H)).

d

S in the symmetric case and w

produced goods w in the model of competition on
the circle. We can now easily describe limiting demands. Let Ai(pl""’pN)

be the following subset of RN:
A cee = V. yeee,V.): V, 3 vV, £V, + - ¥j+i
(Ppaeeesp) = {(V e v ) v, SV TR TR ¥ }
Limiting demand at prices (pl""’PN) is then, for the symmetric case,

W (A (P seeespy)) = jl' T G(v + py = p;)dG(V)
i j#i

with G(v) = Prob[v < v]. In other words, the limiting demand function is
continuous, and coincides with the demand function advocated by Perloff and
Salop (1985). 1In order that limiting demand be well-behaved (i.e.,
continuous) for the model of competition on the cirecle, it is well-known that
the transportation cost function must be strictly convex (see, e.g.,
D'Aspremont et al., 1979). We will make this assumption, which amounts to

strict concavity of V, henceforth. For most of what follows in this section,



- 25 -

however, the assumption is not necessary. It is only made to facilitate the
statement of our results. Limiting demand for the model of competition on the

circle is then:

di(p]_"°"pN) = wd(Ai(p]_’""pN))

Observe that the nature of this demand function depends on the particular set
of produced goods P chosen, as wd does.

At this stage, we would like to establish a link between the finite
demands and the finite distributions on the one hand, and between the finite
and limiting demands on the other hand. Because the finite demands are
correspondences rather than functions, the statement of this relationship is
somewhat cumbersome. First, we show that the stage k demand functions are
continuous almost everywhere. Then we argue that, excluding a set of Lebesgue
measure zero, finite demands converge pointwise to limiting demands. Finally,
we sharpen the result and prove that the finite-stage demand correspondences
converge uniformly to the limiting demand functions. This means that for
large enough k the limiting demand functions are uniformly close to the

stage-k demand correspondences.

Define G = V(u T ) = {V(x); x € U T } and
k k
k=0 t=0
H=G-G = {w: w = v1 - vz; vl,v2 € G}. Clearly, both G and H are
. c N
countable. Define A™ ¢ I as:
AS = {p € IN: Py € G for some i, or P; - Pj € H for some i # j;

i,j = 1,e4.,N}

Lemma 4 of Appendix I shows that A® has Lebesgue measure zero. We then have
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the following.

Proposition 4: The stage-k demand correspondence dk(-) is a continuous

function on A for all k (both for the symmetric model and the wmodel of

competition on the circle).

Proof: On A, every consumer type V € Wi, where Wi = V(ni), has strict
preference of one good over all others, or buys nothing. In other words, each
consumer’s demand dy(p),...,py) is a singleton for (py,...,py) € A. Thus
aggregate demand, dk(pl,...,pN) = sz* wk(V)dv(pl,...,pN), where w, 1is the
stage k distribution of valuations, ié a singleton for (pl,...pN) € A, Since
d¥(e) is upper—hemicontinuous (it is a nonempty, closed convex-valued

correspondence), and dk(+) is a singleton on A, it is a continuous function

on A. [

In fact, on A, we can describe dX(e+) explicitly:

dli((pl’...’pN) = wk(Ai(pl’."’pN))
where w,_ is either w® or d Since => nd sin - ( ) is an
i wye Wy e ce wyp w, a since A;(p),.«.,PyN a

w-continuity set for each (pl,...,pN), we have:
k
d¥(py,eee,py) > 4Py, e, py)

for every (pl""PN) € A.

Theorem 4 of the Appendix proves, for the symmetric model, the following
stronger result: on A, dk(-) + d(*) uniformly. The same result is valid for
the model of competition on the circle, but the proof is omitted for the sake

of brevity. We can now prove the main result of this section.
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Proposition 5: dk(°) > d(*) uniformly on N,

Proof: We already know the statement is true on A < Iy. 1In other words,
¥e>0 I k(e): ¥ k » k(e): dk(z) ~ d(z)|< € for all z € A. The theorem
will be proved when we can substitute IN for A in the above statement. - Thus,
let k » k(e) and x € dk(z) for some z € A®. Because dk(°) is a closed, convex

1]
valued correspondence, 3 z ,z € A: z ,z > z and dk(zm) < x £ dk(zm). We can

now make the following estimate:
|x - d(z2)|< max{]d(z) - d(2)], |az) ~ a(2)])

for all m. But, |d%(z ) - d(2)| < [d(z ) - d(z )| + |d(z ) - d(2)|, and
m m m m

similarly for z

The first term on the right side of the inequality is less
than €/2, by uniform convergence of dk(-) to d(e) on A; the second term goes

to zero as m > @ by continuity of d(¢). Thus, ‘x - d(z)l < e, (1

One might wonder whether the limiting operations we carried out above
might be extended to other measures besides the rotation group measure and the
symmetric measure. One simple extension is this. For any stage k, the
rotation group measure is an extreme point of the unit simplex of measures in
:mP(k), with n(k) = (2KN)!. 1t is also easily verified that the symmetric
measure is the center of gravity of this set of measures. One might then want
to think about convex combinations of the rotation group measure and the
symmetric measure, i.e., imagine a world which is populated by individuals a
fraction A of which looks like the individuals that make up the model of
competition on the circle, and a fraction (1 - A) of which looks like the
individuals making up the symmetric model. Denote this measure

(1 = Mpp + A by 1. If P is the set of produced goods, the projection of
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T onto P will just be (1 - K)wﬁ + Xw&, which converges weakly to
(1 - M’ + Aod,  In other words, the limiting demand function will just be a
convex combination of the limiting demand functions in the symmetric model and

the model of competition on the circle.

VI. A Continuum Version of the Model

lmagine a world with a continuum of conceivable goods: 1. Consumers
have preferences which are arbitrarily scrambled up versions of a
representative preference pattern V(°*) on I. 1In other words, the set of
allowable preferences is y' = {V(f); f € X}, where X = 1l = {f: I~ I}. We
will now show that it is possible to define a measurable structure L on X, and
measures p and v on (X,Z) such that pp => p and vg => v. This will imply that
for any finite subset P < I, bip] = w?P)VN and vip] = w?P)VN’ where L{p]
denotes the projection of u onto P. We will thus have constructed a limiting
world which, for any finite subset P of I, has the same distribution of
valuations over P as the limiting distributions derived in section V.

First, we endow X with the product topology Z. Observe that this
topology is not metrizable (Munkres, p. 131). Let C(X) = {¢: X » 1R, ¢
continuous} and A = {U = ¢—1(O), 0 open in R, ¢ € C(X)}. Elements of A are
called open Baire sets. Finally, let I be the c-algebra generated by A.
Members of I are called Baire sets. The reason for introducing the Baire
o-algebra is that this is the minimal o-algebra with respect to which weak
convergence can be defined.

Let S be the system of all cylinder sets on X, of the form:
A= {f €X: f(t;) € B, ..,f(t,) € B}

where ty,...,t is a finite subset of I, and each B; is of the form [a,b) with

n
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a<bin I. S is a semiring (Prokhorov and Rozanov, p. 79). Furthermore, as
the c—algebra generated by S coincides with I (Ash, pp. 190-195), it suffices
to define p and v on S only. Let A be the cylinder set described above. Then

we take

v(A)

]
>
~

and

Il
o R =]
>
~
o
Nt

n(A)

It is easily verified that p and v are indeed measures on S. We can extend p

(and v) from (X,S) to (X,Z) in the standard fashion:

@0
p(Aa) = inf{ )} p(a ): {A } is a sequence in § with A < A}
z n n ~ =1 D

n=1 n

I < 8

where A is an arbitrary element of Z. The measure p constructed above is

known as the product measure. We are now ready to state the following:

Definition: Let p,,p be measures on (X,I). Then u, converges weakly to u,

denoted by p, => p if and only it fxfdpn > fxdfp for all £ € C(X).

Alternative characterizations of weak convergence of measures on
arbitrary topological spaces can be found in Varadarajan (1965, in particular

Theorem 2, p. 182). With this definition we can state:

Proposition 6: Let uy,4 and vi,v be defined as above. Then pp => p and

Vk => v,

Proof: This follows directly from Theorem 8 of Varadarajan (1965, p. 186),

and the fact that we proved earlier that for any finite subset P of I,
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= u and v = v . ]

k(P] (p] k(P] 7 (]

Let us recapitulate for a moment. We just constructed a world in which
the distribution of valuations coincides, for any finite subset P of I, with
the limiting distribution of valuations over P derived in section V. 1In
particular, this implies that the demand functions for "limiting world"
coincide with the limiting demand functions calculated in section V. While
this justifies the use of the name "limiting world,” there is a problem with
the approach developed so far: the space of preferences v' is too large. All
functions V(f) are allowed: f may be measurable, nonmeasurable, etc. Our
limiting framework is thus much different from that of the finite models, in
which all preferences were permutations of a representative preference
pattern. We will now show that this "deficiency” can be remedied. In other
words, we show that our two models could just as well have been defined
directly on a continuum of (conceivable) goods.

Let II € X be the set of (Lebesgue) measure preserving bijections on I.
The members of II can be thought of as the "permutations™ of I. Let E_ be the
subspace topology that II inherits from (¥X,%E). Furthermore, let
c(n = {f: I ~->1R, fis continuous} and A = {f_l(O), f € c(Il), O open in
Hﬂ. We refer to the members of A, as the open Baire sets of [l. Finally, let
o(Ay) be the o-algebra generated by Ay+ Our objective is now to prove, for

the symmetric model, the following proposition:

Proposition 7: There exists a pair (An,pn), where A, is a oc-algebra of

subsets of I, and U, a probability measure on A, , such that:

(1) for each A € A  and T € I, u,(TA) = p (A)

(2) o(b,) < A
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(3) pg =>wp

A few words of explanation seem in order here. Conditions (1) is a left
invariance condition. It says that if a A —measurable set of permutations is
"permuted,” then it remains Aj-measurable, and its pp—measure is unaffected.
Thus, (1) just requires that Hp is the analogue on Il of the finite measures Hie

*
on T . For the model of competition on the circle, condition (1) would read:
1]
(1) for each A € A_ and each Tgs Vn(T,A) = v (A)

where T, : x(t) + x((t + a)mod 1). 1In other words, (l)' requires that if a

A -measurable set of permutations is shifted to the right by a distance of «,

1
then it remains Aj-measurable, and its v, measure is unaffected. Again, (1)

k1

just expresses the requirement that v_ be the analogue on 1 of the (finite)

03
* . ,

measures Vi on M. Condition (2) requires that A, contain the Baire sigma-

algebra O(An), so that coundition (3) makes sense. The last condition ensures

that for any finite set of produced goods P, the finite demand functions

converge to the limiting demand functions derived from (X, o(Ay), kp).

Proof of the Proposition:

(1) and (2) follow directly from the theorem in Deneckere (1985).

(3) follows from Theorem 6 in Appendix I. (1

The proof of Proposition 7 for the model of competition on the circle is
somewhat simpler than for the symmetric model, because there clearly exists
such a limiting world, namely the one described, e.g., by Salop. The details
of the proof are relegated to Appendix II, for the first part of the

theorem. The second part follows directly from Theorem 6 in Appendix 1.



VII. Comparing Optimal and Competitive Outcomes in the Two Models

A. Intuition

Here we use the machinery developed in the last two sections to compare
the symmetric and distance models. We study the relationship between the
equilibrium number of stores (or varieties) which would result from
(monopolistic) competition under free entry and the optimal (or welfare
maximizing) number of stores. Our notion of competition is, we think, the
natural one. We assume stores are price setters and look for symmetric Nash
equilibria with zero profits in each model. We assume stores have the same
technology. They produce output with fixed costs F and constant variable
costs c. Thus in equilibrium profits over and above variable costs just cover
fixed costs.

Our standard of optimality is also the natural one. As discussed in
section III, the sum of producer and consumer surplus is a correct measure of
welfare in our model; in particular it makes sense to sum the consumer surplus
which different consumers receive into one measure of aggregate consumer
surplus. The welfare maximizing number of stores or varieties is the number
of stores which, if all stores sold output at marginal cost would maximize the
sum of consumer surplus and profits at stores.

We show (in Proposition 8) under fairly general conditions that in the
distance model price competition and free entry results in too many stores,
too much variety. Under slightly less general conditions, the opposite result
holds in the symmetric model (this is Proposition 9). In the symmetric model
competition leads to too few stores. These results are not entirely new; they
restate under slightly different and possibly more general conditions what is
already known.

What is new is that our model explains (at least in part) why these



results should hold. We compare the symmetric model and the distance model
with the same technology. The same ¢(s) gives the cost to a customer of going
to a store located s units away from him. As discussed in Section II,
different distributions of customer's preferences lead to the symmetric model
and the distance model. We use the convenient demand functions of the
limiting forms of these models, derived in Sections V and VI to make a ceteris
paribus comparison.

We find that the symmetric model is more competitive than the distance
model. Prices and profits per store are lower in monopolistic competition
equilibrium. With price competition and free entry there are fewer stores in
equilibrium in the symmetric model than in the distance model. The intuitive
explanation for this result is that in the symmetric model if a store raises
its prices it will lose customers to all other stores; in the distance model a
store which raises prices will lose customers only to the two stores which are
its nearest neighbors. Consequently for any fixed number of stores prices are
lower (in equilibrium) in the symmetric case than in the model of competition
on the circle. Since prices are lower, profits per store are lower. With
free entry the equilibrium number of stores is determined by the condition
that profits over variable costs must cover fixed costs. Thus if stores
operating in the two models have the same fixed and variable costs, a zero
profit (free entry) equilibrium will support fewer stores in the symmetric
model than in the distance model. This intuitive argument is made precise in
Proposition 11.

While competition supports fewer stores in the symmetric model than in
the distance model, welfare would be optimized with more stores in the
symmetric model than in the distance model. We show, in Proposition 12, that

the optimal number of stores is greater in the symmetric model than in the
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distance model. 1In either model the benefits (as measured by total consumer
surplus) of adding additional stores decrease as the number of stores
increases. Benefits fall faster in the distance model than in the symmetric
model. To see why, observe that in the distance model if there are N stores
no customer is consuming a brand more than (ZN'I) away from his most preferred
brand. The increase in consumer surplus which accrues to any customer when an
additional store is added is at most ¢(2N_1) - ¢(0). As N increases this gets
quite small. 1In the distance model tastes of consumers are relatively
similar; a few stores or varieties will satisfy everyone. In the symmetric
model tastes are very dissimilar. No matter how many varieties are produced
some consumers will find them all equally repugnant. 1If a new brand is
introduced, it will be the first choice of some of these dissatisfied
consumers. No matter how many stores there are, the introduction of a new
store will increase some consumer's welfare by v(271) - ¢(0). The gains from
adding additional stores do not decrease so quickly in this model.

While we believe the intuition is quite persuasive, our results are not
as strong as might be hoped for. Many of them are asymptotic or large number
results. Specifically the proofs we give of Propositions 9, 11, and 12 are
only valid as fixed costs approach zero (and thus the optimal and competitive

nunber of stores both become large).

B. Notation

We now introduce concepts and notation which allow us to state and prove
the propositions alluded to above. We define many of the same concepts for
the symmetric model and the model of competition on the circle and use
superscripts to distinguish between them. Thus, DS(p,N) is the demand at a
store in the symmetric model when all N stores which have entered the market

are charging p; Dd(p,N) is the demand at a store in the distance model when
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all N stores which have entered the market are charging p. Also, di(q,p,N) is
the demand at a store (in model i; i = s or i = d) which charges q when the

N - 1 other stores in the model are charging price p. Also, p§ is the Nash
equilibrium price (in model i) when N stores are in the market, Né is the
number of stores in equilibrium with free entry in model i and Ng is the
optimal number of stores.

The underlying technology of production is that each potential store has
fixed costs of F (which it must pay to enter the market) and produces output
at constant marginal cost c.

The transport cost function is ¢; ¢(z) is the cost to a consumer of
traveling a distance z to a store. As discussed above, ¢ is most easily
interpreted as representing some sort of psychological cost. In each model
consumers must travel no more than a distance of 1/2. This is because we
chose units so that competition in the distance model takes place on a circle
with a circumference of unity. Since consumers can travel in either
direction, no consumer ever has to travel more than a distance of 1/2 to get
to any store in the market (on the circle). 1In the corresponding symmetric

model the maximum distance between any customer and any brand is also 1/2. We

make the following assumptions about the transportation cost function:

(1) $(0) = 0;

(ii) ¢'(z) > 0; ¢"(z) >0 for z 3 0
and

(iii) $(1/2) <1 - c.

The first two assumptions are not very restrictive: it costs nothing to move

nowhere; transport costs are increasing and convex. Convexity is necessary
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for some of our results. It also seems to be important for the existence of
equilibrium in the distance model. The third assumption is somewhat more
substantive. The good is attractive enough that even the worst brand—that a
distance of 1/2 away——is worth buying if it is sold at marginal cost or
slightly more. This assumption simplifies our proofs considerably; we do not
know how many of our results go through if we abandon it.

Welfare in our model is the sum of producer and consumer surplus. In the

distance model all consumers buy one unit of the product so welfare is given

by:

1 - (Total transportation costs + variable costs of production

+ fixed costs of production)

The optimal number of stores is the number which minimizes the sum of total
transportation costs (which decrease as the number of stores increases) and
fixed costs of production (which increases by F each time a store is added).
If there are N stores selling their products at marginal cost total
transportation costs are given by

-1
) = v [N 40 ax.

since assumption (iii) implies that everybody will be served at that price.

Thus, for large N the increase in consumer surplus from adding another store

is

d
(1) Gg = - ——-——det(qN)

For the symmetric case we calculate Gg, the welfare gain (net of fixed cost)
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from adding an additional brand, slightly differently. Suppose that in the
symmetric model N stores offer goods for sale at marginal cost ¢ and that
these store produce to meet demand. Exclusive of fixed costs the stores make

zero profits. Consumer surplus is

(2) ji 2dH" (2)
where
(3) H(z) = 1 - 2¢'1(1 - z).

This is because, as explained in Section VI, the consumer can be thought of as
picking the brand which gives him most utility from a sample of brands each of
which generates a random utility according to the distribution function
H(*). Since (by assumption (iii)) all brands give utility greater than ¢, all
consumers, even those picking from a menu of their least favorite brands, will
get some consumer surplus. The increase in consumer surplus from adding

another brand is

N+1 1 N
GS = fi zdH (z) - Ic zdH (z).

Note that
G; = fé deN+l(z) - fé deN(z)
(4) = PN (1 - HGz)) de.

o
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The first step follows from assumption (iii); the second is integration by
parts.

In both the distance and the symmetric model Né satisfies

i

as both Gﬁ are decreasing functions of N.
Let Hﬁ be profits per store (exclusive of fixed costs) in model i when
there are N stores in the market. A consequence of free entry is that N;

satisfies

(5) Ik = F, i=s,d.

C. Results

We now state and prove our main results.

Proposition 8: 1If (i) and (ii) hold then Ng > Ng-

Proof: We prove this by calculating that Hg > Gd. Since Gg is decreasing in
N, this suffices. The standard analysis of equilibrium in this model shows
that
! -1
(2N )
2

(6) Il L
N

d
N
(To derive (6) note that dd(q,p,N) = 2(q - ¢)x where x, the greatest distance
anyone travels to shop at the store charging q when all other stores are

charging p, satisfies
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q+ ¢(x) =p + (1;(N_1 - X).

Implicitly differentiating and using the fact that in equilibrium x = (2n~1y

we see that %% = —A——r—L——T—. Thus, since the equilibrium condition which

2¢ (2N )
determines pg is x + (q - ¢)(3¥x/dq) = 0, pg = ¢'(2N_1)/N, and (6) follows.

Now it follows from (1) that

)

(7 cd = vyl - zféZN $(x) dx

o 'y SN et
fé N )¢ (x)2x dx € ¢ (2N ) fé N )2x dx

b N e en ) e
2 2 N
4N N

The first inequality follows from the convexity of ¢. This completes the

proof. (]

Proposition 9: 1If F is sufficiently small N3 > N> - L.

Proof: We prove this by calculating H§ < G¥. This suffices since G§ is

decreasing in N.
s _ (1 N _
Gy = fo H (z)(1 - H(z))dz.

Since ¢ is convex, (3) implies that H is concave. However, H(0Q) = O and

H(1) = 1 so that H(z) » z for 0 € z < 1. Thus,

G; = fé HN(z)(l — H(z) dz » fé zN(l - H(z)) d=z



o+ DT - ) [P0 - S+ DT - H(2))

DTS ) e

where h(z) is the density corresponding to H. Now if h is continuous:

lim fé N zNh(z) dz » h(l).
N>
Thus
(8) G: > (v+1) 7 fé M h(z) dz = (8 + 1) 72h(1)

Note that if ¢ is strictly convex then H is strictly concave so that the
inequality in (8) is, in this case, necessarily a strong inequality.
Now consider UE = (pg - c)DS(pﬁ,N). Substituting the first order

conditions which p§ must satisfy we see that

s S, s 2,,8, S S
(9) Mg = = [(D7(p,M)17/d [ (prp M)

where dl(q,p,N) is the derivative of (q,p,N) with respect to the first

argument. We show in Lemma 10 below that

. s _
(10) lim Py = ¢

N+

and that

) s, s S
lin dl(pN’pN’N) = ~h(l).

N+
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Together assumptions (iii) and (10) imply that
(12) DS(pS,N) =~ N}
Py M)

for large N. Combining (8), (9), (11) and (12) we see that

S
G
lin — > h(1)? « (o2
S
N> HN

Thus it will suffice to show that h(l) > 1. Since h(z) = H'(z) it is easy to
calculate that h(l) = 2/¢'(0). Note that assumptions (i) and (ii) imply that
if ¢’(O) > 2, then ¢(1/2) » 1 which contradicts assumption (iii). We conclude

that for large N, Gy ? Hﬁ[(N/N + 1)]2 which establishes Proposition 9.

Lemma 10: Lim ps = ¢ and lim ds(p,p,N) = h(l).
—_— N N
N> N>

Proof: pg satisfies (p - c)d?(p,p,N) + DS(p,N) = 0. Since

DS(p,N) = N1l - uN(p)) < N7, 1im D°(p,N) = 0. Thus
N+
lim ps = ¢ if lim lds(p,p,N)‘ > 0. Since
N 1
N> N>

[ 1 N-1
d (q,p,N) = qu(z - g+ p) h(z)dz,

a5 (pspsN) = -h(pH" ' (p) - [n(z) an' (2).

But the measure HN_I(p) converges weakly to the measure with a point mass at

]
one. Since h(+) is continuous, lim di(p,p,N) = h(l) = 2/¢ (0) > 0. {

N>

Proposition ll: 1If F is sufficiently small, Ng > N;.
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We first show that if fixed costs are sufficiently small then profits

per store are greater in the distance model than in the symmetric model when

there are the same number of firms in existence:

(13) If F is

sufficiently small H% > Hﬁ.

The first order conditions for profit maximization state that pﬁ must satisfy

s
dl

_ D

i
dl(p,p,N)

p -
Thus,
T
(14) N
Hs
N

d
dl

(p,p,N) Ds(p,N)2

Since for large N, Dd(p,N) = N—l, while DS(p,N) < N_l, the second fraction in

(14) has a limit not exceeding 1.

Now

Lin d{(p,p,8) = Lim ¢ (20 D7 = ¢ (07

N>

We saw above that

N>

lim d?(p,p,N) = 2/¢ (0). Thus,

N>

lim — > 2,

N+ H§
which establishes

We know from

model profits per

since Ng satisfies H; = F, (13) implies

(13).

(6) and (iii) that Hg is decreasing in N; in the distance

store decrease as the number of stores decrease. Thus,

S
that Ng > p [
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Proposition 12: If F is sufficiently small Ng > Ng-

Proof: Clearly it will suffice to show

lim — > 1.
N»>= G

' _ : '
For large N we recall from (7) that Gi < ¢ ((2N) 1)/4N2 ~ ¢ (0)/4N2 while from

(8) we have GS 2 h(1)/(N + 1)2 = 2/¢'(O)(N + 1)2 Recalling that ¢'(O) < 2 we

have
S
lim —% > —T—g—f > 2.
N> G b (0)
This completes the proof. {1

Propositions 8, 9 and 11 only make sense if a (symmetric)
monopolistically competitive equilibrium exists both in the symmetric model
and in the model of competition on the circle. 1t can be shown that if
conditions (i)-(iii) are further strengthened to ’¢'(O), > 0 and '¢", { =,
then, for sufficiently large N, a unique symmetric equilibrium exists in both

models.

D. Example
Consider the case of linear transportation costs: ¢(z) = 2z, and zero
marginal cost of production. Then H(z) =1 - 2¢—1(1 - z) = z. Hence welfare

in the symmetric model and in the distance model are easily calculated as:

N

s
W) N+ 1

fé x dH(x) - NF = - NF

-1
1 - NF - 2N féZN) 2xdx = 1 - NF - 1/(2N)

il

WI(N)
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Differentiating these expressions and setting the derivative equal to zero

yields:

From (6) we see that equilibrium profits in the distance model satisfy

2
-7
N

d
Ty

and thus Ni = V2]F.

IHN—I

For the symmetric model, ds(q,p,N) = Ip (v + p - q)dH(v), and hence

d1(q,q,N) = -1, and D5(q,N) = N I(1 - q¥). Then (9) yields

s. 2
s - pN)
= —r

N N2

so that, for large N, Nz ~ 1//F.

For this example, there is a negligible tendency towards overentry in the
symmetric model (N; = Ng + 1), but a very pronounced overentry in the distance
model (Ng = ZNg). For fixed N, monopolistic competition equilibrium profits
in the distance model are twice as high as in the symmetric model, yielding

d

Nm ~ V2 N;. Finally, the optimal number of firms in the symmetric model

exceeds that in the distance model, the ratio being equal to /2.
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Appendix I

Let EX = {n(a): n € .} = {a + x = j («): x € T} for « € I. EX is the set of
" n(a): n Hk = {a X Jyla): x K o . p et o

values that a is permuted to at stage k. Correspondingly, let

*
V; = V(Ez) = {V(n(a)); T € Hk} be the set of valuations that a is permuted to

at stage k.

(=]

-~

Lemma l: Let a € A = N Tk. Then gk => E, where o is distributed uniformly
k=1

on (0,1], and the random variable ;k is defined as &k: n; > ni(a).

Proof: Since a € A, 3 r: ¥ s > r Ei = Tg. Let x € Ei for some s > r. Then

Prob[gk < x] = x for all k 2 s. Thus Fz(x) = Prob[gk < x] » x = F(x) for
x € u gS = A, where F(*) is the distribution function for &. Let x £ A.
S2r

Since A is dense in I, 3 X s¥n € A such that x, < x <y,, x, * x and y, + x.

But

Fex") < Fi(x) < Fi(yn), ¥ k,n
Hence, upon letting k > o

F(x") < lim FI;(X) < 1im FI;(X) < F(y™)
Upon taking limits as n +» «, we have:

x = F(x) = lim Fz(x) il

k>

Lemma 2: Let a € A®, the complement of A. Then Ek => E, where o is

distributed uniformly on I.
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Proof: Let Ea = U Ez. Then E, is dense in I. Let z € Eqe Then
k=0
z = o+ X - jp(a) where x € T, for each k. We have:

Prob[ak £ z] = X > z = F(z) since a - jk(a) >0 as k » ». Since E, is dense

in I, the rest of the proof then proceeds as in Lemma 1. (]

* .
Theorem 3: For every k » 0, let (Hk, uk) be the set of permutations at stage
k, and the symmetric measure at stage k. For any finite subset P < I, the
joint distribution of {Ek; a € P} converges weakly to a collection of i.i.d.

uniformly distributed random variables.

Proof: 1In view of Lemmas 1 and 2, we need only prove independence. Below, we
treat the case where the cardinality of P is 2, and a, B are both in A. The

rest of the proof is left as an exercise to the reader.

let r = min{k: B, = Tk} and r = max(ra,rs). For k > r:
0 , if x. = x_, or x, € T
Prob(a, = x,, 8 = x,] = { 1 2 1 k
k 1 k 2
1
- — , otherwise
Tk(Tk 1)

1}

Thus, if x; = jl/Tk < %y jz/Tk are both in T, we have for k » r:

- - j1(jz - 1)
< < = ———— = @
Prob[ak X1 Bk X2] Tk(Tk _—) > X %, F(xl,xz) as k » =,

where F(xl,xz) is the joint distribution function of a pair of i.i.d.
uniformly distributed random variables. We have proved the validity of the
theorem for (XI’XZ) € AXA, a dense subset of Iz. As observed in Lemma 1, this

suffices. (1

Lemma 4: The Lebesgue measure of AS, A(A®), is zero.
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Proof:

A=z ¢ IN]H i=1,..0N 2, € Gl ufze 1N|zi -z €H, i #3j; i,j = 1,...,N} «
But {z € INIH i=1,0e4,N: 2, € G} < S A(i,sn) where

A(i,en) = U [B(enz_m,zi) x 11 1;;, m indexes G, and B(a,x) is a ball of

z.€G j#i
. i
radius a around x. Hence,

Mz e V]34 = 1,000,802,

N
; €6}« 121 MA(L,E )) = 2Ne .

Letting €, > 0, we see that the left side of this inequality is zero. Fix

i# j, 1and j in {1,...,N}. The set {z e 1N: z; - zy = c} with ¢ € H is a
hyperplane of dimension (N — 1) and thus has Lebesgue measure zero. Since H
is countable, A{z € In: 24 - z; € H} = 0 for fixed i # j. Because there are

only finitely many choices of i and j to be made, this establishes the

result. {

Theorem 5: On A, dk(e) » d(*) uniformly, where dK(*) and d(s) are the stage k

and limiting demand functious for the symmetric model.

Proof: We will only describe the main steps of the proof here; details are

avilable from the authors upon request. On A, d?(z) is a singleton:

k 1 *
dj(z) ='f;? # {n € I : V(n(aj)) -z = fn(z)},

where fn(z) = max{O, max (V(n(aj)) - zj)} is consumer surplus derived by
j=l,see,N
a cousumer with preference pattern V(mn), when the set of produced goods is

P = {al,...,aN}, and goods are sold at prices (zl,...,zN). Without loss of

generality, let j = N. Then
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d(z) = ] Prob[V(n(ay) = t] ProblV((a)) < £ -z + 7, ¥ 1 # 3[V(n(oy)) = t]

tGV(Tk)
oz
N
Now,
# e n; V(n(a)) = t}
T e n(a =t
N 1
Prob[V(m(a,)) = t] = = =
N Tk! Tk
and

Prob[V(m(a;)) < € = z; + 2z, ¥ ] #1|V(n(a ) = t] =

) Prob[V(n(a, )) = a. |[V(n(a.)) = t] Prob[V(m(a. )) < t + z, - z._,
aleV(Tk) 1 l| N i i N
a #t

1 ¥ 1= 2,00, N|V(n(a) = t and V(n(a))) = aj]

a Dt-z +z
1 N 1

The first term in this expression is equal to 1/(Tg - 1), and the last term

can in turn be expanded. So:

%&):if ] 7~ 1 o=ty )
(1) Nl a () k2 K ay (1)
t>zN alit aN__laft,al,az,...,aN__2
£ <yt Ay T2 17

In other words, the term after the first summation sign is calculated as
sampling without replacement. We claim that this term may be approximated

uniformly in (z,t) by a calculation involving sampling with replacement:

1 z 1 2 1
T; ev(T ) T; ev(T,) T q ev(T )
A% VAR -1k
a {t-z +z a <{t-z_+z a #£,2_,8_,e09+,a
1 N 1 2 N 1 N-1 17 2 N-2
a {t+z -7
N-1 N-1 N

i.e., there exist Ly < @ and g, : ¢gT, * 0 and the difference between the two

calculations is bounded by Lygp. Finally, we claim that sampling with
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replacement can be approximated uniformly in (z,t) by a Riemann integral,
i.e., that

N-1

1 1
T Z N-1 o« E )
€ i= €
k t V(Tk) Tk i=1 a; V(Tk)
t>z a <t-z +z
N i N i

is uniformly close to

1
f 0 G6(t -z + z,)dG6(t),
ZN i#N N *

where G(t) = Prob[g < t]. [
Theorem 6: By => Hg on (H,Zn)

Proof: We already know that p => p on (X,I). Thus, for every open set G:
Lim e (6) > p(G)

However, for every E € A, 3 G € T: E =G NI, and so
Me(E) = we(G), pg(E) = p (G 0 I = p(G)

Thus, lim pk(E) > p(E). Thus, by Theorem 2 of Varadarajan (p. 182),

By =2 W .
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Aggendix I1

The purpose of this Appendix is to prove the following:

Theorem: There exists a pair (A ,v. ), where A is a o-algebra of subsets of

II, and v; a probability measure on A;, such that:

(1) for each A € A, and each Ty, € T, v (T,A) = v (A)

(2) c(An) < Ay
where T = {Ta: X > X|Ta: x(t) » x((t + a)mod 1), o € I}

A few words of explanation: (1) is a "shift"” invariance condition. It says
that if a Ap-measurable set of "permutations™ of I is shifted « units to the
right, then it remains A measurable, and its v, measure is unaffected. The
theorem would remain true for "shifts to the left.” <Condition (2) requires
that A; contain the Baire c-algebra on Il. This is useful when we consider
weak convergence of measures to V.
The outer measure v* is defined from the measure space (X,S,pn) as:
@© o
* I3 . 3 I3
v (A) = inf{ ) v(An): {An} is a sequence in S with U A 2 A}
n=1 n=]
for every subset A of X. A subset E of X is called v-measurable if it is

measurable with respect to the outer measure generated by v, i.e.,
* *
v (E) + v (E®) = 1.

The set of E in X for which this statement holds will be called A. A is a
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o-algebra on X, and V¥ is a probability measure on (X,A).
* *
Lemma 1: v (TaA) = v (A), ¥ AcX, ¥ Ta € T,

Proof: There exist sequences {Ol}m_ < S such that, for each i, Oé are

n’‘n=1
® . ® . * . . .
disjoint, U o; > A and ) v(O;) + v (A) as i > @, Let Pl = ToOL. Then PL
n=1 - n=]
are disjoint, U P> >T A and P> € S.  Thus:
a=1 n a n

fee)

v*(TaA) < Z v(Pi) =

It~ 8

v(Oi) ¥ v*(A)

n=1 n=1
The last equality follows from
i n m i
v(B ) = AC N o (B D)) =A(AN %t +a)mod 1(B)) = v(0)
=1 7] j=1 J

with Oi = {x: x(tl) € Bl,...,x(tm) € Bm}. The inequality v*(A) < v*(TaA) is

proved in the same manner. {1

We will now try to prove that A contains the open sets: ¥ < A. To this

extent, we first note:

Lemma 2: Let A€ E, i.e., A= U A, with A = II J are basic open sets
BEB B er B
(and thus, J = I for all but finitely many a, J open for all «,f). Then
af af

v*(A) =AU n ¢ (Ja ))

BeB qex ¢ 9P

Proof: Let Z_ = n ¢ (J ), and E = U Z_.

1]
We claim now that there exists B < B, B countable, such that

Notice that ZB is open in I.

A U ZB) = AE). Let (al,az,...) be an enumeration of the rationals in E.
BEB'

F h i R . = : - + S Z.te
or each pair (al,a ), let Gaiaj {ZB. o« € ZB, (ai aj, a aj) B} To
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each pair (a-,aj), we now associate H

i where H is empty if G is

4’ 0% 1%
is an arbitrary element of G otherwise. Let
aj ai,(lj
1 1]
B = {B: ZB = Ha « for some ai,aj}. Then B 1is at most countable, and
1%

U ,ZB = E. The latter statement follows since if x € E is irrational, 13 a
peB
close to x, and aj rational such that x € Hgy. . {1

1’aj

ay,
empty, and Hy
i»

Lemma 3: Suppose A € X, G ¢ A and v*(G) < v*(A). Then there exists a basic

open set 0: 0 < A\G.

Proof: 1In calculating the outer measure of G, there is no loss of generality
in covering G with basic open sets, instead of members of S. Hence there

exist O, € 8: 0, > G, v*(On) < A and V*(on) + v (G). Without loss of

generality, we may assume Oy < O,,,- Fix 5, and pick x € A\O~. Let O be a
n

basic open set containing x, s.t. 0 © A\O.., Then 0 ¢ A\on ¥ n > ;, and hence
n

0 < A\G. {1
We atre now ready to prove:
Lemma 4: Every open set is v-measurable.

a sequence in S such that, for each i, G} are

o iy
Proof: Let A € &, and {Gn} n

n=1
i e it i x ¢ . .

Gn > A7, and z v(Gn) + v (A7), Without loss of generality,
1 n=1

disjoint,

I < 8

¢t = v ¢
n=1

= ]

may be assumed to be a decreasing sequence. Thus, ut = (Gi)C c A

i i+l c A. If we can prove that v*(H) = v*(A),

satisfies H Let H

]
I c 8
ja )

the theorem will be proven, since then

VA + v aS) = v ) + 1im v (e = lia(v @) + vl =1

n->oc n>w«

Suppose, to the contrary, that v¥(H) < v*(A). By Lemma 3, there exists
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0cA: HNO ¢t 50 u A, and

¢. Thus, G =
n

W o 8

1

Lim v (65 > vI(E) 3 v 0) + v (aS) > v,

n>ro

v (8%

by the finite additivity of v*, a contradiction. (]

Let us define Ay = A NI = {A nm: A€}, and v on A

as v (A n 1) = V(A N I). Then A, is a o-algebra on II, and vy a probability
measure on (II,% ), provided that v*(H) = 1 (Billingsley, 1979, p. 38).
Furthermore, A is constructed so as to contain the Baire o-algebra o(Ay).

Indeed, A contains all open sets of II (in the subspace topology).
*
Lemma 5: v (II) =1

Proof: Suppose, to the contrary, that v*(H) < 1. As observed in the proof of

e o]
Lemma 4, there exist basic open sets Aj such that u An o II and

- n=1

V(U A)< } vwA)<1-¢for some e > 0. Let A= U A €
n n n
n=1 n=1 n=1

. With v*(a)

(]

as defined in Lemma 2, we see that U N ¢ (J _) does not cover I. Let
BeB acr & P

X € I not be covered. Then n(t) = (t + x) mod 1 is not covered by A, a

contradiction. 0

. : . . * .
Finally, we note that the shift-invariance v on A carries over to v_ on

Lemma 6: For each A€ Apand Ty € T, v (T A )= vi(Ap)

Proof: From Billingsley (1979, p. 38), it follows that if v; is the outer

measure generated by Vv then v;(A ni = v*(A n 1) for all A € A. Thus,

mTe

*
Vn(TaAn) = v*(TaAﬂ) = v*(An), i.e., T A, is vﬂ—measureable,and



- 54 -

Ve(TeA) = vo(a).

This concludes the proof of the theoren.
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Figure l: A model of one-sided competition on the circle with T = 3.
(The symbol C refers to consumers, the symbol S to stores.)
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Figure 2: The model of competition on the circle with T = 6.
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Figure 3: Extending a permutation in T, to a measure-preserving
bijection on the unit interval [0,1).
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Computation of the limitation rotation group measure

using the maps

Figure 4:



