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The economic problem has been said to be the allocation of scarce means
among alternative ends, and economics to be the study of the economic problem,
Robbins (1932). Knight (1933) defined economics to be the study of how
societies deal with the economic problem. In either view economics is
concerned with purposeful, directed, activity. This almost necessarily
entails evaluating actions as better or worse use of available means,
depending on how their consequences relate to the purpose. Economic theory
therefore must contain some concept or desirable directions of action, or of
the consequences of action. Almost all economic models use a concept of
efficiency, which at this level of generality means going as far in a desired
direction as the scarce means permit. A weaker notion sometimes used in
models based on evolutionary processes is that of movement in a desired
direction, Alchian (1950), Winter (1964) and Nelson and Winter (1982).
Analysis of this idea in the context of resource allocation has been a central
concern of economic theory from ancient times, and is an essential element of
modern microeconomic theory. 1In the setting of the economic problem, the ends
of economic action are the satisfaction of human wants through the provision
of goods and services. These are supplied by production and exchange and
limited by scarcity of resources and technology. 1In this context efficiency
means going as far as possible in the satisfaction of wants within resource
and technological constraints. This is expressed by the concept of Pareto
optimality, which can be stated informally as follows; a state of affairs is
Pareto optimal if it 1s within the constraints and it is not the case that
everyone can be made better off in his own view by changing to another state
of affairs that satisfies the applicable constraints.

If the problem is viewed as one of choosing social arrangements for the

solution of the economic problem, then constraints of a different nature also



apply. Because knowledge about wants, resources and technology is dispersed,
efficient outcomes can be achieved only by coordination of economic

activity. Von Hayek (1945) pointed out the role of knowledge or information,
particularly in the context of prices and markets, in coordinating economic
activity. Acquiring, processing and transmitting information are costly
activities themselves subject to constraints imposed by technological and
resource limitations. Von Hayek pointed out that the institutions of markets
and prices function to communicate information dispersed among economic agents
s0 as to bring about coordinated economic action. He also drew attention to
desirable incentival, or motivational properties of those institutions. In
this context, the concept of efficiency takes account of the organizational
constraints on information processing and transmission in addition to those on
production of ordinary goods and services. The magnitude of resources devoted
to business or governmental bureaucracies, and to some of the functions
performed by industrial salesmen, attests to the importance of these
constraints. Economic analysis of efficient allocation has formallylimposed
only the constraints on production and exchange, and until recently recognized
organizational constraints only in an informal way. But it is these
constraints that motivate the pervasive and enduring interest in decentralized
modes of economic organization, particularly the competitive mechanism.

It is necessary to limit the scope of this essay so that it is not
coextensive with microeconomic theory. The main limitation imposed here is to
confine attention to models in which either the role of information is
ignored, or in which agents do not behave strategically on the basis of
private information. 1In so doing a large and important class of models
involving problems of efficient allocation in the presence of incentive

constraints is excluded.



The main ideas of efficient resource allocation are present in their
simplest form in the linear activity analysis model of production. We begin

with that model.

Efficiency of Production

The analysis of production can to some extent be separated from that of
other economic activity. The concept of efficiency appropriate to this
analysis descends from that of Pareto optimality, which refers to both
productive and allocative efficiency in the full economy in which production
is embedded. It is useful to begin with a model in which technological
possibilities afford constant returns to scale, that is, with the (linear)
activity analysis model of production pioneered by Koopmans (195la, 1951b,
1957), and closely related to the development of linear programming associated
with Dantzig (1951a, 1951b) and independently with the Russian mathematician

Kantorovitech (1939, 1942) and Kantorovitch and Gavurin (1949).

The two primitive concepts of the model are commodity and activity. A

list of n commodities is postulated; a commodity bundle is given by specifying

a sequence of n numbers a;,as,...,a Technological possibilities are thought

n°
of as knowledge of how to transform commodities. Such knowledge may be
described in terms of collections of activities called processes, much as
knowledge of how to prepare food is described by recipes. A recipe commonly
has two parts, a list of ingredients or inputs and of the output(s) of the
recipe, and a description of how the ingredients are to be combined to produce
the output(s). 1In the activity analysis model the description of prodﬁctive
activity is suppressed. Only the specification of inputs and outputs is

retained; this defines the production process.

Commodities are classified into "desired”, "primary” and "intermediate”



commodities. Desired commodities are those whose consumption or availability
is the recognized goal of production; they satisfy wants. Primary commodities
are those available from nature. (A primary commodity that is also desired 1is
listed separately among the desired commodities and must be transformed by an
act of production into its desired form.) Intermediate commodities are those
that merely pass from one stage of production to another. Each commodity can

exist in any nonnegative amount (divisibility). Addition and subtraction of

the numbers measuring the amount of a commodity represent joining and
separating corresponding amounts of the commodity.

An activity is characterized by a net output number for each commodity,

which is positive if the commodity is a net output, negative if it is a net

input and zero if it is neither. The term input—-output vector is also used

for this ordered array of numbers. Activity analysis postulates a finite
number of basic activities from which all technologically possible activities
can be generated by suitable combination. Allowable combinations are as
follows. If two activities are known to be possible, then the activity given
by their algebraic sum is also possible, i.e., if a = (aj,a5,++9,3 ) and

b = (bl’bZ""’bn)’ then a + b = (al+bl,a2+b2,...,an+bn) is also possible.
Thus, additivity embodies an assumption of non-interaction between productive
activities, at least at the level of knowledge. Furthermore, if an activity

is possible then so is every nonnegative multiple of it (proportionality),

i.e., if a = (aj,a9,+++,2,) 1s possible, then so is pa = (ual,uaz,...,uan) for
any nonnegative real number p. This expresses the assumption of constant
returns to scale. The family of activities consisting of all nonnegative
multiples of a given one form a process. Since there is a finite number of
basic activities, there is also a finite number of basic processes, each

intended to describe a basic method of production capable of being carried out



at different levels, or intensities.
The assumptions of additivity and proportionality determine a linear
model of technology that can be given the following form. Let A be an n by k

matrix whose jth

column is the input-output vector representing the basic
activity that defines the jth basic process, and let x = (xl’x2""’xn) be the
vector whose jth component X is the scale of (level or intensity) the jth
basic process. Let y = (yl,yz,...,yn) be the vector of commodities.

Technology is represented by a linear transformation mapping the space of

activity levels into the commodity space, i.e.,
y = Ax x » 0.

With the properties assumed, a process can be represented geometrically
in the commodity space by a halfline from the origin including all nonnegative
multiples of some activity in that process. The finite number of halflines
representing basic processes generate a convex polyhedral cone consisting of
all activities that can be expressed as sums of activities in the basic
processes, or equivalently, as nonnegative linear combinations of the basic

activities, sometimes called a bundle of basic activities. This cone is

called the production set, or set of possible productions.

Two other assumptions are made about the production set itself, rather
than just the individual activities. First, there is no activity, whether
basic or derived, in the production set with a positive net output of some
commodity and nonnegative net outputs of all commodities. This excludes the
possibility of producing something from nothing, whether directly or
indirectly. Second, it 1is assumed that the production set contains at least

one activity with a positive net output of some commodity.



If the availability of primary commodities is subject to a bound, the
technologically possible productions described by the production set are
subject to another restriction; only those possible productions that do not
require primary inputs in amounts exceeding the given bounds can be
produced. Furthermore, because intermediate commodities are not desired in
themselves, their net output is required to be zero. (Strictly speaking, the
technological constraint on intermediate commodities is that their net output
be nonnegative. The requirement that they be zero can be viewed as one of

elementary efficiency, excluding accumulation or necessity to dispose of

unwanted goods.) With these restrictions the model can be written,

]

y Ax, x > 0, y; = 0 if i is an intermediate commodity, and

yi ? riAif i is a primary commodity,

where r; is the‘(nonpositive) limit on the availability of primary commodity
i. This leads to the concept of an attainable activity.

A bundle of basic activities is attainable if the resulting net outputs
are nonnegative for all desired commodities, zero for intermediate commodities
and nonpositive for primary commodities, and if the total inputs of primary
commodities do not exceed (in absolute amount) the prescribed bounds of
availability of those commodities. The set of activities satisfying these

conditions is a truncated convex polyhedral cone in the commodity space called

the set of attainable productions.

The concept of productive efficiency in this model is as follows. An
activity, (a bundle of basic activities), is efficient if it is attainable and
if every activity that provides more of some desired commodity and no less of

any other is not attainable.



This concept can be seen to be a specialization of Pareto optimality. 1If
for each desired commodity there is at least one consumer who is not satiated

in that commodity, at least in the range of productions attainable within the

given resource limitations, then increasing the amount of any desired

commodity without decreasing any other can improve the state of some

nonsatiated consumer without worsening that of any other.

Characterization of Efficient Production in Terms of Prices

Efficient production can be characterized in terms of implicit prices,

also called shadow prices, or in the context of linear programming, dual

variables. Efficient activities are precisely those that maximize profit for
suitably chosen prices. The profit returned by a process carried out at the

level x is

Xzipiai’

where the prices are p = (pl,...,pn), and a = (al,...,an) is the basic
activity defining the process; the profit on the bundle of activities Ax at
prices p is given by the inner product py = pAx.

This characterization is the economic expression of an important
mathematical fact about convex sets in n dimensional Euclidean space, namely,
that through every point of the space not interior to the convex set in
question there passes a hyperplane that contains the set in one of its two
halfspaces, Fenchel (1950), Nikaido (1969, 1970). (A hyperplane in n
dimensional space is a level set of a linear function of n variables, and thus
is a translate of an n - 1 dimensional linear subspace. A hyperplane is given

3 _ )
by an equation of the form 1%y + CyX, +ooot c X, = k, where the x's are



variables, the c¢'s are coefficients defining the linear function and k is a
constant identifying the level set. A hyperplane divides the space into two
halfspaces corresponding to the two inequalities C Xy + CoXy teeet C X < k

and c1¥%y + CoXg Feeet coxp P k respectively.) It can also be seen that a

n
point of a convex set is a boundary point if and only if it maximizes a linear
function on the (closure of the) set. These facts can be used to characterize
efficient production because the attainable production set is convex and
efficient activities are boundary points of it. Because the efficient points
are those, roughly speaking, on the "northeast”™ frontier of the set, the
linear functions associated with them have nonnegative coefficients,
interpreted as prices. On the other hand, if a point of the attainable set

maximizes a linear function with strictly positive coefficients (prices) then

it is on the 'northeast' frontier of the set.

«

Figure 1

In Figure 1 the set enclosed by the broken line and the axes is the

projection of the attainable set on the output coordinates; inputs are not



shown. The point y' in the figure is efficient; the point y'' is not; both y'
and y'' maximize a linear function with nonnegative coefficients (the level
set containing y' is labelled a and also contains y''). However, y' maximizes
a linear function with positive coefficients (one such, whose level set
through y' is labelled b, is shown), while y'' does not.

These implicit, or efficiency prices arise from the logic of efficiency
or maximization when the relevant sets are convex, not from any institutions
such as markets or exchange. An important reason for interest in them is the
possibility of achieving efficient performance by decentralized methods. As
described above, under the assumptions of additivity and constant returns to
scale the production set can be seen to be generated by a finite number of
basic processes, each of which consists of the activities that are nonnegative
multiples of a basic activity, the multiple being the scale (level, or
intensity) at which the process is operated. Following the presentation of
Koopmans, (1957), each basic process is controlled by a managér, who decides
on its level. The manager of a process is assumed to know only the input-
output coefficients of his process. Each primary resource is in the charge of
a resource holder, who knows the limit of its availability. Efficiency prices
are used to guide the choices of managers and resource holders. (Under
constant’ returns to scale, 1f an activity yields positive profit at a given
system of prices, then increasing the scale of the process containing that
activity increases the profit. Since the scale can be increased without
bound, if the profitability of a process is not zero or negative, then, in the
eyes of its manager, who does not know the aggregate resource constraints, it
can be made infinite. Therefore, the systems of prices that can be considered

for the role of efficiency prices must be restricted to those compatible with

the given technology, namely prices such that no process is profitable and at
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least one process breaks even.) Two propositions characterize efficient
production by prices and provide the basis for an interpretation in terms of
decentralized control of production.

"In a given linear activity analysis model, if there is a given system of
prices compatible with the technology, in which the prices of all desired
commodities are positive, then any attainable bundle of basic activities
selected only from processes that break even and which utilizes all positively
priced primary commodities to the limit of their availability and does not use
negative pticed primary commodities at all, is an efficient bundle of
activities.”

In a given linear activity analysis model, each efficient bundle of
activities has associated with it at least one system of prices compatible
with the technology such that every activity in that bundle breaks even and
such that prices of desired commodities are positive, and the price of a
primary commodity is nonnegative, zero, or nonpositive, according as its
available supply is full, partly, or not used at all, Koopmans (1957).

These propositions are stated in a static form. There is no reference to
managers raising or lowering the levels of the processes they control, or to
resource holders adjusting prices. A dynamic counterpart of these
propositions would be of interest, but because of the linearity of the model
such dynamic adjustments are unstable, Samuelson (1949).

It should also be noted that the concept of decentralization is not
explicitly defined in this literature; the interpretation is by analogy with
the competitive mechanism. Nevertheless, the interest in characterizing
efficiency by prices and their interpretation in terms of decentralization is
an important theme in the study of efficient resource allocation.

The linear activity analysis model has been generalized in several
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directions. These include dropping the assumption of proportionality,

dropping the restriction to a finite number of basic activities, dropping the
restriction to a finite number of commodities and dropping the restriction to
a finite number of agents. Perhaps the most directly related generalization

is to the nonlinear activity analysis, or nonlinear programming, model.

Nonlinear Programming

In the nonlinear programming model there is, as in the linear model, a

finite number of basic processes. Their levels are represented by a vector
X = (xl,xz,...,xk), where k is the number of basic processes. Technology is

represented by a (nonlinear) transformation from the space of process levels

to the commodity space, (still assumed to be finite dimensional), written,

y = F(x), x > 0.

The production set in this model is the image in the commodity space of
the nonnegative orthant of the space of process levels. Under the assumptions
usually made about F, the production set is convex, though, of course, not a
polyhedral cone.

In this model as in the linear activity analysis model a central result
is the characterization of efficient production in terms of prices. The
simplest case to begin with is that of one desired commodity, say, one output,
with perhaps several inputs. 1In this case the (vector-valued) function F can

be written,

F(x) = (£(x), g)(x), gy(x),.c.,8,(x)),
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where the value of f is the output, and g,...,gp correspond to the various

inputs. Resource constraints are expressed by the conditions,
gj(x) > 0, for j =1,2,60.,m,

and nonnegativity of process levels by the condition, x > 0. (Here the
resource constraints r, < hj(x) € 0 are written more compactly as
hj(x) -y s gj(x) > 0.)

In this model the definition of efficient production given in the linear
model amounts to maximizing the value of f subject to the resource and
nonnegativity constraints just mentioned.

Problems of constrained maximization are intimately related to saddle
point problems. Let L be a real valued function defined on the set X x Y in

R". A point (x*,y*) in X x Y is a saddle point of L if

L(x,y*) < L(x*,y*) < L(x*,y), for all x in X and all y in Y.
The concept of a concave function is also needed.
A real valued function f defined on a convex set X in R" is a concave
function if for all x and y in X and all real numbers 0 < a < 1
f(ax+(l-a)y) » af(x) + (l-a)f(y).

The following mathematical theorem is fundamental.

Theorem: (Kuhn and Tucker (1951), Uzawa (1958)). Let f and g;,g2,...,8qn

be real valued concave functions defined on a convex set X in R, If f
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achieves a maximum on X subject to gj(x) >0, j=1,2,...m at the point x* in

X, then there exist nonnegative numbers pp*,p;*,...,pp*, not all zero, such

that
po*f(x) + p*g(x) < po*f(x*) for all x in X, and furthermore, p*g(x*) = 0. (Here the

vectors p* = (p1*,po*,...,pp*), and g(x) = (g1(x),g2(X),eee,gn(x)).)

The vector p* may be chosen so that ZOmpj* = 1.

An additional condition, Slater (1951), is important. (It ensures that

the coefficient Py of f is not zero.)

Slater's Condition: There is a point x' in X at which gj(x') > 0 for all

j=1,2,c¢.,me.
If attention is restricted to concave functions, as in the Kuhn-Tucker,
Uzawa theorem, the relation beteween constrained maxima and saddle-points can

be summarized in the following theorem.

Theorem: If f and gj, j=1,2,«s.,m are concave functions defined on a
convex subset X in RT, and if Slater's Condition is satisfied, then x* in X
maximizes f subject to gj(x) >0, j=1,2,.0.,m, if and only if there exists
AF o= (A* A%, eea A% ), x*j >0 for j =1,2,.4.,m, such that (x*,A*) is a
saddle point of L(x,A) = f(xX) + Ag(x) on X x R:.

Thié theorem is easily seen to cover the case where some constraints are
equalities, as in the case of intermediate commodities. The sufficiency half
of this theorem holds for functions that are not concave.

The auxiliary variables Aj,A2,eee,Ap> called Lagrange multipliers, play

the role of efficiency prices, or shadow prices; they evaluate the resources
constrained by the condition g(x) » 0. The maximum characterized by the
theorem is a global one, as in the case of linear activity analysis.

If the functions involved are differentiable, a saddle point of the
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Lagrangean can be studied in terms of first order conditions. The first order
conditions are necessary conditions for a saddle point of L. 1If the functions
f and the g's are concave on a convex set X, then the first order conditions
at a point (x*,\*) are also sufficient, i.e., they imply that (x*,\*) is a

saddle point of L. Thus,

Theorem: If f, g1189>+++»8 are concave and differentiable on an open
convex set X in Rn, and if Slater's Condition is satisfied, then x* maximizes
f subject to gj(x) >0 for j =1,2,...,m if and only if there exist numbers
x*l,x*z,...,x*m such that the first order conditions for a saddlepoint of
L(x,\) = f(x) + Ag(x) are satisfied at (x*,A*).

If there are nonnegativity conditions on the x's,
n
gj(x) >0, x> 0, xin R,

and the first order conditions can be written:

* kok * *o*k X = * *) = *
f <7 A*g < S 0, (f x+x g x)x 0, A*g(x*) = 0 g(x*) » 0,

g(x*) > 0, A\* > 0 and A*g(x*) = 0,

where f*, denotes the derivative of f evaluated at x*. In more explicit
notation, the conditions f*x + x*g*x = (0 can be written as
m
d3f/dx, + _X x*jagj/axi =0, 1=1,2,...,n.
j=1
When the assumption of concavity is dropped, it is no longer possible to

ensure that a local maximum is also a global one. However it is still

possible to analyze local constrained maxima in terms of local saddle point
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conditions. 1In this case a condition is needed to ensure that the first order
conditions for a saddle point are indeed necessary conditions. The Kuhn-
Tucker Constraint Qualification is such a condition. Arrow, Hurwicz and Uzawa
(1961) have found a number of conditions, more useful in application to
economic models, that imply the Constraint Qualification.

The case of more than one desired commodity leads to what is called the

vector maximum problem, Kuhn and Tucker (1951). This may be defined as

follows.
Let fl’fZ""’fk and 813895058 be real valued functions defined on a

set X in R%". We say x* in X achieves a (global) vector maximum of

f = (fl’fZ""’fk) subject to gj(x) >0, §=1,2,00e,m if,
i) gj(x*) >0, j =1,2,00.,m,

ii) there does not exist x' in X satisfying fi(x') > fi(x*) for
i=1,2,...,k with f5(x') > f;(x*) for some value of i, and
gj(x') >0 for j = 1,2,¢e.,m.

This is just the concept of an efficient point expressed in the present
notation.

A vector maximum has a saddle-point characterization similar to that for

a scalar valued function.

Theorem: Let fl’fZ""’fk and 8 28ys e esBy be real valued concave
functions defined on a convex X set in R". Suppose there is x¥ in X such that
gj(xo) >0, j =1,2,...,m (Slater's Condition). If x* achieves a vector
maximum of f subject to g(x) » O then there exist a = (al,az,...,ak) and
Ax = (x*l,x*z,...,x*m) with aj > 0 for all j, a # 0 and A » 0 such that
(x*,A*) is a saddle point of the Lagrangean L(x,\) = af(x) + Ag(x).

Several different “converses”, to this theorem are known. One states
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that if x* maximizes L{(x,A*) for some strictly positive vector a and
nonnegative A*, and if A*g(x*) = 0 and g(x*) » O then x* gives a vector
maximum of f subject to g(x) » 0, and x in X. Another, parallel to the result

for the case of one desired commodity, is:

Theorem: Let f and g be functions as in the Theorem above. If there are
positive real numbers ay,89, 00053 and if (x* ,\*) is a saddle point of the
Lagrangean L (defined as above) then (i) x* achieves a maximum of f subject to
g(x) » 0 on X, and (ii1) N*g(x*) = 0.

The positive numbers aj,ee+,3, are interpreted as prices of desired
commodities, and the nonnegative numbers xj* are prices of the remaining
commodities. The condition A*g(x*) = 0 which arises in these theorems states
that the value of unused resources at the efficiency prices A* is zero, i.e.,
resources not fully utilized at a vector maximum have a zero price.

The connection between vector maxima and Pareto optima is as follows.
Because a vector maximum is an efficient point (for the vectorial ordering of
the commodity space), it is a Pareto optimum for appropriately specified
(nonsatiated) utility functions, as was already pointed out in the case of the
linear actiyity analysils model. Furthermore, if the functions fl""’fk are
themselves utility functions, and the variable x denotes allocations, with the
constraints g defining feasibility, then a vector maximum of f subject to the
constraints g(x) » 0 and x in X is a Pareto optimum, and vice versa. Hence
the saddle point theorems give a characterization of Pareto optima by
prices. The interpretation of prices in terms of decentralized resource
allocation described in the linear activity analysis model also applies in
this nonlinear model. The proofs of these theorems reveal an important

logical role played by the principle of marginal cost pricing.
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The basic theorems of nonlinear programming, especially the Kuhn-Tucker,
Uzawa theorem in the setting of the vector maximum problem, have been extended
to the case of infinitely many commodities. (Hurwicz (1958) first obtained
the basic results in this field.) Technicalities aside, the theorems carry
over to certain infinite dimensional spaces, namely, linear topological
spaces, or in the case of first order conditions, Banach spaces.

Dropping the restriction to a finite number of basic processes leads to
classical production or transformation function models of production, whose
properties depend on the detailed specifications made.

Samuelson (1947) used Lagrangian methods to analyze interior maxima
subject to equality constraints in the context of production function models,
as well as that of optimization by consumers. He also gave the interpretation

of Lagrange multipliers as shadow prices.

Efficient Allocation in an Economy with Consumers and Producers

In an economy with both consumption and production decisions, efficiency
is concerned with distribution as well as production. Data about restrictions
on consumption and the wants of consumers must be specified in addition to the
data about production. The elements of the model are as follows.

Thé commddity'space is denoted X; it might be l-dimensional euclidean
space, or a more abstract space such as an additive group in which, e.g., some
coordinates are restricted to have integer values. There is a (finite) list
of consumers, 1,2,...,n, and a similar list of producers, 1,2,...,m. A state
of the economy, 1is an array consisting of a commodity bundle for each agent in
the economy, consumer or producer. This may be written (<xi>,<yi>), where
<xi> = (xl,xz,...,xn) and <yj> = (yl,yz,...,ym) and xi and yj are commodity

bundles. Absolute constraints on consumption are expressed by requiring that
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the allocation <xi> belong to a specified subset X of the space.§P of
allocations. Examples of such constraints are:
1) the requirement that the quantity of a certain commodity be
nonnegative,
and,
2) that a consumer requires certain minimum quantities of commodities
in order to survive.

Each consumer has a preference relation, denoted :i’ defined on X. This
formulation admits externalities in consumption, including physical
externalities and externalities in preferences, e.g., preferences that depend
on the consumption of other agents, termed nonselfish preferences. The
consumption set of the ith consumer is the projection x1 of X onto the space
of commodity bundles whose coordinates refer to the holdings of the ith
consumer.

Technology is specified by a production set Y, a subset of 5?, consisting
of those arrays <yj> of input-output vectors that are jointly feasible for all
producers. The production set of the jth producer, denoted Yj, is the
projection of Y onto the subspace of 5? whose coordinates refer to the jth
producer.

The (aggregate) initial endowment of the economy is denoted by w, a
commodity bundle in X.

These specifications define an environment, a term introduced by Hurwicz
(1960) in this usage and according to him suggested by Jacob Marschak. This
term refers to the primitive or given data from which analysis begins. Each
environment determines a set of feasible states. These are the states
(<xi>,<yj>) such that <xi> is in X, <yj> is in Y and in - Zyj < w.

An environment determines the set of states that are Pareto optimal for
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that environment. Explicitly, they are the states (<x*i>,<y*j>) that are
feasible in the given environment, and such that if any other state
(<xi>,<yj>) has the property that <xi> o} <x*i> for all i with <xi'> >i <x*i'>
for some i', then (<xi>,<yj>) is not feasible in the given environment.

It is important to note that the set of feasible states and the set of
Pareto optimal states are completely determined by the environment;
specification of economic organization is not involved.

At'this level of generality, where externalities in consumption and
production are admitted as possibilities, and where commodities may be
indivisible, no general characterization of Pareto optima in terms of prices
is possible. Indeed, Pareto optima may not exist. (Conditions that make the
set of feasible allocations nonempty and compact and preferences continuous
suffice to ensure the existence of Pareto optima.) 1In environments with
externalities, or other nonclassical features, Pareto optima are generally not
attainable by decentralized processes, Hurwicz (1966).

If the class of environments under consideration is restricted to the
classical environments, the fundamental theorems of classical welfare
economics provide a characterization of Pareto optimal states via efficiency
prices. That characterization has a natural interpretation in terms of a
decentralized mechanism for allocation of resources.

The framework for these results is obtained by restricting the class of
environments specified above as follows. The commodity space is to be
Euclidean space of 1 dimensions, i.e., X = RL. The consumption set for the
economy is to be the product of its projections, i.e., X = xlxxzx...xxn. This
expresses the fact that if each agent's consumption is feasible for him, the
total array is jointly feasible. Furthermore, each agent is restricted to

have selfish preferences, i.e., agent i's preference relation depends only on
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the coordinates of the allocation that refer to his holdings. 1In that case

the preference relation >i may be defined only on Xi, for each i. Similarly,
. . , , 1 .2 m

externalities are ruled out in production, i.e., Y = Y XY X...XY .

The concept of an equilibrium relative to a price system, Debreu (1959),

serves to characterize Pareto optima by prices. A price system, denoted p, is
an element of Rl; the environment e = ((Xi),(<i),(YJ),w) is of the restricted

type specified above (free of externalities and indivisibilities).

A state ((x*i),(y*j)) of e is an equilibrium relative to price system p

if:

1) For every consumer i, xx1 maximizes preference :i on the set of
consumption bundles whose value at the prices p does not exceed the
value of x*1 at those prices, i.e., if xl is in
{xi in Xilpxi < px*i} then x1 % x*x1

2) For every producer j, y*j maximizes profit pyj on Yj,

3) Aggregate supply and demand balance, i.e., Eix*i - Ejy*j = w.

An equilibrium relative to a price system differs from a competitive
equilibrium (see p. 23 below) in that the former does not involve the budget
constraints applying to consumers in the latter concept. In an equilibrium
relative to a price system the distribution of initial endowment and of the
profits of firms among consumers need not be specified.

The first theorem of classical welfare eéonomics states, subject only to
a mild condition that excludes preferences with thick indifference sets, as
well as externalities, that a state of an environment e that is an equilibrium
relative to a price system p is a Pareto optimum of e, Koopmans (1957).

The second welfare theorem is deeper and holds only on a smaller class of

environments, sometimes referred to as the classical environments. One

version of this theorem is as follows.
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i i i . .
Let e = ((X),(<),(Y),w) be an eaviroanment such that for each i
. i,
i) X 1is convex,
ii) the preference relation <i is continuous,

iii) the preference relation <, is convex,

. i

iv) the set EjYJ is convex.

Let ((x*i),(y*j) be a Pareto optimum of e such that there is at least one
consumer who is not satiated at x*l. Then there is a price system p, with not
all components equal to 0, such that (except for Arrow's (1951) 'exceptional
case' where p is such that for some i the expenditure px*i is a minimum on the
consumption set Xi) the state ((x*i),(y*j)) is an equilibrium relative to p.

(The condition that preferences are convex and not satiated is sufficient
to exclude thick indifference sets. A preference relation on X1 is convex if
whenever x' and x'' are points of x! with x' strictly preferred to x'' then
the line segment connecting them (not including the point x'') is strictly
preferred to x'. The consumption set x1 must be convex for this property to
make sense. A preference relation is not satiated if there is.no consumption
preferred to all others.)

Hurwicz (1960) has given an alternative formalization of the competitive
mechanism in which Arrow's exceptional case presents no difficulties.

If the exceptional case is not excluded, then it can still be said ﬁhat:

a) x*1 minimized expenditure at prices p on the upper contour set of

x*i, for every i, and,

b) y*j maximizes "profit” pyj on the production set Yj, for every j.

The state (x*,y*) together with the prices p, constitute a valuation
equilibrium, Debreu (1954).

As in the case of efficiency prices in pure production models, these

prices have in themselves no institutional significance. They are, however,
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in the same way as other efficiency prices, suggestive of an interpretation in
terms of decentralization.

If, in addition to the restriction to classical environments, the
economic organization is specified to be that of a system of markets in a
private ownership economy, and if agents are assumed to take prices as given,
then the welfare theorems can translate into the assertion that the set of
Pareto optima of an environment e and the set of competitive equilibria for e
(subject to the possible redistribution of initial endowment and ownership
shares) are identical. More precisely, the specification of the environment
given above is augmented by giving each consumer a bundle of commodities, his
initial endowment, denoted wi. The total endowment is w = Xiwi. Furthermore,
each consumer has a claim to a share of the profits of each firm; the claims
for the profit of each firm are assumed to add up to the entire profit. When
prices and the production decisiops of the firms are given, the profits of the
firms are determined and so is the value of each consumers initial
endowment. Therefore, the income of each consumer is determined. Hence, the
set of commodity bundles a consumer can afford to buy at the given prices,
called his budget set, is determined; this consists of all bundles in his
consumption set whose value at the given prices does not exceed his income at
the given prices. - Competitive behavior of consumers means that each consumer

treats the prices as given constants and chooses a bundle in his budget set

i

that maximizes his preference, i.e., a bundle x' that is in X* and such that

if any other bundle x'i is preferred to it, then x'! is not in his budget set.
Competitive behavior of firms is to maximize profits computed at the

given prices p, regarded by the firms as constants, i.e., a firm chooses a

]

production vector y- in its production set with the property that any other

vector affording higher profits than pyj is not in the production set of
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firm j.

A competitive equilibrium is a specification of a commodity bundle for

each consumer, a production vector for each firm, and a price system, together
denoted ((x*1),(y*3),p*), where p* has no negative components, satisfying the
following conditions.
i) for each consumer i the bundle x*1 maximizes preference on the
budget set of 1;
ii) for each firm j the production vector y*j maximizes profit p*yj on
the production set Yj;
iii) for each commodity, the total consumption does not exceed the net
total output of all firms plus the total initial endowment, i.e.,
. . {
Eix*l - Ejy*J L w = Eiw H
iv) for those commodities k for which the inequality in iii) is strict,
i.e., the total consumption is less than initial endowment plus net
output, the price p*k is zero.

The welfare theorems stated in terms of equilibrium relative to a price
system translate directly into theorems stated in terms of competitive
equilibrium. Briefly, every competitive equilibrium allocation in a given
classical environment is Pareto optimal in that environment, and every Pareto
optimal allocation in a given classical environment can be made a competitive
equilibrium allocation of an environment that differs from the given one only
in the distribution of the initial endowment. (Arrow (1951), Koopmans (1957),
Debreu (1959) and Arrow and Hahn (1971) give modern and definitive treatment
of the classical welfare theorems.)

It should be noted that the equilibria involved must exist for these
theorems to have content. Sufficient conditions for existence of competitive

equilibrium, which, since a competitive equilibrium is automatically an
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equilibrium relative to a price system, are also sufficient for existence of
an equilibrium relative to a price system, include convexity and continuity of
consumption sets and preferences and of production sets, as well as some
assumptions which apply to the environment as a whole, restricting the ways in
which individual agents may fit together to form an environment, Arrow and -
Debreu (1954), Debreu (1959), McKenzie (1959).

The second welfare theorem involves redistribution of initial
endownment. This is essential because the set of competitive equilibria from a
given initial endowment is small (essentially finite), Debreu (1970), while
the set of Pareto optima is generaily a continuum. The set of Pareto optima
cannot in general be generated as competitive allocations without varying the
initial point. 1If redistribution is done by an economic mechanism, then it
should be a decentralized one to support the interpretation given of the
second welfare theorem. No such mechanism has been put forward as yet.
Redistribution of initial endowment by lump-sum taxes and transfers has been
discussed. A customary interpretation views these as brought about by a
process outside economics, perhaps by a political process; no claim is made
that such processes are decentralized. Some economists consider dependence on
redistribution unsatisfactory because information about initial endowment is
private; only the individual agent knows his own endowment. Consequently the
expression of that information through political or other action can be
expected to be strategic. The theory of second-best allocations has been
proposed in this context. Redistribution of endowment is excluded, and the
mechanism is restricted to be a price mechanism, but the price system faced by
consumers 1is allowed to be different from that faced by producers; all agents
behave according to the rules of the (static) competitive mechanism. The

allocations that satisfy these conditions, when the price systems are
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variable, are maximal allocations in the sense that they are Pareto optimal
within the restricted class just defined. These are so—called second-best

allocations. This analysis was pioneered by Lipsey and Lancaster (1956), and

by Diamond and Mirlees (1971).

Nonclassical Environments

The term nonclassical refers to those environments that fail to have the

properties of classical ones; there may be indivisible commodities,
nonconvexities in consumption sets, preferences or production sets, or
externalities in production or consumption. An example of nonconvex
preference would arise if a consumer preferred living in either Los Angeles or
New York to living half the time in each city, or living half way between
them, depending on the way the commodity involved is specified. A production
set representing a process that affords increasing returns to scale is an
example of nonconvexity in production. A large investment project such as a
road system is an example of a significant indivisibility. Phenomena of air
or waﬁer pollution provide many examples of externalities in consumption and
production.

The characterization of optimal allocation in terms of prices provided by
the classical welfare theorems does not extend to nonclassical environments.
If there are indivisibilities, equilibrium prices may fail to exist. Lerner
(1934, 1947) has proposed a way of optimally allocating resources in the
presence of indivisibilities. 1t would typically require adding up consumers'
and producers' surplus.

Increasing returns to scale in production generally results in
nonexistence of competitive equilibrium, because of unbounded profit when

prices are treated as given. Nash equilibrium, a concept from the theory of
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games, can exist even in cases of increasing returns. The difficulty is that
such equilibria need not be optimal. Similar difficulties occur in cases of
externalities.

Failure of the competitive price mechanism to extend the properties
summarized in the classical welfare theorems to nonclassical environments has
led economists to look for alternative ways of achieving optimal allocation in
such cases. Such attempts have for the most part sought institutional
arrangements that can be shown to result in optimal allocation. Ledyard
(1968, 1971) analyzed a mechanism for achieving Pareto optimal performance in
environments with externalities. The use of taxes and subsidies advocated by
Pigou (1932) to achieve Pareto optimal outcomes in cases of externalities is
such an example. In a similar spirit Davis and Whinston (1962) distinguish
externalities in production that leave marginal costs unaffected from those
that do change marginal costs. In the former case they propose a pricing
scheme, but one that involves lump-sum transfers. Marginal cost pricing,
including lump-sum transfers to compensate for losses, which was extensively
discussed as a device to achieve optimal allocation in the presence of
increasing returns (Lerner (1947), Hotelling (1938) and many others) 1is
another example of a scheme to realize optimal outcomes in nonclassical
environments in a way that seeks to capture the Benefits associated with
decentralized resource allocation. In the case of production under conditions
of increasing returns, the use of nonlinear prices has been suggested in an
effort to achieve optimality with at least some of the benefits of
decentralization. (See Arrow and Hurwicz (1960), Heal (1971), Brown and Heal
(1982), Brown, Heal, Ali Khan and Vohra (1985), Jennergren (1971) and
Guesnerie (1975).)

In the case of indivisibilities, and in the context of productive
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efficiency, integer programming algorithms exist for finding optima in
specific problems, but a general characterization in terms of prices such as
exists for the classical environments is not available. A decentralized
process, involving the use of randomization whose equilibria coincide with the
set of Pareto optima has been put forward by Hurwicz, Radner and Reiter
(1975). This process has the property that the counterparts of the classical
welfare theorems hold for environments in which all commodities are
indivisible, and the set of feasible allocations is finite, or in which there
are no indivisible commodities, or externalities, but there may be
nonconvexities in production or consumption sets, or in preferences. This, of
course, includes the possibility of increasing returns to scale in production.
The schemes and processes that have been proposed, including many not
described here, are quite different from one another. If attention is
confined to pricing schemes without addi;ional elements, such as lump-sum
transfers, it may be satisfactory to proceed on the basis of an informal
intuitive notion of decentralization. This amounts in effect ﬁo identifying
decentralization with the competitive mechanism, or more generally with price
or market mechanisms. If a broader class of processes is to be considered,
including some already mentioned in this discussion, then a formal concept of

decentralized resource allocation process is needed.

Informationally Decentralized Processes

A formal definition of the concept of allocation process was first given

by Hurwicz (1960). He also gave a definition of informational

decentralization applying to a broad class of allocation mechanisms, based in

part on a discussion by von Hayek (1945) of the advantages of the competitive

market mechanism for communicating knowledge initially dispersed among
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economic agents so that it can be brought to bear on the decisions that
determine the allocation of resources. Hurwicz's formulation is as follows.
There is an initial dispersion of information about the environment; each
agent is assumed to observe directly his own characteristic, ei, but to know
nothing directly about the characteristics of any other agent. In the absence
of externalities, specifying thé array of individual characteristics specifies
the environment, i.e., e = (el,...,en). When there are externalities, an
array of individual characteristics each component of which corresponds to a
possible environment may not together constitute a possible environment. In
more technical language, when there are externalities the set of environments

is not the Cartesian product of its projections onto the sets of individual

characteristics.

The goal of economic activity, whether efficiency, Pareto optimality or
some other desideratum such as fairness, can be represented by a relation
between the set of environments and the set of allocations, or outcomes. This
relation assigns to each environment the set of allocations that meet the
criterion of desirability. 1In the case of the Pareto criterion, the set of
allocations that‘are Pareto optimal in a given environment is assigned to that
environment. Formally, this relation is a correspondence (a set-valued
function) from the set of environments to the set of allocations.

An allocation process, or mechanism, is modelled as an explicitly dynamic
process of communication, leading to the determination of an outcome. In
formal organizations standardized forms are frequently used for communication;
in organized markets like the stock exchange, these include such things as
order forms; in a business, forms on which weekly sales are reported; in the
case of the Internal Revenue Service, income tax forms. A form consists of

entries or blanks to be filled in a specified way. Thus, a form can be
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regarded as an ordered array of variables whose values come from specified
sets. In the Hurwicz model, each agent is assumed to have a language, denoted
MY for the ith agent, from which his (possibly multi-dimensional) message, ml,

is chosen. The joint message of all the agents, m = (ml,...,m™) is in the

n
message space M = M x.,.xM . Communication takes place in time, which is

discrete; the message m, = (mlt""mnt) denotes the message at time t. The
message an agent emits at time t can depend on anything he knows at that

time. This consists of what the agent knows about the environment by direct
observation, by assumption, (privacy) his own characteristic, el for agent 1,

and what he has learned from others via the messages received from them. The

agents' behavior is represented by response functions, which show how the

current message depends on the information at hand. Agent i's message at time

t is,
mlt = fl(mt_l)mt_2s°°°;el), i=1,...,n, t = 0,1,2,0000

If it is assumed that memory is finite, and bounded, it is possible
without loss of generality to take the number of past periods remembered to be

one. In that case the response equations become a system of first order

temporaliy homogeneous difference equations in the messages. Thus,
my = fl(mt_l;el) i=1,...,n t = 0,00,
which can be written more compactly as,

*) me = f(mt_l;e).
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(This formulation can accommodate the case of directed communication, in
which some agents do not receive some messages; if agent i is not to receive
the message of j, then £l is independent of nJ, although mJ appears formally
as an argument.) Analysis of informational properties of mechanisms is to
begin with separated from that of incentives. When the focus is on
communication and complexity questions, the response functioﬁs are not
regarded as chosen by the agent, but rather by the designer of the mechanism.

The iterative interchange of messages modelled by the difference equation
system *) eventually comes to an end, either by converging to a stationary
message, or by some stopping rule, such as to stop after a specified number of
iterations. The message with which communication stops, which will be

referred to as an equilibrium message, is then translated into an outcome, by

means of the outcome function,

h:M --> Z,

where Z is the space of outcomes, usually allocations or trades. An

allocation mechanism so modelled is called an adjustment process; it consists

of the triple (M,f,h). Since no production or consumption takes place until
all communication is completed, these processes are tgtonnement processes.

A more compact and general formulation was given by Mount and Reiter
(1974) by looking only at message equilibria when attention is restricted to

static properties. A correspondence is defined, called the equilibrium

message correspondence. It assoclates to each environment the set of

equilibrium messages for that environment. In order to satisfy the
requirement of privacy, namely that each agent's message depend on the

environment only through the agent's characteristic, the equilibrium message
y g g g
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correspondence must be the intersection of individual message correspondences,
each associating a set of messages acceptable to the individual agent as

equilibria in the light of his own characteristic. Thus, the equilibrium

message correspondence
LiE==>>M,
is given by,

i i
p(e) =np (e ),
i
i
where 4 :El——>>M is the individual message correspondence of agent i. Note

that here the message space M need not be the Cartesian product of individual

languages. In the case of an adjustment process, the equilibrium message

correspondence is defined by the conditions,

ul(el) = {m in M!fl(m;el) = ml}, i=1,...,n
together with the condition that p is the intersection of the ul.
Specification of the outcome function h:M-->Z completes the model, (M,p,h).
The performance of a mechanism of this kind can be characterized by the
mapping defined by the composition of the equilibrium message correspondence p

and the outcome function h. The mapping hu:E-->>Z, possibly a correspondence,

specifies the outcomes that the mechanism (M,p,h) generates in each
environment in E. A mechanism, whether in the form of an adjustment process,

or in the equilibrium form, is called Pareto-satisfactory, Hurwicz (1960), if

for each environment in the class under consideration, the set of outcomes
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generated by the mechanism coincides with the set of Pareto optimal outcomes
for that environment. Allowance must be made for redistribution of initial
endowment, as in the case of the second welfare theorem. (A formulation in
the framework of mechanisms is given in Mount and Reiter (1977).)

The competitive mechanism formalized as a static mechanism is as
follows. (Hurwicz (1960) has given a different formulation, and Sonnenschein
(1974) has given an axiomatic characterization of the competitive mechanism
from a somewhat different point of view.) The message space M is the space of
prices and quantities of commodities going to each agent, (it has dimension
n{l-1) when there are n agents and 1 commodities, taking account of budget
constraints and Walras' Law), the individual message correspondence pi maps
agent i's characteristic el to the graph of his excess demand function. The
equilibrium message is the intersection of the individual ones, and is
therefore the price-quantity combinations that solve the system of excess
demand equations. The outcome function h is the projection of the equilibrium
message onto the quantity components of M. Thus, hp(e) is a competitive
equilibrium allocation (resp. trade) when the environment is e. The classical
welfare theorems state that for each e in E_ h(p(e)) = P(e), where E. denotes
the set of classical environments and P is the Pareto correspondence.
(Allowarice must be made for redistribution of initial endowment in connection
with the second welfare theorem. Explicit treatment of this is omitted to
avoid notational complexity. The decentralized redistribution of initial
endowment is, as in the case of the second welfare theorem, not addressed.)
The welfare theorems can be summarized in the Mount-Reiter diagram, Reiter

(1977).
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Figure 2

The welfare theorems state that this diagram commutes in the sense that
starting from any environment e in E. one reaches the same allocations via the
mechanism, i.e., via hu, as via the Pare;o correspondence P.

With welfare theorems as a guide, the class of environments EC can be
replaced by some other class E, and the Pareto correspondence éan be replaced
by a correspondence ,P, embodying another criterion of optimality, and one can
ask whether there is a mechanism, (M,p,h) that makes the diagram commute, or,
in other words, realizes P? Without further restrictions on the mechanism
this is a triviality, because one agent can act as a central agent to whom all
others communicate their environmental characteristics; the central agent then

has the information required to evaluate P.

The concept of an informationally decentralized mechanism defined by

Hurwicz (1960) makes explicit intuitive notions underlying the view that the
price mechanism is decentralized.

They are a subclass of so-called concrete processes, introduced by

Hurwicz (1960). These are processes that use a language and response rules
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that allow production and distribution plans to be specified explicitly. The
informationally decentralized processes are those whose response rules permit
agents to transmit information only about their own actions, and which in
effect require each agent to treat the rest of the economy either as one
aggregate, or in a symmetrical way that, like the aggregate, gives anonymity
to the other agents.

In the case of static mechanisms, the requirements for informational
decentralization boil down to the condition that the message space have no
more than a certain finite dimension, and in some cases only that it be of
finite dimension. In the case bf classical environments this can be seen to
include the competitive mechanism, and to exclude the obviously centralized
one mentioned above.

Without going deeply into the matter, an objective of this line of
research is to analyze explicitly the consequences of constraints on economic
organization that come from limitations on the capacity of economic agents to
observe, communicate and process information. One important result in this
field is that there is no mechanism (M,u,h), where | preserves privacy, that
uses messages smaller (in dimension) that those of the competitive mechanism,
Hurwicz (1972b), Mount and Reiter (1974), Walker (1977), and Osana (1978).
Similar ‘results have been obtained for environments with public goods, showing
that the Lindahl mechanism uses the minimal message space, Sato (1981).
Another objective is to analyze effects on incentives arising from private
motivations in the presence of private information, i.e., information held by
one agent that is not observable by others, except perhaps at a cost. (There
is a large literature on this subject under the rubric 'incentive
compatibility', or 'strategic implementation', Dasgupta-Hammond-Maskin (1979),

Hurwicz (1971, 1972a). The informational requirements of achieving a
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specified performance taking incentive compatibility into account have been
studied by Hurwicz (1976), Reichelstein (1984b, 1984c) and by Reichelstein and
Reiter (1985).

Some important results for nonclassical environments can be mentioned.
Hurwicz (1960, 1966, 1972a) has shown that there can be no informationally
decentralized mechanism that realizes Pareto optimal performance on a class of
environments that includes those with externalities. Calsamiglia (1977, 1982)
has shown in a model of production that if the set of environments includes a
sufficiently rich class of those with increasing returns to scale in
production, then the dimension of the message space of any mechanism that

realizes efficient production cannot be bounded.

Infinitely Many Commodities

An infinite dimensional commodity space is needed when it is necessary to
make infinitely many distinctions among goods and services. This is the case
when commodities are distinguished according to time of availability and the
time horizon in the model is not bounded or when time is continuous, or
according to location when there is more than a finite number of possible
locations; differentiated commodities provide other examples, and so does the
case of uncertainty with infinitely many states. The bulk of the literature
deals with the infinite horizon model of allocation over time, though recently
more attention is given to models of product differentiation. Ramsey (1928)
studied the problem of saving in a continuous time infinite horizon model with
one consumption good and an infinitely lived consumer. He used as the
criterion of optimality the infinite sum (integral) of undiscounted utility.
Ramsey's contribution was largely ignored, and rediscovered when attention

returned to problems of economic growth. A model of maximal sustainable



36

growth based on a linear technology with no unproduced inputs was formulated
by von Neumann (1937 in German; English translation, 1945-46). This
‘contribution was unknown among English speaking economists until after WWII.
Study of intertemporal allocation by Anglo—-American economists effectively
began with the contributions of Harrod (1939) and Domar (1946). These models
were concerned with stationary growth at a constant sustainable rate
(stationary growth paths) rather than full intertemporal efficiency.
Malinvaud (1953) first addressed this problem in a pioneering model of
intertemporal allocation with an infinite horizon.

Efficieqt allocation over (discrete) time would be covered by the finite
dimensional models described above if the time horizon were finite. It might
be thought that a model with a sufficiently large but still finite horizon
would for all practical purposes be equivalent to one with an infinite
horizon, while avoiding the difficulties of infinity, but this is not the
case, because of the dependence of efficient or optimal allocations on the
value given to final stocks, a value that must depend on their uses beyond the
horizon.

Malinvaud (1953) formulated an important infinite horizon model, which is
the infinite dimensional counterpart of the linear activity analysis model of
Koopmans. In Malinvaud's model time is discrete. The time horizon consists
of an infinite sequence of time periods. At each date there are finitely many
commodities. All commodities are desired in each time period, and no
distinction is made between desired, intermediate and primary commodities. As
in the activity analysis model there is no explicit reference to preferences
of consumers. Productive efficiency over time is analyzed in terms of the
output available for consumption, rather than the resulting utility levels.

Technology is represented by a production set Xt for each time period
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t+1

t =1,2,..., an element of xt being an ordered pair (at,b ) of commodity

bundles where al represents inputs to a production process in period t, and
bt+1 represents the outputs of that process available at the beginning of
period t+l. Here both at and bt*l are nonnegative. The set X% is the

aggregate production set for the economy during period t. The net outputs

available for consumption are given by
y =b -a, fort > 1,

where b1 is the initial endowment of resources available at the beginning of
period 1. A program is an infinite sequence <(at,bt+1)>; it is a feasible
program if (at,bt+1) is in X%, and bt - a% > 0 for each t > 1, given bl. The

sequence y = <y'> is called the net output program associated with the given

program; it is a feasible net output program if it is the net output program

of a feasible program. A program is efficient if it is i) feasible, and ii)
there is no other program that is feasible, from the same initial resources
bl, and provides at least as much net output in every perliod and a larger net
output in some period. This is the concept of efficient production, already
seen in the linear activity analysis model, now extended to an infinite
horizon model. The main aim of this research is to extend to the infinite
horizon model the characterization of efficient production by prices seen in

the finite model. This goal is not quite reached, as is seen in what follows.

The main difficulties presented by the infinite horizon are already

present in a special case of the Malinvaud model with one good and no

consumers. Let Y be the set of all nonnegative sequences y = (y;) that

satisfy 0 < yt = f(at ) - at for t » 1, and 0 < yO = bl - ao’ bl > O’ where f

-1
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is a real-valued continuous concave function on the nonnegative real numbers
(the production function), £f(0) = 0, and bl is the given initial stock. The
set Y is the set of all feasible programs. A program y in Y is by definition
efficient if there is no other program y' in Y such that y' - y > 0. A price
system is an infinite sequence p = (pt) of nonnegative numbers. Denote by P
the set of all price systems.

Malinvaud recognized the possibility that an efficient net output program
(yt) need not have an associated system of nonzero prices (pt) relative to
which the production program generating y satisfies the condition of

t

intertemporal profit maximization, namely that pt+1f(at) - pta >

pt+1f(a) - pta for all t and every a » 0. (Here (at) is the sequence of

inputs producing y.) A condition introduced by Malinvaud, called

nontightness, is sufficient for the existence of such nonzero prices.

Alternative proofs of Malinvaud's existence theorem were given by Radner
(1967) and Peleg and Yaari (1970). (An example showing the possibility of
nonexistence given by Peleg and Yaari (1970) is as follows. Suppose f is as

shown in figure 3.

Figure 3
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At an interior efficient, and therefore value maximizing, program the
. . . . t+l ., ty _ .t
first order necessary conditions for a maximum imply p f'(a™) = p-. If

there is a time at which at

= a*, in an efficient program, then, since
f'(a*) = 0, it follows that prices at all prior and future times are 0.
Nontightness rules out such examples.)

On the side of sufficiency, Malinvaud showed that intertemporal profit
maximization relative to a strictly positive price system p is not enough to
ensure that a feasible program is efficient. An additional (transversality)
condition is needed. 1In the present model the following is such a condition;
limt+mptyt = Q. Cass (1972a) has given a criterion that completely
characterizes the set of efficient programs in a one good model with strictly
concave and smooth production technology that satisfies end point conditions

0 € £'(2) <1 < f'(x) < = for some x > 0. Cass's criterion, states that a

program is inefficient if and only if the associated competitive prices, i.e.,
satisfying pt+1f'(at) = pt, also satisfy E -LE < », This criﬁerion may be
interpreted as requiring the terms of tra;:lbgtween present and future to
deteriorate sufficiently fast. Other similar conditions have been presented,
Beveniste and Gale (1975), Benveniste (1976b), Majumdar (1974) and Mitra
(1979). 1t is hard to see how any transversality condition can be interpreted
in terms of decentralized resource allocation.

An alternate approach to characterizing efficient programs was taken by
Radner (1967), based on value functions as introduced in connection with
valuation equilibrium by Debreu (1954). (Valuation equilibrium was discussed
in connection with Arrow's exceptional case, p. 18 above.) The value function

approach was followed up by Majumdar (1970c¢c, 1972), and also by Peleg and

Yaari (1970). A price system defines a continuous linear functional, (a real-
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valued linear function), on the commodity space. This function assigns to a
program its present value. The present value may not be well-defined, because
the infinite sequence that gives it diverges. This creates certain technical
problems passed over here. A more important difficulty is that linear
functionals exist that are not defined by price systems. Radner's approach
was to characterize efficient programs in terms of maximization of present
value relative to a linear functional on the commodity space. Radner showed,
technical matters aside, that
i) if a feasible program maximizes the value of net output
(consumption) relative to a strictly positive continuous linear
functional, then it is efficient, and

ii) if a given program is efficilent, then there is a non-zero
nonnegative continuous linear functional such that the given program
maximizes the value of net output relative to that functional on the
set of feasible programs.

These propositions seem to be the precise counterparts of the ones
characterizing efficiency in the finite horizon model. Unfortunately, a
linear functional may not have a representation in the form of the inner
product of a price sequence with a net output sequence. (The production
function f(a) = aB, with 0 < B < 1 provides an example. It is known that the
program with constant input sequence X, = (1/5)6/5—1 and output sequence
Yo = (1/5)5/5_1 - (1/5)1/5_1 t =1,2,... is efficient, and therefore there is
a continuous linear functional relative to which it is value maximizing. But
there is no price sequence (pt) that represents that linear functional.) This
presents a serious problem, because in the absence of such a representation it
is unclear whether this characterization has an interpretation in terms of

decentralized allocation processes; profit in any one period can depend on
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'prices at infinity'.

This approach has the advantage that it is applicable not only to
infinite horizon models, but to a broader class in which the commodity space
is infinite dimensional. Bewley (1972), Mas-Colell (1977) and Jones (1984)
among others discuss Pareto optimality and competitive equilibrium in
economies with infinitely many commodities. Hurwicz (1958) and others
analyzed optimal allocation in terms of nonlinear programming in infinite
dimensional spaces. Theorems of programming in infinite dimensional spaces
are also used in some of the models mentioned in this discussion.

The basic difficulties encountered in the one-good model, apart from the
numerous technical problems that tend to make the literature large and diverse
as different technical structures are investigated, are on the one hand the
fact that transversality conditions are indispensible, and on the other the
possibility that linear functionals, even when they exist, may not be
representable in terms of price sequences. These problems raise strong doubt
about the possibility of achieving efficient intertemporal resource allocation
by decentralized means, though they leave open the possibility that some other
decentralized mechanism, not using prices, might work. Analysis of this
possibility has just begun, and 1s discussed below.

The difficulties seen in the one-good production model persist in more
elaborate ones, including multi-sectoral models with efficiency as the
criterion, and models with consumers in which Pareto optimality is the
criterion. McFadden, Mitra and Majumdar (1980) studied a model in which there
are firms, and overlapping generations of consumers, as in the model first
investigated by Samuelson (1958). Each consumer lives for a finite time and

has a consumption set and preferences like the consumers in a finite horizon
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model. A model with overlapping generations of consumers presents the
fundamental difficulty that consumers cannot trade with future consumers as
yet unborn. This difficulty can appear even in a finite horizon model if
there are too few markets. The economy is closed in the sense that there are
no nonproduced resources; the von Neumann growth model is an example of such a
model. Building on the results of an earlier investigation, Majumdar, Mitra
and McFadden (1976), these authors introduced several notions of price
systems, of competitive equilibrium, efficiency and optimality, and sought to
establish counterparts of the classical welfare theorems. To summarize, in
the 1976 paper they strengthen an earlier result of Bose (1974) to the effect
that the problem of proper distribution of goods in essentially a short-run
problem, and that the only long run problem, one created by the infinite
horizon, is that of inefficiency through overaccumulation of capital. 1In the
1980 paper the focus is on the relationships among various notions of
equilibrium and Pareto optimality. The force of their results is, as might be
expected, that the difficulties already seen in one-good model without
consumers persist in this model. A transversality condition is made part of
the definition of competitive equilibrium in order to obtain the result that
an equilibrium is optimal. A partial converse requires some additional
assumptions on the. technology (reachability) and on the way the economy fits
together (nondecomposability). These results certainly illuminate the the
infinite horizon model with overlapping generations of consumers and
producers, but the possibility of efficient or optimal resource allocation by
decentralized means is not different from that in the one-good Malinvaud
model.

Recently Hurwicz and Majumdar (1983), and later Hurwicz and Weinberger

(1984) have addressed this issue directly, building on the approach of
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mechanism theory.

Hurwicz and Majumdar have studied the problem of efficiency in a model
with an infinite number of periods. 1In each period there are finitely many
commodities, one producer who 1s alive for just one period, and no consunmers'
choices. The criterion is the maximization of the discounted value of the
program, (well-defined in this model). The producer alive in any period knows
only the technology in that period. The question is whether there is a
(static) privacy-preserving mechanism using a finite dimensional message space
whose equilibria coincide with the set of efficilent programs. The question
can be put as follows. In each period a message is posted. The producer
alive in that period responds 'Yes' or 'No'. If every producer over the
entire infinite horizon answers, 'Yes', the program is an outcome
corresponding to the equilibrium consisting of the infinite succession of
posted messages. Since eacﬁ producer knows only the technology prevailing in
the period when he is alive, the process preserves privacy. If in addition
the message posted in each period is finite dimensional, the pfocess is
informationally decentralized. Period by period profit maximization using
period by period prices is a mechanism of this type; the message posted in
each period consists of the vector of prices for that period, and the
production plan for that period, both finite dimensional. The object is to
characterize all efficient programs as equilibria of such a mechanism. This
would be an analog of the classical welfare theorems, but without the
restriction to mechanisms that use prices in their messages.

The main result is in the nature of an impossibility theorem. If the
technology 1s constant over time, and that fact is common knowledge at the

beginning, the problem 1s trivial, since knowledge of the technology in the

first period automatically means knowledge of it in every period. On the
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other hand, if there is some period whose technology is not known in the first
period, then there is no finite dimensional message that can characterize
efficient programs, and, in that sense, production cannot be satisfactorily
decentralized over time.

Hurwicz and Weinberger (1984) have studied a model with both producers
and consumers., As with producers, there is a consumer in each period, who
lives for one period. The consumer in each period has a one-period utility
function, which is not known by the producer; similarly the consumer does not
know the production function. The criterion of optimality is the maximization
of the sum of discounted utilities over the infinite horizon. Hurwicz and
Weinberger show that there is no privacy preserving mechanism of the type just
described whose équilibria correspond to the set of optimal programs. It
should be poted that their mechanism requires that the first period actiomns,
(production, consumption and investment decisions) be made in the first
period, and not be subject to revision after the infinite process of
verification is completed. (On the other hand, under tAtonnement assumptions
it may be possible to decentralize. 1In this model tAtonnement entails
reconsideration "at infinity'.)

If attention is widened to efficient programs, and if technology 1is
constant over time, there is an efficient program with a fixed ratio of
consumption to investment. This program can be obtained as the equilibrium
outcome of a mechanism of the specified type. However, this corresponds to
only one side of the classical welfare theorems. It says that the outcome of
such a mechanism is efficient; but it does not ensure that every efficient
program can be realized as the outcome of such a mechanism. The latter

property fails in this model.
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Infinitely Many Consumers and the Core

Models with infinitely many consumers arise in studying the relationship
between the core of an economy and its competitive equilibria. The
relationship of this topic to efficient allocation is less direct than those
discussed above, so it will be discussed even more briefly.

Edgeworth (1881) in the context of a pure exchange model introduced a

process of recontracting. Agents meet and negotiate contracts to trade.

These contracts are provisional in the sense that if an agent finds a better
opportunity, he 1is free to abandon the old contract and negotiate a new one,
possibly with someone else. (This is a t&tonnement process.) The process
continues until a state of contracts is reached such that no group of agents
can improve themselves by recontracting. Edgeworth noted that the set of
these so-called 'final settlements' is a subset of the Pareto optimal
allocations. 1In the case of two persons and two goods, it is the portion of
the contract curve in the Edgeworth-Bowley Box lying between the indifference
curves of the two agents passing through the initial endowment point.
Edgeworth argued that as the number of agents gets large (increases without
bound) the set of final settlements shrinks to the competitive allocation.
Edgeworth's conjecture was given a rigorous proof by Debreu and Scarf
(1963), following contributions by Gillies (1953), who introduced the core as
a solution concept for n-person games, and Shubik (1959), who related
Edgeworth's notion of final settlement to Gillies' solution concept.

The basic model is that of an exchange economy with n consumers, with

environmental characteristics (X1,ul,wl) i = I,...,n, where Xi is the

i

consumption set, u* the utility function, and wl the initial endowment of

.

consumer i. An allocation is denoted x = (xl,...,xn), where x' is a commodity

bundle. An allocation is feasible if z.xl = E_WI,
—_— i i
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The idea of recontracting is that a subset of consumers can meet and
negotiate exchanges among themselves. Let S denote a subset of consumers, in
the language of game theory, a coalition. A feasible allocation x can be

improved upon by a coalition S if there exists another feasible allocation x'

that every member of S prefers to x (at least one strictly), and that the
members of S can attain regardless of the consumers not in S; i.e.

i) ui(x) > ui(x) for all i in S, and ui(x') > ui(x) for at least one i in S,
and, ii) st'i = sti. This is just the notion of Pareto optimality
restricted to the coalition S. (It is sometimes said that an allocation that
can be improved upon by some coalition is blocked.) The core is the set of
feasible allocations that cannot be improved upon by any coalition, (the
unblocked allocations). When S consists of all consumers, then the

allocations that cannot be improved upon by S are the Pareto optimal ones.

The core of an economy may be empty, as can be the case if environments
have nonconvexities or externalities. Debreu and Scarf (1963) and Shapley and
Shubik (1966) mention an example of such an economy attributed to Scarf,
Shapley and Shubik. Scarf (1967) gave a class of games (economies) for which
the core is nonempty. Scarf's theorem was generalized by Billera (1970).

From the viewpoint of mechanism theory, the core is the set of
equilibrium outcomes of an adjustment process that, like some discussed above,
does not involve the use of prices. Green (1969) and Hildenbrand (1968) have
presented such processes. Since the core is the set of all feasible
allocations not blocked by any coalition, it is immediately clear that every
allocation in the core is Pareto optimal, because an allocation in the core

is, in particular, not blocked by the coalition of all consumers. Not every
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Pareto optimal allocation is in the core. However, every competitive
equilibrium allocation is in the core. Therefore, if a competitive
equilibrium allocation exists, theﬁ the core is nonempty, and, if the core is
empty, there is no competitive equilibrium.

Debreu and Scarf (1963) analyzed a sequence of replica economies, of

increasingly many consumers, but with the distribution of consumer's
characteristics (types) the same for all economies in the sequence. They
showed that in the limit as the number of consumers grows, the core converges
to the competitive allocation.

Aumann (1964) took another approach to the core convergence theorem. He
modelled an economy with a number of agents so large as to make the influence
of each negligible by assuming the set of agents to be a continuum, like the
set of real numbers between 0 and l. This is a natural mathematical
idealization in this problem, like the use of real numbers to measure the
amount of a commodity. (Shapley and a group working at the Rand Corporatioh
in the early 1960's used this idealization in game theory.) Méthematical

concepts from measure theory are used to define the core and competitive

equilibrium allocations. This formulation enabled Aumann to establish the
existence of competitive equilibria, and therefore nonemptiness of the core,
without assuming convexity of preferences. He also showed that the core and

the set of competitive allocations coincide in his model.
Other investigators, beginning with Brown and Robinson (1975), have

studied the core convergence problem using a branch of mathematics called

nonstandard analysis to formalize the notion of infinitely small (negligible)

agents.
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