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ONE IS ALMOST ENOUGH FOR MONOPOLY

It has been argued that two factors —— product durability and (potential)
entry — may force a monopolist to price at marginal cost. This paper shows
that when these two forces coexist, the tendency towards competition may be

negated. First, we prove that durable goods oligopolists without commitment

powers may attain joint profits arbitrarily close to those of a monopolist
with perfect commitment power. Second, we demonstrate that the presence of a
potential entrant may enabie a durable goods monopolist to act as if she had
commitment power., Thus, potential as well as actual entry may restore

monopoly power.



l. Introduction

Classic economic analysis suggests that a monopolist has the ability to
exercise market power: to charge greater than the competitive price and,
often, to earn supranormal profits. Adam Smith was certainly not the first to

make this observation when, in The Wealth of Nations, he wrote, "The

monopolists, by keeping the market constantly under-stocked, by never fully
supplying the effectual demand, sell their commodities much above the natural
price, and raise their emoluments, whether they consist in wages or profits,
greatly above their natural rate.” Nor was he the last; most economics texts
today faithfully recite a similar story.

Recently, two strands of research have called into question the
conventional wisdom about monopoly. The first, introduced by Coase [1972],
considers the problem of the durable goods monopolist. Coase observed the
following intuition: Suppose that a monopolist were to offer a durable good
for sale at the static monopoly price, and suppose that all consumers who
valued the good at greater than the static monopoly price were to purchase the
good. Then, if the static monopoly price ekceeded the marginal cost of the
good, the monopolist would have every incentive to cut the price of the good
in order to generate additional sales; moreover, the process would continue
until price equaled marginal cost. Consumers, anticipating this price-
slashing behavior, would choose to postpone purchasing the good when faced
with the static monopoly price. Rational consumer behavior forces the
maximizing monopolist to introduce the good at close-to marginal cost.

Bulow [1982] analyzed Coase's reasoning in a finite—horizon model. 1In
the final period, a monopolist who lacks commitment power charges the static

monopoly rental price for the residual demand curve. By backward induction,



Bulow calculates the monopolist's best action in each earlier period, and
shows that it is always to charge unambiguously less than the static monopoly
price.

Stokey [1979, 1981] formalized and proved Coase's intuition in a series
of two papers. 1In the first, she demonstrated that a monopolist who can make
binding commitments about her future sales does best by introducing the good
at the static monopoly price and never cutting the price afterwards. 1In other
words, the best intertemporal price discrimination is no intertemporal price
discrimination. In the second paper, Stokey considered the probiem of the
durable goods monopolist who lacks commitment powers. She constructed an
equilibrium of the infinite-horizon model which is the limit of the unique
equilibria of finite~horizon versions of the same model. The price path
associated with that equilibrium (including the initial price) converges to
marginal cost as the length of each period goes to zero; this proposition is
commonly known as the "Coase Conjecture."1

Gul, Sonnenschein and Wilson [1986] modeled this situation as an
infinite-horizon game between a single firm and a continuum of consumers. The
notion of "no commitment” is captured by the requirement of subéame perfection
of the equilibrium. These authors discovered a continuum of additional
subgame perfect equilibria in this game, but proved that an interesting
subclass (weak-Markov equilibria) behave like Stokey's backward induction
equilibrium——-they also satisfy the Coase Conjecture.2

The second strand of literature challenging the common wisdom about
monopoly was introduced by Baumol, Bailey, Panzar, and Willig (see, for
example, Baumol et al. [1982]). These researchers focus on the role of

potential, costlessly-reversible entry in determining the monopoly outcome.

In essence, they seize upon the result of Bertrand that "two is enough for



competition”"-—under constant marginal (and average) cost, the unique duopoly
Nash equilibrium in price strategies is for both firms to engage in marginal-
cost-pricing. The Contestable Markets literature goes further by arguing that
under certain conditions of monopoly and entry (most notably, zero sunk cost),
“"one is almost enough for competition”.

In this paper we attempt to combine and extend the reasoning of the Coase
Conjecture and Contestable Markets. We prove that for durable goods
oligopoly, as the time interval between successive offers approaches zero, all
joint payoffs between zero and static monopoly profits are attainable.
Moreover, we show that actual entry into the market is unnecessary to obtain
this result: a durable goods monopoly with a potential entrant (who, in
equilibrium, never enters) may also earn static monopoly profits. We further
find the full set of equilibrium joint profits associated with arbitrary
discount factors. Our results indicate that even when firms discount the
future significantly, effective collusion can still occur.

Closely related to the present paper is Faruk Gul's "Foundations of

Dynamic 0ligopoly,” also appearing in this issue of the Rand Journal of

Economics. Many of the results in these two papers are quite similar.
However, Gul emphasizes the limiting result for more general deman& curves and
treats the case of asymmetric market shares. We provide a precise description
of optimally collusive equilibria for a parameterized family of demand curves,
for all discount factors, and stress the model of potential entry. Thus, the
two papers are complementary.

In Section 2 of the paper, we describe the model and establish two
theorems on subgame perfect equilibria (SPE's). Section 3 and Appendix A
characterize optimally collusive and minimally collusive SPE's. 1In section 4,

we find the entire set of joint profits supported by SPE's, for all discount



factors §, and we indicate its limiting behavior as § » 1. We establish
analogous results for monopoly with potential entry in section 5. Some

details are reconciled to Appendix B. 1In the conclusion, we compare the
present results to those of a sequel paper (Ausubel and Deneckere, 1986),

which literally studies durable goods monopoly.

2. A Durable Goods Oligopoly

It is reasonable to suppose that an oligopoly behaves more competitively
than a monopoly. Hence, if one believed that profits in a durable goods
monopoly were drastically curtailed by the Coase Conjecture, one would
probably also suspect the same of durable goods oligopoly.3 After all, how
could the presence of a rival make the monopolist better off? 1In order to
understand why this intuitive argument is misleading, it is instructive to
reflect on the reason why a monopolist may be forced to act competitively.

The problem is essentially this: once an initial quantity of the good has
been sold, the monopolist will find it tempting to sell some additional output
as long as her accumulated output sold remains below the competitive level.

If there is virtually no restraint to the speed at whichvthe monopolist can
sell additional units (if the time interval between successive offerings is
very small), the market will almost immediately be saturated with the
competitive output. Rational consumers will foresee this, and purchase the
good at no more than the competitive price. It is this inability of the
monopolist to control the speed at which she sells, or put somewhat
differently, her inability to punish her future types for deviant behaviora,
that impairs her monopoly power. The monopolist may thus be better off having
a competitor around to punish her (or her future types) for selling off the
good too quickly.

We consider a market for a good which is infinitely durable, and which is



demanded only in quantity zero or one. Consumers, who are infinitely lived,
have reservation prices for the good which are distributed over the interval

V = [0,1] according to the distribution function F(v) = v% (0 < a < «).
Because they discount future utility at the interest rate r, individuvals who
have a reservation value of v, and who obtain the good at time t for the price
Prs derive a net surplus given by

-rt
e [v - pt]

Two producers serve this market which is open at discrete times spaced z apart
(t = 0,2,22,400.,0Z,+..). The timing of moves within the period is as

follows: firms first name their prices. Consumers (who did not buy in
previous periods) then decide whether or not to purchase the good in the
current period. We will sometimes refer to the "period"” n rather than to the
time t (=nz). There is no constraint on the amount of output any producer can
supply at a given date, and production occurs at a common marginal (and
average) cost of ¢, which we assume, for convenience, to be equal to zero.
Firms are interested in maximizing the net present value of profits,
discounted at the interest rate r.

A strategy for producer i specifies the price he will charge at each
moment in time as a function of the history of prices charged by both
competitors, and the history of purchases by consumers. A strategy for a
consumer specifies, given the current price charged and the history of past
prices and purchases, whether or not to buy the good in the current period.

The next two paragraphs are technical in nature and may be skipped on a
first reading. Let G(z,r) denote the above game when the time interval

between successive sales is z and payoffs are discounted at the rate r. Let



0; be a pure strategy for producer i (i =1,2). oy is a sequence of functions
{oi(n)}:=0. The function ci(n) at date nz determines i's price in period n as
a function of the prices charged by both competitors in previous periods, and
the actions chosen by consumers in the past. The latter history is
conveniently summarized by the set V, = {v: consumer v did not buy at any time
t < nz}.5 We impose measurability restrictions on joint consumer strategies
below which imply that the set V, will be a measurable set, i.e., V, € Q,
where @ is the Borel g-—algebra on V. Then ci(n): sn=1 Q » S;, with
S = [0,1] for i = 1,2 and S = S} x Sp. A strategy combination for consumers
is a sequence of functions {Tn}:=0 where t7: 8" x @ x V » {0,1,2} is such that
for each s™ € S" and each B € @, t™(s"™,B, ) is measurable. Decision "0" here
is to be interpreted as "do not buy from either supplier.” The decisions "i"
(i = 1,2) mean "buy from supplier i."” Without loss of generality, we may
assume that Tt® is zero in any coordinate v such that 73 > 0 in the coordinate
v for some period prior to n.

Let I; be the strategy space for player i (i = 1,2) and T the set of
strategy combinations for consumers. Furthermore let ¢ = (01,02) and

= ()

n=0" The strategy profile {0,1} generates a path of prices and sales

which can be computed recursively. The pattern of prices and sales over time
in turn determines the payoff to the players. Let ni(c,r) be the discounted
present value of the profits of firm i, generated by the strategy profiles
(6,7), and let u’(o,1) be the discounted net surplus derived by consumer v.
The profile (o,T) is a Nash equilibrium if:

i i, ! .
m (ci,c_i,r) > (ci,c_.,r), ¥ o, € Iy » ¥ i.

1

and

v v '
? ¥ ¥velV.
u (G,TV,T_V) u (G,TV,T_V), T, € Tv ,



where 1, is the projection of T onto the v-th coordinate (and similarly for

v

Ty)e An n-period history of the game is a sequence of prices for each firm in
periods 0,...,(n-1) and a specification of the set of consumers who did not
buy in any period prior to n. We denote such a history by the symbol H,. The
symbol H; refers to H, followed by prices announced by both firms in period

n. The strategy profile (o,T) induces strategy profiles (o and

g
n

H,) after the histories H, and H&, respectively. (o,t) is a subgame
n

:
n

(O'H, , T
n

perfect equilibrium if and only if (o¢,t1) is a Nash equilibrium and

" ) is a Nash equilibrium in the game remaining after the history Hj,

(0|H ,T
n
for all H and for all n, and similarly after any history H'.
n

Denote the price charged by firm i in period n along the outcome path

generated by (o,t1) as p%(c,r), and let p,(0,t) = min p%(c,r). In our first
i

theorem, we prove that a necessary condition for subgame perfection is that
prices be set to eventually induce all customers (with valuations exceeding
marginal cost) to purchase, Otherwise, the profits from following the

equilibrium approach zero, while the profits from deviating remain positive.6

Theorem l: In any subgame perfect equilibrium of G(z,r), inf p,(o,7) = O.

Proof: Suppose to the contrary that ; = inf pn(a,r) > 0., We will show that
there exists an n sufficiently large such Ehat each firm has an incentive to
deviate from its strategy oj.

First, we calculate a lower bound on the net present value of profits
generated by a deviation in period n cdnsisting of charging a price p < p,
(for some firm i = 1,2). Such a de;iation will be the least profitable when

it leads to maximally competitive behavior in future periods (i.e., both firms

charge a zero price in the next period). In that case, a deviation engenders



zero profits in subsequent periods and makes consumers extremely averse to
buying in period n. The profits from deviating in period n can in turn be
bounded below by assuming that all customers with valuations greater than 5
have already been served. By charging a price p < S, our deviant will attract

T2y, Letting

all customers with valuation exceeding v such that v - p »e
§ = e 2, we have v > p/(1 = 8). Indeed, those customers will find it

attractive to buy in period n at the price p rather than waiting until period
(n + 1) for a zero price. Recall that the number of customers with valuation

less than v is given by v*. By setting a price p then, profits in period n

are at least

(" - (12"

This expression is maximized at p = p(l -~ 6)&, where p = (1 + a)_l/a, with a
corresponding profit of u(l - 5)5(1+“), where p = ap/(l + a). Thus, a firm

will certainly choose to deviate if for some n:

W1 - <S);(1+c1.)

> nn(c,r)

where m,(o,7) is the net present value (evaluated in period n) to a single
firm in the subgame starting after the equilibrium history H,. It is clear
that 7,(0,7) + 0 as n » = (for large enough n, either p, = p or p, gets
arbitrarily close to p, so that the set of customers who remain to be served

‘becomes arbitrarily small). Thus, the above inequality will be satisfied for

large enough n unless p = 0. 0

Observe that p (= [1 + a]'l/“) in the above proof has been defined to

a

equal the static monopoly price when F(v) = v%, and u (= p[l - p%]) equals the



static monopoly profits.
The worst subgame perfect equilibrium payoff (from the sellers'
viewpoint) is easily seen to be equal to zero (it is implemented by the

strategies oj(n) = 0 and 19 =1 or 2). In fact, this payoff coincides with

the sellers' minmax payoff. This equilibrium will be useful as a "punishment’
regime following deviations from more collusive price paths (as in Friedman
[1971], Aumann and Shapley [1976], and Abreu [1984]). Next, we derive

necessary and sufficient conditions which any subgame perfect price path {pn}

must satisfy (we suppress the dependence of p, and m, on the equilibrium
strategies (0,t) whenever no confusion is likely to arise). Let

is the highest consumer

- (e J = : - ;
v, = sup{v: t_ =0 for all j <n 1}, i.e., v,

valuation remaining as we enter period n. Observe that the single number v,
summarizes along the equilibrium path the actions chosen by consumers in
periods prior to n. Indeed, consumer optimization implies that whenever some
consumer v has bought prior to period n, any consumer with valuation v' > v
should also have bought prior to n. Theorem 2 below states that in every
period, the net present value of profits along the equilibrium path, for each

firm, must exceed the profits from optimally deviating.

Theorem 2: Any subgame perfect price path {pn} of G(z,r) must satisfy:

(1) n; > u(1 - 6)vi+a for all n such that p, > p(l - §)v,
i a pn a
(2) L P pn[vn - (T_:_g) ] for all n such that P, < (1 - 8)vy,

Conversely, any price path {pn} that satisfies (1) and (2) is an equilibrium

price path.



- 10 -

Proof: Suppose that the inequality of (1) is not satisfied for some n where
P, > p(1 - 5)vn. By setting the price p = p(1 - §)v, at date n, and thereby
undercutting p,, a firm will earn at least u(l - 5)v%+a in immediate profits

in period n. Since this exceeds m,, any firm has an incentive to deviate from

n
{pn}. Similarly, suppose that inequality (2) is not satisfied for some n

where p, < p(1 - 8)v,. Then by charging a price slightly below p,, any firm

p
can earn, at least, profits arbitrarily close to [vg - (l _né)a]pn, again

contradicting the hypothesis that {pn} is.a subgame perfect price path.
Conversely, any price path {pn} satisfying (1) and (2) can be supported

by the threat (and corresponding consumer expectations) of reversion to the

subgame perfect equilibrium that involves pricing at marginal cost as soon as

any firm deviates.’ 0

3. Optimally Collusive Subgame Perfect Equilibria

.It is evident that, in general, a multiplicity of SPE's satisfy the
necessary and sufficient conditions of Theorem 2. 1In this section, we find
the optimally collusive equilibrium, i.e., the SPE which maximizes joint
profits. We also find the minimal (nonzero)8 joint profits associated with
any SPE. In order to keep this characterization elegant, we will assume--for
reasons extraneous to the model--an "equal division rule.” 1In any period in
which both firms charge identical prices, an equal fraction of consumers
chooses to patronize each firm.9

The potentially formidable task of characterizing optimally (and
minimally) collusive SPE's is greatly simplified by Theorems A.l and A.2 of
Appendix A. These theorems demonstrate that there is no loss of generality in

restricting attention to simple strategy profiles. Such profiles are

completely described by a pair of numbers (po,e). Here pp is the price to be

charged in period 0; e denotes the fraction by which firms lower prices in
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each subsequent period. The equilibrium price sequence corresponding to the
simple strategy profile (pg,e) is thus p, = poen. This price sequence implies

a pattern of historic variables v, of:

I Py (1 - e) _
n (1 = 8) (1 -8) Pn-1 = YPp-1°

n>1

Since v, is strictly decreasing in n as long as € < 1, a simple strategy
profile implies sales in all periods if v; = ypg < 1. Sales in period n can

be calculated to be:

<
|
<
]

a a o
(1 =-eDvp,_,

for n » 1, provided PO < Y_l. We can now compute m, along the sequence

Pn = ppe” (with py < vy~ b:

© a a
_1 k a _ o _lyell -€¢) l+a
T2 kzo S Paak Vnak T V1) T 3 | _ sclta Po-l

for n > 1, and for n = 0,

a a
_ e § y el - g) _l+a
L= vppleg * 3 e Po

bl =

0

[N L

To complete the description of simple strategy profiles, we still have to
describe the off-equilibrium-path behavior of firms. We let deviations from

the path P, =P e™ be punished by both firms reverting to the worst subgame

0
perfect equilibrium, i.e., pricing at marginal cost in every future period.

We can immediately rule out any simple profile (po,e) for which Py > Y-l

as potentially optimally collusive; it is dominated by the simple profile
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(epo,e).lo In our quest for optimal simple strategy profiles, the following

lemma will be useful:

Lemma 1: A simple strategy profile (py,e) with p(l - §) < Py < Y_l is a

subgame perfect equilibrium if and only if e » p/(1 + p§),

(1) e(l - ¢

1+a

2 2u(l - &¢)
1 - &8¢ :

and

. a l+a l - é¢
(ii) Py ~ Y Pg []Tff—g;T:E] > 2u(l - §)

If 0 < pg < p(1 - &), the simple strategy profile (py,e) is an SPE if and only

if ¢ » p/(1 + p8), (i) holds and

P
a_l+a, 1 - &¢ 0 Jo
Py = Y P P;j:—ggf;;] > 2p,l1 ‘(1 —) 1-

(iii)

Proof: The condition € » p/(l1 + pd) implies that P > (1 - &)v, for n > 1.

If py > p(l1 - 6), Theorem 2 implies (py,c) is an SPE iff:

o a
Yy e(l = ) l+a 1+a l+a l+a

r = p__ . 3 u(l ~ &)v = p(l - &y p__

n 2(1 - 5€1+a) n-1 n n-1
1 o_l+a se(l - %)

-n‘o = i—{po - Y po (1 b — l'+a )} » H(l = 6)

1 - 8¢

Simple algebraic manipulations then yield (i) and (ii). If py < p(l - §),
inequality (2) of Theorem 2 is applicable for n = 0, yielding (iii) in place
of (ii).

If € < p/(1 + p8), Py < p(1 = 8)v, and Theorem 2 now requires

1+a
n—-1

o o
- +
r =X e(l g ) p1 @ [Ya - (

n 1+a n—-1 1 f d)a]ep
2(1 - 8¢ )
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or, (1 — &%) > 2(1 - 8e1*%)(1 ~ (e/(1 - 8¢))%). Some straightforward, but
tedious calculations show that no € < p/{(1 + p8§) satisfies this

inequality. 1

Lemma 2: For every o > 0, there exists a &§(a), such that for all § satisfying
§(a) € § < 1, the optimally collusive simple strategy profile uses a rate of
descent €,(8) defined by:
1+a

)}

€, = sup E, where E = {e: e(l - ea) » 2u(l - 8&)(1 - §¢

and sets an initial price:

p(l - 8 - Seim)
1+1/a

P
0 (1 - 8¢.)

+

Proof: We have already argued that the optimal simple strategy profile must
satisfy Po < Y_l. For any €, such simple strategy profiles yield joint

profits of:

1+
(1 - 6g)  ° JL+a
(1 - G)a(l _ 5€1+a) 0

0o~ Po~

The unconstrained maximum of this function occurs at:

_ o1 - A - s

p 1
0 a - 62)1 /o

which exceeds p(l - ¢§) for all (e,§). Since the choice of py does not affect
subsequent incentive constraints (i.e., (i) in Lemma 1), the above equation

defines the optimal py as a function of e. Substituting the optimal value for
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pg into the objective function yields joint profits of

+
] - gt

1 - &8¢

8
Se

)I/a

~ 1 -
M(e) = u—s)(
The optimal ¢ maximizes I(e) subject to the incentive constraints (i). Since
3ll/3e > 0, this amounts to choosing the largest value of ¢ which satisfies the
incentive compatibility constraints. It is proven in Appendix A that the set

E is nonempty if and only if § > 8(a), where 8(a) < .59 for all a > O. g

Minimally collusive simple strategy profiles (with Iy > 0) are
established in Theorem A.2 of Appendix A.

Next, we wish to show that the optimally collusive joint profits, denoted
H+(G) (= ﬁ(a+(6))), converge to the profits which a monopolist with commitment
power could make. (Recall, from Stokey [1979], that this monopolist maximizes
by charging the static monopoly price p forever.) Consider any fixed,
positive real-time rate of descent in price. If price follows the rule pe-St,
where s > 0, and the interval between successive periods is z, we have
e~ NSZ

Pp =P Now let z approach zero. The equilibrium joint profit stream

(given by (A.2)) is negligibly affected by the choice of z; in particular, I,

converges to a positive constant times v%+a

as z > 0, for all n > 1. However,
the profits ngv from optimally deviating equal u(l - 5)v$+a, and u(l - 8) > 0
as z + 0. Hence, for small but positive s, there exists a largest z such that
subgame perfection is satisfied in all but (possibly) the initial period
whenever the time interval between periods does not exceed z. Let § = e LZ
and € = e"%%, Observe that e equals e,(6) of Lemma 2.

By setting s near zero, Stokey's (constant) intertemporal pricing scheme

can be arbitrarily closely approximated. Incentive compatibility is preserved

(in all periods n > 1), provided z is sufficiently small. Then, virtually all
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consumers with valuations exceeding p will purchase at price p in period zero,
yielding joint profits g = u (and guaranteeing incentive compatibility in
period zero). We conclude that the optimally collusive joint payoff H+(6)
converges to static monopoly profits p, as § » 1 (i.e., z > 0). Furthermore,

the minimally collusive joint payoff converges to zero.

Lemma 3: €,(8) » 1 as 6 » 1. Furthermore, py(ey) + p, I.(8) + u and

o_(s8) » 0.

Proof: €,($§) satisfies the equation:

+ +
v(e) = 2u6252 %+ (1 - 2u6)el * - (1 + 2u8)e +2p =0

Appendix A establishes that €,(8) > 1 as § + 1, and that lim 9e, /38
§+1
Using 1'Hopital's rule, it is then easily verified that po(e+(6)) > p and

0.

ﬁ(e+(6)) > U. Also observe that the price path corresponding to v, = 52 is
feasible and yields joint profits of 2p(l = &§). Thus, I_(8) < 2u(l - §) and
lim I _($) = 0. 0

§+1

4. The Set of Equilibrium Joint Profits

For every distribution function F, real interest rate r > 0, and time

interval between periods z > 0, let SPE (F,r,z) denote the set of equilibrium

joint profits (i.e., the set of all Iy = né + n% arising from subgame perfect

equilibria). We have the following theorem.

Theorem 3: For every a > 0, consider the durable goods oligopoly model where
consumers' valuations v are distributed by F(v) = v* and where consumers are
allocated by an equal division rule when firms charge identical prices. Then

there exist positive valued functions g(q), M,(a,8) and N_(a,8) such that:
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e 7% > §(a)

{0} v [n_(e,8),0,(a,8)], if &
SPE(va,r,z) = |

fo}, if6ze °<s(a)

1

I,(a,8) was explicitly developed for duopoly in section 3, and NI_(a,8) and

S(a) are developed in Appendix A. Furthermore:

lim H+(6) =y and lim H_(G) = 0.

§+1 §+1
Proof: Suppose § > g(u). By Lemma 2, Theorem A.l and Theorem A.2, optimally
collusive and minimally collusive joint payoffs are supported by simple
strategy profiles (po,e), both setting € = g,. Now observe that Iy is a
continuous function in Po for fixed €. Furthermore, the set of all Po
satisfying the conditions of Lemma 1, for fixed €, is connected. By
continuously varying the initial price, we can obtain all intermediate payoffs
while preserving subgame perfection. The Bertrand equilibrium of p, = 0 for
all n is also an equilibrium.

If § < g(a), subgame perfection requires Pg = 0. The linmiting result

follows from Lemma 3. 0
(Insert Figure 1 About Here)

In Figure 1, we graphically depict the set of equilibrium joint profits
when consumer valuations are uniformly distributed over [0,1] (i.e., a = 1).
When the discount factor § is less than E(l) = ,585, the inequality
e(l - ¢) » .5(1 - 8e)(1 - $e2) has no solutions for ¢ in {0,1], and so the
Bertrand equilibrium is the unique SPE. At § = E, the unique rate of descent

e = .7235 is viable for positive py. However, py may range anywhere from .345
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to .522, giving joint profits anywhere from .207 to .217. Then, as §
increases to one, the set of equilibrium joint profits spreads to the entire
interval from zero to static monopoly profits.

The behavior away from the limit implied by Theorem 3 (and Figure 1) is

striking. First, observe that for g(a) < § <1, the equilibrium set is not
connected. Marginal cost pricing is always an equilibrium, but to support
tacit collusion, profits must be bounded away from zero. The intuition for
this result is that future profits are the inducement to prevent present
deviations. If future profits, compared to the highest remaining consumer
valuation, are excessively low, it necessarily pays for one firm to undercut
its rival. Second, observe that effective collusion is quite possible far

away from the limit. Even when § = .585, the duopolists, if they collude at

all, must earn at least 83 percent of the static monopoly surplus, and
possibly as much as 87 percent.

The effect of varying the time interval z between successive offers on
optimal collusion by oligopolists is exactly opposite of that on a durable
goods monopolist confined by the Coase Conjecture. When z approaches infinity
(i.e., § » 0), the durable goods monopolist becomes, for all practical
purposes, a static monopolist, and hence can approach static monopoly
profits. Meanwhile, the oligopolists find themselves playing, for all
practical purposes, a one-shot Bertrand game. On the other hand, as z
approaches zero (i.e., § + 1), the monopolist in a Coase Conjecture11 SPE
drops to marginal cost “"in the twinkling of an eye” (Coase, 1972). However,
when there are at least two firms in the market, the ability to collude
increases as z goes to zero.

The intuition for the oligopoly result is clear: the incentive to cheat

on any collusive agreement (enforced by the type of trigger strategies



_18..

discussed above) goes to zero as z approaches zero, whereas the loss from
future retaliation stays roughly constant. The reason why the incentive to
cheat vanishes is the anticipatory behavior of consumers. Indeed, when z
becomes smaller, fewer and fewer consumers will be willing to buy from the
price—cutter, as they expect a better deal (a price equal to marginal cost) in
the next round.

This intuition makes it clear that the limiting result of Theorem 3 does
not depend on our assumption that F(v) = v%, 1Indeed, the main theorem in Gul
[1987] is stated in terms of arbitrary demand curves. Furthermore, it is easy
to argue that the behavior away from the limit (depicted in Figure 1) holds
quite generally. For arbitrary F( ), define v and ; by F(v) = 0, F(;) =1,
and 0 < F(v) < 1 whenever v <v<v. Now suppose there exist a > 0 and

L > M > 0 such that:
(3) M(v - X)a < F(v) € L(v - g)a, for all v such that v < v < ;,

i.e., F(v) is "enveloped” by L(v - v)® and M(v - v)%®). 1In Appendix B, we
demonstrate that when (3) is satisfied,12 tight bounds showing rapid
convergence may also be established. Broadly speaking, large profits are

possible even when the time interval between periods is very long.

5.° Potential Entry and the Coase Conjecture

The "Contestable Markets™ literature attempts to modify the theory of

static monopoly by arguing that the existence of a potential entrant may force

a monopolist to price at marginal cost. The "Coase Conjecture” literature
further amends our understanding of monopoly by observing that a monopolist in
a durable good may be forced, due to lack of commitment power and anticipatory

behavior on the part of consumers, to price at close to marginal cost. Below
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we combine these forces, to demonstrate that the existence of a potential
entrant may enable a durable goods monopolist to price close to the static
monopoly price. In other words, one (and one potential entrant) is enough for
monopoly.

Let us make precise the sequencing of moves. At the beginning of every
period, the entrant has the choice of whether or not to enter if he has not
entered previously. If the entrant decides to stay out, the incumbent names a
price (after observing the entrant's decision), and consumers make their
purchasing decisions. The game then repeats, with the same description, in
the next period. 1If the potential entrant decides to join the market, both
firms simultaneously and independently call out prices (after observing that
decision), which the consumers can then either accept or reject.13 The play
proceeds in subsequent periods with the two firms naming prices followed by
the consumers making purchases.

In order to make the description of the equilibrium we have in mind
compact, it is convenient to consider three types of outcome paths. The
equilibrium will incorporate these three paths, both in specifying an initial
outcome path and in determining punishments for any deviation from the initial

outcome path, or from ongoing punishments.

Path 1: The incumbent charges close to the static monopoly price; the

potential entrant does not enter.

This is the equilibrium path. Let pp(e) denote the initial price of the
optimally collusive duopoly solution, and s the real-time rate of descent of
prices. The incumbent charges a price p, = enpo(e) in each period n, where
e = e SZ, Meanwhile, the potential entrant stays out. Thus, along path 1,

the incumbent earns the joint duopoly profits associated with the simple

strategy profile (pg,e).
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Path 2: The potential entrant enters; the two firms then follow a subgame

perfect equilibrium price path.

This is the punishment path if the incumbent deviates from path 1. The
punishment path is characterized by two numbers: (w,e). The interpretation
of w and € is the following: if x is the price at which a deviation from path
1 occurred, and if an offer of x induces all customers with valuations > v to
buy, both entrant and incumbent charge a price of wv in the next period.

Afterwards, the price is discounted by the fraction ¢ = e 'S every period.

The punishment path after such a deviation is thus (wv, wev, wszv, we3v,...).

Path 3: The incumbent and the entrant revert to marginal-cost pricing.

This is the punishment path if the entrant deviates from path 1, or if

either firm deviates from path 2.

The equilibrium goes as follows: The incumbent follows path 1. If the
incumbent ever deviates (singly) from path 1, she triggers a reversion to path
2. 1f either the incumbent or the entrant deviate from path 2, or if the
entrant ever deviates from path 1 (singly or jointly with the incumbent), both
players revert to path 3. Deviations from path 3 are punished by starting
that path over again. Observe that under the above strategies, the potential
entrant has a strict incentive to enter whenever he is supbosed to, but may as
well stay out as long as the monopolist sticks to path 1.

Before showing that the above strategies form an equilibrium strategy
pair for large enough §, we would like to offer one possible interpretation of
the equilibrium. As long as the monopolist sticks to path 1, the potential
entrant stays out of the market, because he interprets this behavior as a sign
of determination on the part of the monopolist. Mean and nasty monopolists

not only hurt consumers but also trash new entrants. Deviations from path 1
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are considered to be a sign ;f weakness on the part of the monopolist, and
lead to the entrant's inference that the monopolist will not spoil the market
once entry occurs (because weak monopolists are soft on entrants as well as
consumers). Such behavior invites entry.

In order to establish that the above strategies induce an equilibrium for
large enough §, we need to show the existence of a value of w such that path 2
is an SPE starting from any deviation x, aﬁd such that the monopolist has no
incentive to trigger a reversion to that path.14 These two results are proven
in Appendix B. Observe that as the real-time rate of descent s approaches
zero, the monopolist's initial price converges to p, with corresponding

profits of p. Hence we obtain:

Theorem 4: For every r > 0 and 8 > 0, there exists a z > 0 such that for
every z satisfying 0 < z < Z, the incumbent firm in the potential entry model

earns profits greater than y — 8 in the equilibrium described above.

6. Conclusion

In this paper, we have proved that a durable goods monopolist may benefit
from entry or potential entry. Whereas the monopolist lacked the means to
force her future self to follow a strategy which her present self would like,
the oligopolist finds commitment power in the actions of her rivals. To put
it bluntly: 'If you canﬁot punish yourself, find someone else to punish
you'. We shall conclude the paper by comparing our model with related
literature in which punishment enables improved payoffs, and by relating our
results obtained here to the literature on durable goods monopoly.

Traditional supergame analysis of the oligopoly problem (for example,
Abreu [1985]) also makes extensive use of punishment strategies to support

collusive outcomes. It is instructive to compare the modeling technique of
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that literature with the present paper's. As a supergame is typically an
infinitely-repeated version of a one-shot game, the supergame analysis of
oligopoly assumes that firms face the same static demand curve in every
period. 1In contrast, our model contains a convenient (albeit extreme) version

of intertemporal substitutability in demand. Our paper indicates that the

presence of intertemporal substitutability in demand facilitates collusion,
via rational expectations on the part of consumers. Suppose consumers witness
a deviation from cooperative behavior by one firm. Given the subgame perfect
equilibrium (supported by punishment strategies), consumers anticipate an all-
out price war in subsequent periods and postpone their purchases. Ceteris
paribus, a firm's one-period gain associated with deviation will be less than
in the standard supergame treatment of oligopoly, enabling more collusive
outcomes to be supported as subgame perfect equilibria. Moreover, the effect
we are describing appears to be a real phenomenon: for example, a consumer
who sees one airline cut its fare can often profit by deferring purchase of
his ticket, as price—matching by other airlines and further cuts may
reasonably be expected.

Closely related to the Coase Conjecture is the literature on the time-
consistency problem of macroeconomics (for example, Kydland and Prescott
[1977]). 1In a variety of contexts, the government may seek to choose a
sequence of policy actions over time which are not “"time-consistent” in the
sense that if the government were able to re-optimize in subsequent periods,
it would not choose the policy actions called for under the original
maximization. Hence, unless the government possesses commitment power, it
cannot follow such a strategy. The approach of our paper suggests a way out
of this conundrum: separation of power may permit "mutually-assured

commitment.” For example, if we give Congress the authority to run deficits
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but only give an independent Fed the power to monetize the debt, we may permit
a subgame perfect equilibrium where the debt is never monetized.

Finally, an illuminating comparison may be made between the models of
oligopoly and potential entry in this paper and the model of pure durable

15 in a sequel (Ausubel and Deneckere, 1986). There are

goods monopoly
actually two cases which need to be distinguished. First, consider the case
of a "gap” between seller's cost and buyers' valuations. When v > 0, it has
been shown (Fudenberg, Levine and Tirole [1985]; Gul, Sonnenschein and Wilson
[1986]) that there generically exists a unique SPE in the pure monopoly

model. Moreover, as the time interval z approaches zero, the initial price pg
necessarily approaches v, which may be much lower than the static monopoly
price. In contrast, for oligopoly and monopoly with potential entry, a Folk
Theorem holds. The explanation for the oligopolists' advantage lies in the
fact that, when v > 0 and § < 1, all sales occur in finite time in any
monopoly SPE. Backward induction from the last period of positive sales
dfives the initial price near v. But with entry or potential entry, a pricing
rule similar to Pp = V= en(po - z) becomes incentive compatible. Sales are
then extended over an infinite time, and backward induction fails.

Second, consider the case where there is "no gap” between the seller's
marginal cost and the lowest buyer valuation. We demonstrate in Ausubel and
Deneckere [1986] that when v = 0, and under very general distributional
assumptions, there exist subgame perfect equilibria in which the monopolist
initially charges the static monopoly price and then follows a very slow rate
of price descent. This main equilibrium path is supported by a reversion to a
Coase Conjecture SPE, if the monopolist ever deviates. Hence, in the case of
no gap, a durable good monopolist may earn monopoly profits. Nevertheless,

observe (somewhat counterintuitively) that for a wide range of discount
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factors, the duopolists may do strictly better—than the monopolist. Reversion
to the Bertrand equilibrium is more severe than reversion to a Coase
Conjecture SPE, so the optimally collusive duopoly equilibrium yields higher
joint profits than the maximally profitable monopoly SPE.

Combining the results of the two papers, we may conclude that in the case
of no gap, one firm is enough for a durable goods industry to earn monopoly
profits (though more than one may. do better). 1In the case of a gap, one is

not enough for monopoly, but one is almost enough.



Appendix A

In this appendix we derive conditions on the subgame perfect equilibria
of a durable goods duopoly with an "equal division"” rule: optimally collusive
payoffs and minimally collusive payoffs are proved to be supported by "simple
strategy profiles™ for all a > 0. Analogous results can be derived for an
oligopoly with N firms.

We first write equations which express {pn}:=0 and {Hn}:=0 in terms of
{vn}:=0. If the consumer with valuation v,,.; is indifferent between
purchasing in periods n and n + 1, vy = py = 6(vpe) — Pp+1), giving the
difference equation p, = (1 - 6)vn+1 + 8pn+1e Telescoping the right side
yields:

o]

i
(A.1) p, = (1 -8 _Z 87V 444y for all n >0
i=0
Equation (A.l1) was developed in Stokey [1981]. Meanwhile, the net present

value of joint profits, I, is defined by:

a a

i T vn+i+1)’ for all n > Q.

= i
(A.2) o= .i $ pn+i(v
Conditions (1) and (2) of Theorem 2 hold for all SPE's. The first lemma

of this appendix shows that (2) is vacuous when a > 1.

Lemma A.l: Consider any SPE such that p, > O for all n > 0, and let o > 1.

Then p, > p(1l - 6)vn, for all n > O,

Proof: Suppose not. Then there exists n such that 0 < p, < p(1 - §)v,. Using

. . _ 1 2 a a
inequality (2) of Theorem 2, observe that Hn = otT > Z(EfTFTE)pnvn.



However, note that joint profits along the equilibrium path are bounded above

by the current price times the number of remaining customers. Hence,

I, < pnvg, giving a contradiction when a/(l + a) > 1/2. 0

Lemma A.l is not true for o < l. However, it still can be shown that (2)

is irrelevant for optimally-collusive SPE's.

-~
Lemma A.2: Suppose {vn}

maximizes I bject to:
n=0 o Ssubjec o}

o

1+
(a) Hn > 2u(l <’S)vn , for all n > 1 s.t. P, > p(1 - <’S)vn

(b) 1M > 2 (a-(i—)“) for all n > 1 s.t < p(l - 8)
n ann 1_5 > or S.-pn o] Vn

and
(¢) v, =1, and v > Vel > 0, for all n > 0

where {pn}:=0 is defined by (A.l) and {Hn}:=0 is defined by (A.2).

Then for any a > 0, if p, > 0 (for all n > 0), we have:
+
Hn > 2u(l - 5)vi a’ for all n > 1.

Qutline of Proof: Suppose not. Let k = inf{n 2 1: Hn < 2u(1l - 5)v%+a}.

' e

Observe that vy > vy,j. For B satisfying 0 < 8 < vy /vy,y, define {Vn}n=0 by

4 (=) ' (=)
equation (A.4) (in proof of next lemma). P and {I_t . are defined by
n’ n=0 n’n=0

th

(A.1) and (A.2). Define a (B) to be the slack in the n*" constraint (a),

P B
evaluated at {vn}n=0 given by B, and define bn(S) to be the slack in the ath
constraint (b). The following statements can be established by direct

calculation:



A.3

|
oll
0
L. 3B |B=1 > 0
Ban abn
2. 55 la=1 > 0, and-gg— a=1 > 0, for all n < k - 1
ab
k
5 gm0

_ Llta _ L1+
4, a (8) = 8 "a_(1) and b () = B abn(l) for all n > k + 1

! » .

Hence, we can conclude there exists 8 (1 < 8 < vy/vy,y) such that {Vn}n=0 is
1

in the feasible region of the above maximization problem, but Iy > Ip,

contradicting our hypothesis that {vn}a°

=0 maximizes I. g

Using Theorem 2, Lemma A.l and Lemma A.2, the optimally collusive SPE

must solve the following optimization problem (denoted MAX), for all o« > O:

(MAX) Maximize HO subject to:
{Vn} n=0
(*) Hn > 2u(l - 6)vi+a, for all n > 1
‘and
*% =
(xx) vO 1 and vn > vn+1 >0, for all n >0

Lemma A.3: For any a > 0, suppose that {vn}a°

solves MAX and HO > 0. Then
n=0

constraint (*) holds with equality, i.e.,
1+a
(A.3) I o= 2u(l~8)v "7, for all n > 1.

Proof: Suppose not. We will demonstrate an alternative sales path

! o
{vn}n=0 which improves upon Iy, while still satisfying constraint (*).
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Observe that v, > 0 for all n > 0, by induction: 1, > O implies p, > O,
and so vy > 0, but by (*), T4 > 0, etc.

Define k to be the first period in which constraint (*) has slack and in

: s s . _ 1+a
which sales are positive: k = inf{n > 1: n > 2u(1 <S)vn and v > Vn+l}'

Note that k < » if and only if the hypothesis of the lemma is not satisfied.
For suppose there exists n such that n, > 2u(l - 6)vé+a but v, = Vpt+1e Since

5)vl+a

there are no sales in period n, I, = 6,4y, implying H,4; > 2u(l - a+l e

Eventually, we must reach m > n such that vy > Vi1 since v, is positive but

lim vi = 0 (by Theorem 1).

ive '
Let B satisfy 0 < B < Vk/vk+1' Define {vn}n=o by
v , if n <k -1
n
t
o4 = - - 1 =
(A.4) v [pk-l Bﬁpk]/[l 8], if n = k
Bv ,cif n > k + 1
n

\l
Observe that {vn}:=0 has been conveniently chosen so that, by equation (A.l),

3 3 ' ] 3
it determines {pn}n=0 given by

p. , ifn< k-1
. n
(AOS) pn = {

Bpn, if n > k

It is also straightforward to verify, from equation (A.2), that:

1
(A.6) n - sl+“nn, for all n > k + 1

Furthermore, for n < k - 2:

k~2-n
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and
k-2-n k=1-n
_ v i, a a -1-
IIn =1 .Z 8 (vn+1 n+i+l) n+1] + 9 IIk—l
i=0
implying:
[] _ k=1-n [] _ _
(A.7) IIn = Hn + & [Hk-l Hk—l]’ for all n < k 2

Claim: BHk_l/BB, evaluated at B = 1, is strictly positive.

Proof of Claim: Joint profits, HL—I’ may be written:

1 la 'a 1 'a 'a L} 2 t
Meep = Gimp = Ve Py ¥ 80V = Vi Ipy + 8 Ty
Its derivative with respect to B is calculated using (A.4), (A.5) and (A.6):

! 'o o o o
ank_l _ [ka_l _ avk ] . N 6[avk ) 3vk+l] '
38 38 38 " Pk-1 38 38 Tk

ap oll
"a 'a k 2 k+1
+8lvg = Vi Igg 8 g

- 5p
_ 'a-1;Pk-1 k "o
= aépkvk f———ffTTT—% (1 + a)dpkvk+l

2
+ kavka + (1 + a)s Bank+1

\j
The above expression in braces equals Ve Moreover, at B = 1, we have VL = Vi
T
and Ve+l = Vk+1® Hence:

\j
BHk_l
38 |8=1

o a 2
= (1 + a)lép vy = vy, ) #8041 20
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proving the claim.

Remainder of the Proof of Lemma A.3: By hypothesis, constraint (*) has slack

for n = k and sales are positive in period k. Using the claim and (A.4),
"~ there exists 8 satisfying 1 < 8 < Vi/Vi4) such that:
a

T
and I > I

(A 8) \l ’1+
. Hk > 2u(1 - G)Vk k-1 k=1

Recall that {vn}°° 0 satisfies constraint (*). By equations (A.4) and (A.6):

n=

! 1+a 1+a l+a
v

1
+
I =28 Hn > 2u(1l - §)B = 2p(l - 5)vn1 a’ for all n » k + 1

and by equations (A.4), (A.7) and (A.8):

' + "1+
Hn > Hn > 2u(1 - 5)Vi ® - 2p(1 - 5)vn1 a’ for all n < k - 1

Thus, {vn}°°

=0 satisfies constraint (*) and Hé > Ige We conclude that

{Vn}:=0 is not a solution to MAX, contradicting the hypothesis. 1

Next, we use Lemma A.3 to derive a (nonlinear) difference equation which

the solution to MAX must satisfy. Observe that:

_ o _ _a
(A.9) Hn pn(vn Vn+1) + SII for all n > 0

n+l’

. - = - 2
(A.10) P 5pn+1‘ (1 5)vn+1, for alln > 0

The solution to MAX satisfies equation (A.3). Substituting (A.3) into (A.9)

gives:
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1+q 1+q
I - &8I v -4
+ +
(A,ll) P = _ll___._l—1_= 21](1 - 6)( n L 1)
n N N —
n n+l n n+l
Then, substituting (A.11) into (A.10) yields:
1+a -5 1+a 1+a - s 1+a
vn vn+1 vn+1 vn+2 vn+1
o o - &( o o ) = 2
— - H
Ya T Yo+l Vol T Vn+2
Let g = Vn+1/vn' Then this equation may be rewritten as:
+ +
1 - selt ] - selte
-1 n nt+l 1
e_( ) = §( ) = &
R 1 - 2u
n n+l

Setting h (z) = (1 - §z1¥%)/(1 - z%), we obtain our difference equation:

-1 _ 1
(A.12) e ha(en) | 6ha(en+ ) = 5 for all n > 1.

1

We may establish the following properties of ha(z)i

lim h (z) = h (0) = 1; lim h (z) = +=; and h (<) is monotone increasing on
a o a a

z+0 z+1

[0,1]. Let us rewrite (A.12) as:

1, -1 1
) = 3 leh (e) = 5=

A.l
(4-13) h,(e 5 Zn

n+l
The above properties show that a solution €ntl = g(en) to (A.13) exists for €n

close to 0 and 1, and that lim g(e ) = 1lim g(e ) = 1.
e +0 n g 1 n
n n
Furthermore, one easily establishes that the set of ¢, for which no
solution 0 < e, 4 < 1 to (A.13) exists, i.e., the set of all g, s.t.
E-lha(en) _.%E < §, is an open interval. When no solution g,4; < 1 to (A.13)

n

exists, we extend the definition of g to obtain a continuous function by
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\

setting e 4y = 0. Some additional algebra shows that g(e) is first decreasing

and then increasing, so we obtain the picture in figure 2.
(Insert Figure 2 About Here)

As drawn in figure 2, g(+) has a flat section and exactly two fixed
points in [0,1). But it is also possible that g(e) contains no flat sections
(g > 0 on [0,1]) or that g has no fixed points (the graph of g lies completely
above the 45° line in [0,1)). We now establish the existence of a E(a) such
that g has exactly two fixed points in [0,1) for &§ > E(a) and no fixed points
if § < g(a). Fixed points of g(e) are zeros of y(e; a,8), where

' 2 2+ +
w(es @,8) = 20622 + (1 - 208)eltY - (1 + 2u8)e + 24

¥y is a quasiconcave function, decreasing on [0,p] and convex on [p,1], with
$(0) = 2u > 0 and y(1) = 2u(l - §)2 > 0. Thus, either y has exactly two roots
or no roots at all, expect at some critical §(a). Now, for each a,

. =g 9V _ o 3y -
¥(1; a,l) = 0, 35 2uele (28 ~ 1) -~ 1)] € 0 and 32(1;u,1) =qa > 0. An
application of the implicit function theorem thus yields that there exists a
root in [0,1) to Y(e;a,8) = 0 for 8§ close to 1. Since %% < 0, we see there

exists §(a) such that y has roots for § » §(a). Some numerical calculations

yield the following graph of 6(a) versus a/(l + a).
(Insert Figure 3 About Here)

For 6(a) < 6 < 1, let ¢_ and €, denote the smallest and largest fixed

point of g, respectively, in [0,1). Construct a square with vertices (e,,¢c,)
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and (E,g), where ¢ is the unique ¢ < e, s.t. g(g) = €4
Consider g™(e). 1If ¢ € [0,5) or ¢ € (e4,1], then g (e) + 1. If
€ € [E,e+], then one of three possibilities hold:
(A.14)  g%(e) > O for all n but gk(e) ¢ [e,e,.] for some k.

(A.15) g™(e) = 0 for some n.

(A.16) € < gl(e) < ey for all n.

Lemma A.4: For any a > 0, suppose that {vn}:=0 solves MAX and Iy > 0. Then:
(A.17) e < < €L, for all n > 1

Proof: Suppose v2/v1 < ; or Vz/vl > €4+ We have just argued that

lim (vn+1/vn) = 1, For any c < 1, there exists n such that for every i > n,

>
vi+1 > CVio Then

a a a, o a, a .
ViU Vil < (1 -c¢ )vi < (1 -~ ¢ )vn, for all i » n

Meanwhile, p; < v, for all i > n, so by (A.2):

n

(A.18) m < .2 sta1 - c“)vi+“ = (

121 1 -3

But ¢ may be chosen arbitrarily close to 1, and then (A.18) contradicts (A.3)

(or simply (*)).

Suppose e < Vo/vy < g4. We have just argued that one of (A.14), (A.l5),



or (A.16) holds. If (A.14) holds, then V! Vigr1 € e or Ve+2/ Vg4 > €4, and
we generate the contradiction of the previous paragraph. If (A.15) holds, let
k = inf{n: g®(e) = 0}. Then vy, /vy < 0, implying vy, < O but vyy; > O.
Note that vy4p < 0 implies ppy; < O. But then I y; < 0, contradicting (A.3)

(or simply (*)). The only remaining possibility is (A.16). 0

Theorem A.l: For any o > 0, suppose that {vn}°° solves MAX and Iy > 0. Then

n=0

{vn}n=0 corresponds to a simple strategy profile, i.e., v, /v, = g4, for all

n>1.

Proof: By Lemma A.4, {vn}n=0 satisfies (A.17). Define {vn}n=0 by vy = vg and

v, = eﬂ_lvl, for all n > 1. Note by (A.9) and (A.3) that:
1 la la 1 11+a
I, = (vo -V )po + 2u8(1 - <S)v1

and

1+a

o ] o ]

L
Since vé = vy and vi = v|, these imply: Iy = I, = (vg - VT)(pO - PO). Note
' v ~ ® i 0
that vy -~ vy Y 0. Furthermore, Py ~ Py = (1 - 8 igo 8 (vi+1 - vi+l)’ by
] . = . .
(A.1). Observe that v, > v, for all n, since {vn}n=0 satisfies (A.17). 1If

Vn+1/vn < €4+ for some n » 1, then v;+1 > Vp+ls implying Hé > g and

contradicting our hypothesis that {vn}:=0 solves MAX. 0

The minimally collusive SPE (with IIj > 0) solves a second optimization
problem, analogous to MAX, which we denote MIN: minimize IIj subject to (1),

(2), (**), and p, > 0 (for all n > 0). We have:

Lemma A.5: Suppose MIN is feasible and solves MIN. If o < 1, then

{vn}:=0

constraint (2) is applicable to period zero, and (2) is satisfied with

equality.
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Proof: Observe that if MIN is feasible, there exist feasible {vn}:;O such

that Iy < 2u(l - 6)vé+a. Hence, (2) is applicable in period zero. Suppose

[+ ' [+
that {vn}n—o yields slack in the period zero constraint: define {v_} by

n’'n=0
! 2]
vé = vg and v; = Bv,, for all n > 1. Then there exists 8 such that {vn}n=0 is

feasible and Hé < Iy, so {vn}:=0 does not solve MIN. g

Now consider a variant on optimization problem MAX, which we denote

MAX'(py): maximize Iy, given py, and subject to (1), (2) and (**). We have:

Lemma A.6: If MAX'(pO) has a solution, it is uniquely given by the simple

strategy profile (po,s+).

Proof: We follow literally the same proof we used in Lemmas A,l1 through A.4
and Theorem A.l. The previous argument hinged on defining alternative sales

1
path {vn} which improved upon {vn} using (A.4) for k > 1. But by

n=0"’ n=0"

! -]

(A.5), Pé = pg, SO {Vn}:=0 is feasible for the same MAX'(py) as {v_} _.. 0

Theorem A.2: Suppose § satisfies §(a) < § < 1. If a » 1, then v, = voer 1is
one solution to MIN (there also exist others), and Ij = 2u(l - 6)vé+a.

If a < 1, MIN has a unique solution. It corresponds to the simple

strategy profile (py,e.), where py = inf{p > 0: I(p,ey) >

2p{v§ - [p/(1 - 8)]%}}.

Proof: If a > 1, Lemma A.l implies that I, > 2u(l - 6)v£+a, for all n > O.

Observe that v, = v052 satisfies I, 2u(l - 6)v%+“, for all n » O,

necessarily solving MIN.

\J o -—
If o < 1, suppose to the contrary that {vn}n=0 solves MIN and v; # e 1vi

for some n > 2. Define pé and Hé by (A.1) and (A.2). By Lemma A.6, the

E]

simple strategy profile (pé,s+) yields joint profits strictly greater than

4H6. Observe that BHO(p,s+)/ap > 0 when p < p(1 - G)VO. Hence, there exists



te ]
Pp < pp such that Ho(pO ,a+) = HO.
monotone increasing in p when p < p(1 - §)vj.

constraint (2) with slack in period zero. We

Tt
such that (p; ,e;) is in the feasible region
contradiction.
n-1_"

Finally, suppose v; = e; vy for all n >

)
the theorem. If py > pp, observe using Lemma

Furthermore, 2p{v8 - [p/(1 - 8)1%} is

Hence, (pé',e+) satisfies
conclude there exists pé" < pé'

for MIN and Ho(pé",s+) < Hé, a

2, but p' does not equal ppy of
0 0

A.5 that pé < p(1 = 8)vp, so

Ho(po,e+) < Ho(pé,e+). If pé < pg, observe by the definition of py that

)
(pg>e4) is infeasible. 0
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Appendix B

In the first part of this appendix, we show that for quite general
distribution functions, analysis similar to that of the main text is
possible. In particular, for any distribution function F(v) satisfying
inequality (3) (for some a > 0 and L > M > 0), we develop a function e,(¢)
such that e+(6) implies a subgame perfect equilibrium whenever the discount
factor exceeds §. ¢€,(8) is defined similarly to the e, of Lemma 2, so it is
again the case that maximally collusive joint profits converge rapidly to
static monopoly profits.

Suppose that F(v) satisfies (3) and that F1(.) is well defined. (Even
if F"1 is not defined, one can proceed as below, but the notation becomes more

cumbersome.) For any pa > vand ¢ (0 < e < 1), define {p }m

n’‘n=1 by

]

(8.1) = ™p, - ¥)
. PV =c¢ (po v)e
LIS . . Ty
Let {vn}n=0 denote the sequence of cutoff valuations induced by {pn}n=0°
Define {vn}:_o to be the sequence of cutoff valuations which induces the same

'
sales on F(v) as {vn}

. - a.
0=0 induced on L{v X) :

- '
(B.2) V.= F 1[L(vn - !)u], for all n > 0

Now define {pn}on using

n=0

equation (A.1) in Appendix A. We will establish conditions on § and ¢ such

to be a price sequence which induces {vn}:_o,

that {pn}:=0

We need to establish that each firm's share of joint profits along the

is the equilibrium price path of an SPE.

equilibrium starting from period n (%nn) exceeds any firm's optimal deviation
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in period n (denoted ngv), for all n > 1. (Clearly, %HO > ngv will also be

-— )
satisfied, unless v; is too close to V or zero.) Observe that p, > p, for all

n > 0 (using (A.1) and (3)). Hence:

=
n
I t~1 8

6Tp , [F(v_ ) = F(v_ . )]

0 n+i+l

i

-]

i! ! a ' o
g izo $ g (Mg =¥~ Ly — 0
) ] ) )
by (B.2). Substituting (B.l) and using Vel T Py = 6(vn+1 - pn+1) eventually
yield:
-1 - +
L - 0% - Mk - 0% L - 9% - M - 9
(B.3) Hn g o * 1+
(1 - 8% - 8% (1 - %1 -68e %

We also derive an upper bound on ngv. Observe that

Hiev < max {(1 _ G)V[F(Vn) - F(v)]}. The expression in braces may be

v
further bounded!® by

(B.4) 1% < (1 - )yF(v ) + max {(1 = 8)(v - IF(v ) - K]}
v

Using F(v) » M(v - X)a, and performing extensive algebra yields:

J1/a La(e™ - 9% -

(1 + 0l)1+1/0L(1 -5

Lt - )% - v)'v

dev n L

If the first term of (B.3) exceeds twice the first term of (B.5) and the

second term of (B.3) exceeds twice the second term of (B.5), we have

L l/a .

Hdev ﬁ) > 1. Hence, a sufficient

(%)Hn > . Observe that y < 1 and (

condition for this is:
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(B.6) (o) = e(1 - ™ - 2BV - s - st 5 0

Observe that, as in Appendix A, there exists E(a,L,M) < 1 such that y(e) has a
root in [0,1] whenever § > g(a,L,M). Define €+(6) = sup{e < 1: y(e) > 0}. As
before, e+(6) converges to 1 as § + 1, and the convergence is rapid. By
choosing v; very close to the static monopoly price p, we obtain nearly static
monopoly profits; by choosing v, very close to Vv, we obtain nearly zero
profits. By continuously varying vy from v to p, we generate all payoffs
between.

In the second part of this appendix, we prove two lemmas which

immediately imply Theorem 4.

Lemma B.l: For every 0 < s < » and every 0 < w < r/(r + s), there exists

zy > 0, such that for all 0 < z < z; the path (w,e) with ¢ = € %% is an SPE

path after any deviation from path 1.

Proof: After any deviation x in a particular period (whiéh we identify,
without loss of generality, as period -1), all customers with valuations < Vo
remain to be served. Assuming w < y_l = (1 -8)/(1 - €8) » r/(r + s), one
readily calculates that vy = x/(1 - §(1 - w)) if x < (1 - &(1 - w))v_y, and
Vg = Vo) otherwise. Since w represents a fraction of the highest remaining
consumer valuation vy, there is, as far as incentive compatibility is
concerned, no loss of generality in assuming vy = l. Conditions for (w,€) to
induce an SPE thus coincide with conditions for the simple strategy (w,e) to
give an SPE. The result then immediately follows from the same reasoning we

use for Theorem 3. 0
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Lemma B.2: For every 0 < s { o, there exist w > 0 and zo > 0 such that for

all 0 < z < z9, the monopolist has no incentive to deviate from path 1.

Proof: Confine the choice of w to (O,Y'l) so that, in the period after the

deviation x, there are positive sales. If x < [1 - &(1 - w)]v_l, profits from

deviating will be bounded above by: ndev < xvf1 < [1 - &8(1 - m)]vi{a.
. dev 1+a .
Observe that lim I < wv) e If x » [1 - &(1 - w)]v_l, profits from
z+0
deviating will satisfy ZHdeV = wvira[l - %1 - se)/(1 - 6€1+a)]. Again,
observe that lim Hdev < mvl:a.
z+0

Meanwhile, profits II_; from continuing on the main path satisfy

a
I > (A -8el -e) v1+a (with equality unless we are in the initial

L -se - seltyy T

period). The coefficient of v

l1+a

in this inequality -approaches

ars

FF o GE + (I F a)sf’as z + 0, Hence, for any w such that

ars

T . -
T Fr ST T a)s)}’ there exists zy > 0 such that the

w < min{

monopolist has no incentive to deviate from path 1 when 0 < z < z,. I



Notes

lxahn [1986] considered the durable goods monopolist with increasing
marginal cost; Bond and Samuelson [1984] examined a durable good subject to

depreciation. Both found the Coase Conjecture modified.

2There may also exist subgame perfect equilibria which are qualitatively

different. See Ausubel and Deneckere [1986].

3Coase did, in 1972. He wrote (p.l44), "With complete durability, the

price becomes independent of the number of suppliers and is thus always equal

to the competitive price” (emphasis added).

40nce a time period has lapsed, the original monopolist transforms into a
greedy type who wants to maximize profits from then on rather than to
implement the sales plan her previous type would have liked to commit herself

to.

5To capture the idea that customers are anonymous and nonatomic, we will
assume that plays which result in the same sequence of prices and the same
measure of consumer acceptances yield identical strategy choices for both the

monopolist and the consumers in subsequent periods.

b1f instead, consumer valuations are bounded away from zero (see last

paragraph of Section 4), Theorem 1 becomes: in any SPE, either inf p = Yvor
n
p, = 0 (for all n > 0). The result inf P, <Y follows analogously to Theorem
0 A
1. If Pn < v for some m » 0, it is easy to show that a consumer with



valuation v purchases in finite time, implying the Bertrand equilibrium.

7Off—equilibrium behavior on the part of consumers can be handled in the
following way: if a set of measure zero of consumers deviates, those
deviations are ignored. If a set of positive measure deviates, firms revert
to pricing at marginal cost in all future periods (and the remaining

consumers' strategies are optimal subject to this prediction).

8Obviously, the lowest joint profits in an SPE are zero. We seek the

next higher profits attainable.

9As shown in Appendix A, the equal division rule implies that there is no
loss of generality in further focusing attention on symmetric equilibria,

i.e., SPE's with the property that o} = o0,.

101¢ pg * Y—l, identical sales at identical prices occur under (epy,€) as

under (po,e). However, they occur one period sooner.

llgyt also see the Conclusion (and Ausubel and Deneckere, 1986), which
discusses the class of all SPE's for monopoly, in the case v = (.

12Suppose, for example, that F is differentiable in a neighborhood of v,
and there exist £ > m > 0 such that m < F'(v) < £ in that neighborhood. Then
condition (3) may be shown to be satisfied, using a = 1. Even if F'(v) = 0 or

F'(v) = =, it is still often possible to satisfy (3), using some o # 1.

13More true to the spirit of the contestable markets literature, one



could allow the entrant a first-mover advantage by not permitting the
incumbent to react until the period following entry. Uninvited entry will
yield the entrant only limited profits, since consumers expect an.all—out
price war 'in subsequent periods. Small sunk entry costs proportional to the
size of the market remaining (representing, e.g., introductory advertising
costs) still make the entrant prefer to stay out when uninvited, but wanting
to enter when invited. The monopolist's profits, however, will be bounded
away from static monopoly profits by an amount equal to sunk entry costs.

We thank Vijay Krishna for raising this issue.

14¢consumer expectations are fixed (in a fashion similar to the previous

section) to implement this equilibrium. See footnote .7.

151t has been observed by a number of authors that the durable goods
monopoly model is formally equivalent to a sequential bargaining model of one-
sided offers and one-sided uncertainty. Thus, the present paper has
implications for the multilateral bargaining problem with two sellers (of

known valuation) and one buyer (of unknown valuation), etc.

16The intuition for the bound in (B.4) is: the right side of equation
(B.4) amounts to selecting a two-part price discriminatory schedule, where the
firm charges (1 - 6)v to all customers with valuation exceeding v and charges
(1 - 8)v to all other customers. Profits without this price discrimination

are necessarily lower.
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Figure 1: The set of equilibrium joint profits, with
F(v) = v, for all discount factors §.
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Figure 2: Graph of g(+), the solution to the difference equation (A.13)
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Figure 3: Graph of ¥(a), the critical value at which roots of y appear.



