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1. Introduction

The literature discussing the design of resource allocation mechanisms falls into two
quite distinct and almost non overlapping parts. One branch deals with the problem
of incentive compatibility, the other with informational requirements. Both branches
assume that information about the environment relevant to achieving a specified
performance is initially dispersed among the economic agents. The incentives literature
has analyzed conditions for a performance function or choice rule to be implementable
in given behavioral equilibrium strategies, (e.g., dominant strategies, Nash or Bayesian
equilibrium strategies) and proposed a variety of implementing mechanisms. In both
cases, the question of informational costs was ignored. The informational requirements
literature, on the other hand, has studied the size of the message space needed for

decentralized realization of a given performance, ignoring incentive issues.

The papers of Hurwicz [1972], Mount and Reiter [1974], and Hurwicz, Reiter, and
Saari [1985] address the question of how much information needs to be communicated
in order to realize a given performance standard by an informationally decentralized
mechanism. The measure of communication requirements is the informational size of
the message space; in case of a Euclidean message space this amounts to considering
the dimension of the space, giving the number of variables whose values must be
communicated. One of the well-known results in this literature establishes the
minimality of the competitive mechanism. Under certain regularity conditions, every
mechanism that achieves Pareto-optimal resource allocations on a sufficiently rich
class of classical exchange economies must use a message space at least as large as
that of the competitive mechanism. A corresponding result exists for the Lindahl
mechanism in environments with public goods. These results were obtained under

the assumption that agents follow the official rules without regard to self interest.



On the other hand, work on incentives and implementation has paid little attention
to communication requirements. The discovery of the revelation principle may have
been responsible for this. According to that principle one can study implementation
without loss of generality by considering only mechanisms in which the agents’ strategy
spaces coincide with the space of a priori conceivable environments (types). Design
of efficient or "best" mechanisms must, of course, involve both informational and
incentival considerations and the trade-offs among them. Incentive shortcomings may
be compensated for by increased use of monitoring and verification procedures. The
direct costs of such procedures have to be compared with the implicit cost of operating

incentive compatible allocation procedures.

The dimensional requirements of dominant strategy mechanisms have been analyzed
in Reichelstein [1984a]. While it is frequently possible to do better than direct
revelation it can be shown that the dominant strategy conditions will, in general,
impose a dimensional cost compared to a world in which agents’ compliance with the
rules of the mechanism can be assumed. A converse question was addressed by Green

and Laffont [1983], who study the performance attainable with a given message space.

In this paper we turn to the communication requirements for implementation in
Nash-equilibrium strategies. A characterization of social choice rules which can be
implemented in Nash-equilibrium strategies was first given by Maskin [1977] in a
social choice context. Through a constructive proof Maskin [1977] also suggested an
a priori upper bound for the size of the strategy (message) space needed for imple-
mentation. This upper bound amounts to the n-fold product of a direct revelation
mechanism (where n is the number of participating agents). Recent work by Williams
[1984] and Saijo [1985] characterizes social choice rules which can be implemented

with smaller strategy spaces. In economic settings, Groves and Ledyard [1977],



Hurwicz [1979a], Schmeidler [1980] and Walker [1981] have constructed mechanisms
which attain efficient resource allocations at Nash-equilibrium points. These mech-
anisms use finite dimensional strategy spaces though the classes of environments on

which they are successful are infinite dimensional.

The remainder of this paper is organized as follows. In the next section we provide
basic definitions, in particular those of realization and implementation of a choice rule.
It is shown that Nash implementation is always at least as costly, in message space
size, as (decentralized) realization. In Section 3 we study the question whether a
strategy space of given dimension is large enough to implement a given choice rule.
Essential to our argument is a correspondence which maps strategies to environments,
while satisfying a set of inequalities. When differentiability is assumed, these condi-
tions can be translated into dimensional requirements. Theorems 3.1 and 3.2 state
necessary and sufficient conditions for a strategy space to be big enough to implement

a choice rule.

In Section 4 this machinery is applied to the problem of attaining competitive equi-
libria in pure exchange environments. This performance standard is frequently referred
to as the Walrasian choice rule. We find that there must be an increase in the size
of the strategy space over that of the message space of the competitive mechanism,
which is, as we have said, the minimum required for decentralized realization. The
dimensional increment depends on the number of agents and commodities in the
economy. This dependence is characterized by a formula presented in Theorem 4.1.
While this theorem applies only to a fairly restrictive class of mechanisms, we suggest
that our dimensional formula is valid for the entire class of smooth mechanisms. In

Appendix B a more general argument is provided, which because of the complexity



of the notation, is presented for the case of three agents and three commodities.
Theorem 4.2 shows that implementing mechanisms exist whose strategy spaces match

the bound given by the formula in Theorem 4.1.



2. Realization versus Implementation

Our analysis takes as given a social choice rule or performance standard which
associates a set of desired alternatives with every environment. Formally, we consider

a correspondence

F:E - 7

where E represents the class of environments (sometimes called the parameter space)
and Z is the space of alternatives. An environment e € E includes a complete
description of every agent, i.e., preferences, private information, initial endowments,
etc. Throughout this paper it will be assumed that the class of environments is

decomposable, so that E= '%Ei where N={1,..., n} indexes the set of agents.
=

Following Hurwicz [1972] a resource allocation process consists of a language (message
space) M, a response function f; for each agent i=1,..., n and an outcome function

h . Formally, an allocation mechanism is a triple:

A=<M, f,h>

where f=(f1,..., fn) . Information is exchanged iteratively; at each time ¢ agents
respond to the current "state' message according to their characteristics using the

given response functions:
S MxE M,
f;(M(l), e,‘)zml‘ (’+l) i=1s'"1n'

If every agent responds to the current state message by repeating his component of



it, the process has reached a stationary point. The outcome function

h - M-+»Z

then assigns an allocation to this stationary message. An important feature of this
model is that an agent’s response does not depend on the private information of any

other agent. This is the so-called privacy property.

Definition 2.1: A Hurwicz-process A= < M, f, h > realizes a choice rule

F:FE - Z if and only if
. n
(i) VeeE ule)= l.gl#i (&) # ¢

where u; (¢)={me M| f; (m, ¢) = m;}

(il) h(m)e Fle) Vmeyp(e) Vee E.

In this formulation [Mount-Reiter, 1974] the dynamics of the allocation process are
suppressed. The realization requirement amounts to verifying that stationary points
yield the outcomes specified by the choice rule. In general the message space will
have to be larger than the image set F(F). The reason is that because of the
decentralization of information, the message correspondence must have the privacy
property. Suppose that for two environments e, &: F(e) =F(e) . It is not necessarily
possible to assign these two environments the same equilibrium message, since
m € u(e) Nu(é) implies that m e u(e) for any point e on the "cube" formed by
e, and &, i.e., any environment whose n-components (€;..e,) are either drawn

from e or €. For this to be compatible with the realization requirement, it must



be the case that also F(e)= F(e) for all € on the "cube'. Message space size is
certainly just one among different relevant measures of informational complexity.
Recently, Mount and Reiter [1983] introduced a measure of computational complexity;
in examples they exhibit a trade-off between message space size and computational

complexity.

The literature on incentives has approached the mechanism design problem as one of
designing an appropriate non-cooperative game. Every player has a set of available
strategies, represented by S;; an outcome function g translates joint strategies into
resource allocations. Given an environment e e E, the pair < _;151', g>, 8:S-2
induces a game in normal form. Implementation requires thatl;or any environment
Nash-equilibria exist in the induced game and, secondly, that outcomes corresponding

to equilibrium behavior are in agreement with the social choice rule.
Let, R(e;) denotes the complete, binary and reflexive preordering that describes the

i-th agents’ preferences over alternatives in Z, when his type is ¢; € E;. The notation

(s_;, 5;) denotes the vector in which the i-th component of (s) is replaced by 5;.

Definition 2.2: <SS, g > implements F:E -+ Z in Nash-equilibrium strategies, if:
. n
() YeeE: p(e)= I.Dlp,-(ei) # ¢

where p;(e)=1{s €S | g(s")R(e)g(s>;, 5)) V5 e S}

(ii) VeeE: g(s')eF(e) Vs‘ep(e).



In a social choice framework, Maskin [1977] identified two properties of social choice
rules, namely, monotonicity and non-veto power, as central for implementability. He
showed that monotonicity is necessary and in conjunction with non-veto power also
sufficient for Nash implementations to exist. For economic settings in which agents

have non-satiable preferences, the non-veto power condition is trivially satisfied.

Definitions 2.1 and 2.2 appear to be closely related. The principal difference is that
the message or strategy rule p(e) in 2.2 is not a design variable but is induced by
the outcome function and the behavioral equilibrium concept. The formal relationship

between the two concepts is given in Theorem 2.4 below.

Definition 2.3: A mechanism (in stationary form) <M, u, h > is said to have the

Nash-property, if:
VeeE VieN VmeM:

me “i(ei) <=> h(m)R(ei)h(m_i' m) Vm,eM,.

Theorem 2.4: The following two statements are equivalent

(i) <S,g> implements F:E = Z.



(i) There exists a privacy preserving correspondence p: E - S

such that < S, u, g > has the Nash property and realizes F.

Proof: (i) = (ii)

Consider the induced Nash-correspondence p: E -+ S .

Let p;(e;) represent the i-th agent’s best reply correspondence.

n
Since p(e) = _ﬂlp,‘(ei) , the Nash correspondence is
1=

in fact privacy preserving. Consequently < S, p, g > is an
informationally decentralized mechanism which has the

Nash property and realizes F .
(i) = (@)
Starting with < S, g, g >, the Nash correspondence p induced

by <S8, g> coincides with g, since <S, u, g>
has the Nash-property. Hence, < §, g > implements F.
Though Theorem 2.4 follows directly from the definitions, it is useful because it yields

an immediate lower bound on the dimension of S in terms of the message space size

needed for realization. Given any implementation of F, there exists an equivalent



realization which, in addition, has the Nash-property. The main question of this
paper can now be recast as: Does asking for a realization which, in addition, has

the Nash property necessarily lead to an increase in message space size?

To make general use of Theorem 2.4 we need to make precise the notion of size
of a space and identify appropriate regularity conditions for the class of
allocation mechanisms considered. For Euclidean spaces it appears natural to
take dimension as a measure of size. The informational decentralization
literature has established a number of results on minimal message space size
for general topological spaces; we confine ourselves to Euclidean spaces in

this paper.

It is well known that, in the absence of any regularity conditions, an
essentially unlimited amount of information can be encoded in a one-
dimensional space. For example, the inverse of the Peano space-filling curve
could be used to encode a k-dimensional space on the real line. The
continuous Peano function could retrieve this information, since it maps a

real interval onto a k-dimensional interval,

Various restrictions on the message rule have been proposed which all prevent
such "smuggling” of information. Mount and Reiter [1974], for example,

require the message correspondence to have a thread, i.e., to have locally a

. . . 1
continuous, single-valued selection.

1 A correspondence w:X=+Y is locally threaded, if for every x € X there
exists a neighborhood U(x) € X and a continuous function f:U(x) > Y such
that f(x”) € u(x") for all x~ € U(x).

10



Since the Nash-equilibrium correspondence is endogenous, regularity conditions should
be imposed on the outcome function for implementation problems. It can be shown
with standard arguments that the Nash-correspondence is upper-hemi continuous pro-
vided that the outcome function is continuous and preferences are representable by
utility functions which are jointly continuous in outcomes and environments. While
upper-hemi continuity does in general not imply local threadedness, the two properties

coincide if it is asssumed that there is a unique Nash-equilibrium.

As an application, consider first the well documented problem of allocating resources
in an economy with public goods. For simplicity, assume that there are m-public
goods and one universal private good (money). Individuals only know their own
characteristics, i.e., preferences and endowments of the private good. It can be shown,
see Sato [1981], that every mechanism which achieves interior Pareto-optima on a
class of parametric utility functions, such as Cobb-Douglas or linear-quadratic utility
functions, has to use a message space at least as large as IR"*™ | provided the message
correspondence is locally threaded. Sato established a process, called the Lindahl
mechanism, which satisifies this regularity condition, uses IR"*” as message space
and attains the desired performance on a wide class economies with convex preferences.
It follows from Theorem 2.4. that, subject to local threadedness of the Nash-
correspondence, every implementing mechanism has to use a strategy space of dimen-
sion greater than or equal to nem. Walker [1981] constructed a game which uses
a strategy space of exactly that size and implements Lindahl allocations. Furthermore,
the Nash-correspondence of this mechanism is well behaved; it is a linear function

when traders’ utility functions are of the linear-quadratic form.

On the other hand, we construct a simple example in which Nash-implementation

requires an increase in dimensionality. Consider a class of exchange economies with

11



n=2 traders and /=2 commodities. Quantities of the first good are represented
by the letter X, while the second commodity, which serves as numeraire, is denoted

by Y. Each agent is characterized by a single parameter:
E=[a b] . a>1
The social choice rule

assigns net-trades to both agents, Z;c R2.
In particular, let

Ff(e):%(ei—eiﬂ) 1<ig?2

F{(e)=—%[e1+ez—2]-Ff(e)-

The subscripts are understood "modulo 2". If agents’ preferences are, at least locally,

representable by linear-quadratic utility functions of the form

2
U(x,ylei)=ei-x—x7+y

and initial endowments of the X-good are fixed at the unit level, then the above
performance function is exactly the Walrasian rule. Clearly, it can be realized with
a two-dimensional message space, simply by employing a revelation mechanism. With

the usunal regularity conditions, such as local threadedness, a two-dimensional space

12



can also be shown to be minimal. However, there does not exist a smooth Nash-
implementation which works with a two-dimensional strategy space.2 Assume to the

contrary that

and
g§:8,x8+2Z, x2,

is a differentiable outcome function such that < S, g > implements F. Let t(e)
represent a thread of the induced Nash-correspondence p: E -+ S . Implementation

requires that

(gon()=F() VeceE.

Since F(E) contains a two-dimensional manifold in Z, g:]R2 - 7 1is, at least
generically, a local diffeomorphism. Let s°e t(E) be a generic point and denote by

V(s°) an appropriately chosen neighborhood around s°. If e°et~!(s°), then

t=g"'0F on some neighborhood V(e°).

Hence, ¢(+) itself is a diffeomorphism on ;(e") . Since the mechanism is assumed

2 Note that we allow for unbalanced net-trades out of equilibrium. If one insisted on balanced
outcomes, i.e., the image of the outcome function is contained in the set Z = {(z1, ) | z; + 2z = 0}
then, independently of the allowed strategy space size, there will not exist a smoorh outcome
function implementing the Walrasian choice rule; see Reichelstein [1984b). Hurwicz [1979c]
established that there are discontinuous outcome functions that map into the set of balanced net
trades and implement Walrasian allocations at Nash-equilibrium points.

13



to implement Walrasian allocations, the following two equations have to hold:

(1) glt@) = —plt(e)) gf(1(e)) Vee V()  igi<2

where p(t(e)):%[el +ey—-2] is just the equilibrium price for the economy

e=(eq, e).
If 1(e) is a Nash-equilibrium, the following first order conditions have to hold:
X a X a y .
(2) (g—5;(t(e))) o- 87 (1(e)) + —— g7 (1(e)) =0. 1<ig?2
ds; ds;
Also, marginal utility has to equal the price in equilibrium, i.e.,

e;— &; (1(e)) = p(t(e)) .

Total differentiation of (1) yields:

(3) [Vgl(1(e)) + p(1(e)) V g7 (1(e)) + Vo(t(e))g] (1(€))] « Dr(e) = 0.

Recalling that gi(1(e)) = — g3(¢(e)) and gi(t(e)) = — g3(1(e)) , we may substitute (2)

into (3) and obtain:

gF(t(e)) « Vp(t(e)) « Dit(e) =0 .

This contradicts the requirements that p(t(e))=%[e1+e2—2] and #(.) be a

diffeomorphism.

14



Aside from making the point that implementation is generally costlier than realization,
the example given here also provides another illustration of the well-known fact that
the revelation principle does not apply to the Nash-equilibrium concept. In our
example, implementation becomes possible, however, if an additional dimension is

added to the strategy space, as can be seen from the following mechanism:

5;=R , S5,=R*

Denoting the second agent’s strategies be denoted by (s, s3), we define the following

outcome function:
£1(s) =s; — 5,
g3(s) =5 -5
g1(s) = — s3(s1 — )

() = = sy(5y — 5p) = (57— 53)° .

It is easily verified that this mechanism implements the Walrasian choice rule3 on a
wide class of economies.* Any Nash-equilibrium is such that s; =s3, since the second

player has, independently of his actual characteristics, a global incentive to match his

3 We note that this mechanism does not necessarily produce individually feasible outcomes. For
nonequilibrium strategies agents could be assigned net-trades which lead to negative consumption.
Throughout this paper the issue of individual feasibility is ignored; see Hurwicz, Maskin and
Postlewaite [1984] and Reichelstein [1985] for a treatment of this problem.

15



second variable with s1 . Hence, the set of Nash-equilibria is contained in a hyperplane
of the strategy space. Strategies that are not in this hyperplane are not needed for
the actual implementation task, yet they are necessary to give the strategies on the
hyperplane their Nash-equilibrium property. This curious feature will be encountered
again: the set of Nash-equilibria is contained in a space of no larger dimension than
is needed for ordinary realization (in our example a space of dimension two), yet

needs to be embedded in a strategy space of higher dimension.

4 The exact description of this class of economies is given in Section 4 preceding Theorem 4.2, for
an arbitrary number of agents and commodities.

16



3. General Theory

This section identifies necessary and sufficient conditions for a given strategy space
to admit a Nash-implementation of the social choice rule F:E - Z . These con-
ditions are stated in terms of a mapping that takes strategies to environments, while
satisfying a set of inequalities. If the domain of the map, i.e., the strategy space, is
too small, it is impossible to satisfy the inequalities. Before stating the results two
structural assumptions are introduced. First, we suppose that the i-th agent’s pref-
erences are defined on some space Z; and that Zc _J’CIIZ,'. For example, Z; could
be the commodity space, the dimension of which equ;.—ls the number of commodities
in the economy, while Z is the set of feasible net-trades. Secondly, the choice rule
is assumed to be a function. To analyze the dimensional requirements for realization
or implementation of social choice rules it is oftentimes helpful to derive a lower
bound on the size of the message (strategy) space by finding the dimensional require-
ments for a special class of environments only. In Section 4, for example, we focus

first on special economies in which traders’ preferences are of the linear-quadratic

form. On this class of economies the Walrasian choice rule is single-valued.

Theorem 3.1: Let < S, g> implement F= (F;..F,) :E - Z and denote by D the
set of Nash-equilibria in S, i.e., D=p(E). If F,(E)=Z;, there

exist correspondences

satisfying the following conditions:

17



(i) y; is F;compatible, i.e., for every se S:e, & € y;(s) implies
F;(e) = F;(e) ; there exists an onto correspondence y:D -+ E

such that for each ie N the restriction of y; to D agrees with

(ii) VseD VYeey(s) VieN:
Fi(v;(T;(s))) < L(e;, F;(e))
where Ti(s)=1{5e S |5=(s_;, 5), 5 € S;}
and Le, z) = {Z; € Z; | z,R(e)Z;}
(iii) Yse S VeekE:
If YieN F(v(T;(s) € L(e;, F(y;(T;(5))))

then F;(y;(s)) = F;(e) Vie N

Proof: Define

o

1

X e, e E | sepie)} if seD
1
Y, (5) = {

(F,-—log,-)(s) if s¢D

18



(i) Clearly, Yse S y;(s5)c (Fi'iogi)(s) .
Hence, e, € € y;,(s) implies F;(e) = F;(¢) . By construction,
YI= e =Yp=Y for seD.

Since < S, g > implements F, y is onto.

(ii) Let ie N, seD and ee y(s). Then se p(e) and
Fi(e)R(e)g (s_;, 5) V35 €S, .
Now, e € y;(s_;, 5;) implies F;(e) =g;(5;, s_;) , and consequently,

Fi(é) € L(e;, Fi(e)) .

(iii) Let se S, ec E and Vie N: F(y;(Ti(s))) € L(e; Fi(y:(5))) .

By construction, L(e;, F;(y;(s))) = L(¢;, g:(s)) and
Fi(y;(T;(s))) =g (T;(s)) . Hence, s is a Nash-equilibrium at

e € E which implies g(s) =F(e), since < S, g> implements F.

The basic idea of Theorem 3.l. is that, if S can serve as a strategy space for
implementation, then there will exist mappings which take strategies "back” to
environments. When restricted to the set D of Nash-equilibria these mappings

are just the inverse of the Nash-correspondence.

19



(ii). Let se S be a Nash-equilibrium for e e E. Consider the image of the mapping
v, under the intersection of strategies which the i-th agent can effect by unilateral
deviation from the set D . The choice rule has to map this image set in the class of
environments into the i-th agent’s lower contour set relative to the allocation pre-
scribed by the choice rule at ee E. Assuming for a moment that all y;’s are
functions, that agents’ preferences are representable by utility functions U(z; | e)
and, finally, all functions involved are differentiable, condition (ii) then implies that

for every se D, i.e., where y;(s) =y(s) :

— 1 1 -
a 1
0,.,0, =% == 0,..,0
as, . as,-i
(4) VU(F;(y(s)) | (v(s));) o DF;(y(s)) 0 . . = [0, ey 0]
0,..0 8ol o 4
b asll as;ki -

Here the function y; maps from R*1 x ... x R* to RY, where a point in RY represents
an environment and S; = R¥. (In general, ¢ will have to be less than or equal to
i-il k; in order for y. to be a function.) Equation (4) says that for every e=y(s)
and ie N the gradient of the indirect utility function V(e | ¢;)) = U(F;(e) | ¢;) has to
be orthogonal to those columns of Dy;(s) that correspond to the j-th agent’s strat-
egies. This constrains the rank of Dy;(s), potentially leading to a conflict with

the onto requirement in (i).

20



The meaning of Theorem 3.1 can be well illustrated in the context of the example
discussed in the preceding section. Consider again the Walrasian choice rule on the
simple class of environments in which traders’ preferences are described by linear-

quadratic utility functions.

let I(e}é;), 1<i<?2, represent the indifference curve of the indirect utility func-
tion Ve, ey | €;) = U(F;(e1, ) | &) through the point (eq, &) = (&1, &) . Pareto-
optimality of Walrasian allocations implies that the two indifference curves have to

be tangent at (ey, &3).

Next, suppose that S = R?2. We know that, if S =1R?, then the set of Nash-equilibria,

D, must contain an open set in §.

Hence, y{ =y, =y on this open set. Also, the correspondence y is in fact a function,
since the y; are F; compatible as required by 3.1.i.. Finally, y is, at least generically,
differentiable, provided the mechanism’s outcome function is smooth. lLet y(5)=é&;
3.1.ii. says that y(77(5)) is contained in the set L(Fj(€), €;) and consequently the
line tangent to I(e} ;) at &, is also tangent to y(T1(5)) at y(5). Repeating the
same argument for the second agent shows that the tangent lines of y(71(5)) and
v(75(5)) are in fact identical at y(5) . However, y(-) has to be onto, and therefore
the tangent spaces of the images of the two perpendicular manifolds 77(5) and 75(5)

must span the entire two dimensional space of environments.

21
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The same conclusion is obtained through the calculus representation of Theorem 3.1.

Straightforward calculations yield:

V(el, e | ) = U(Fl(el, &) | 3_1) =

81+ (F{() + 1) = 2 (Ff(@) + 1)’ = p(e)F{(e)

where p(e) = -;— leg + e — 2]

VU(Fl(ely %) | el) O DFI(.) =

1

1
T2
—5[31—1] —5[32—1]

- %(F;‘(e), FX(e))

Similar computations for the second agent show that

VU(F,(e;, &) | ) 0 DEy(e) =
-%(fé(e), FX(e))

Theorem 3.1 says that there exists an onto function v : R2 - R? such that
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dy,
dsy
VU(F(y(5)) | v1(s)) « DF{(y(s)) « = [0, 0]
dy,
ds;

and

dvq
FY
VU(F(y(5)) | v5(s)) « DF,(v(s)) « = [0, 0]
dv,
o,

Since the VU(F;(y(s)) | yi(s)) « DF;(y(s)), 1<i<2, are collinear it follows that

Dy(s) has rank one, which contradicts that y is onto.

In the case of the outcome function given at the end of Section 2 with the strategy

space having one more dimension, the following computations obtain:

Y1 =0+s3+851—5, 1+s55-5+5)

Y2(8) = (1 + 28y — 5, + +5) i s #8

D={S€SIXS2ISI=S3}
71|

D =72 lD =7

y$)=1+251~5, 1+s)
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For every se S, the set y5(7>(s)) is a half-space. By setting s3= sy, the second

agent moves to the boundary of this half-space.

We digress briefly to show that the necessary conditions of Theorem 3.1. imply the

monotonicity property, which Maskin has shown to be necessary for a choice rule to

be implementable.

Definition 3.2.: F:E -+ Z satisfies monotonicity, if
YVe,eeE, z=F(e) :

Vie N L(e, z) < L(é;, z) implies z= F(e)

Corrollary to Theorem 3.1.: F:E - Z satisfies monontonicity, if there exist
correspondences y; : S > E satisfying (i)-(iii)

in Theorem 3.1.

Proof: Suppose that for some e, ée E, z=F(E) and L(e, z) < L(e;, z) .
Choose a point s € D such that e € y(s) . This is possible, since y: D -+ E

is onto according to (i).
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Condition (ii) implies F;(y;(7T;(s))) < L(e;, F;(e)) for all ie N. Since

e € y(s) implies e € y;(s), (iii) immediately yields F;(e) = F;(e) .

We next give a partial converse of Theorem 3.1., partial because we now assume that

the space Z is the Cartesian product of Z;’s, while Theorem 3.1. only required that

Zc x Z.
I=1

Theorem 3.3.: If Z= Hl Z;, the existence of y;:S§S == E, satisfying conditions
(i)-(iii) in Theorem 3.2., is sufficient for the existence of an

implementing <S§, g>.

Proof: Define g;:S =+ Z; by gi=F;oy;. It needs to be shown that a) for every
environment Nash-equilibria exist and b) all Nash-equilibria yield desired

outcomes.

a) Given e € E, there exists an se D such that e e y(s) . Condition (ii)

implies:

Vs, eS8, gi(s)=(F 0v)(s) =F ()R, () F(v,(s_;» 5)) = g;(s_;, 5)
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b) Suppose se S is a Nash-equilibrium for €€ E, ie.,
gi(S)Ri(é,’)gi(S_,‘s 5) V(G e T:(s)

or Fi(yi(Ti(s))) « L(&;, Fi(v:i(9)) .

Condition (iii) implies that g;(s) =F;(e) .
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4. Implementating Walrasian Allocations

In this section we examine the dimensional requirements of attaining Walrasian
allocations. Our framework is one of pure exchange; there are n-traders and /-com-

modities in the economy. Agents are described by their characteristics
&= (’Yl’ Ri’ wi)

where X;c R/ represents the agent’s consumption set, R; denotes a complete, binary
and reflexive preference relation on X; and w; e IRi represents initial endowments.

By Z we denote the space of net-trades, i.e.

Z={z=1(21,...,2,) | z; € IR!}5
Denoting by E= 'J’gl E; the class of economies under consideration, the Walrasian
I=
choice rule
W.E »» Z

is defined as follows:

zeW(e) iff > z=0 and 3peR’ such that Vie N:

-]

(G) z+weX;, ; pez<O0

n
5 Note that we do not insist on balanced net-trades, i.e., le,~=0.
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(i) (z+ w)R;G +w) Vz;e R such that p.z,<0

To find lower bounds on the strategy space needed for the implementation of W(.),
it will be convenient to analyze the dimensional requirements of the following subclass

E < E. Environments in this class have the following special features:

Cow=(1,..., 1,%)

?

Writing a consumption vector in R’ as (xl,..., xt-1, ), each agent’s preferences

can be represented by a linear-quadratic utility function of the form:

Ukx,y|le)y=e+x— -;—x’-x+y

(-1
jm1
If agents’ endowments of the numeraire good is fixed at the level wl 6, an environment

in E can be identified with the n-vectors (ey,..., €,) € R"(-1D

For economies in the class E there exists a unique price equilibrium so that W(e.)
is single-valued on E . The informational decentralization literature has shown that,

“subject to the regularity conditions discussed before, R” *(/=1) i5 the minimal message

6 Since preferences are linear in the numeraire good, Walrasian allocations will not depend on the
numeraire good endowment w!, provided this endowment is chosen sufficiently large.
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space needed to realize W on E . On the other hand, the competitive mechanism,
as represented in Hurwicz [1972] and Mount and Reiter [1974], uses R™U-1 a5 its
message space and attains Walras equilibria on a broad class of economies with convex

preferences.

From the discussion in Section 2, which dealt with the case n=2 and /=2, we
expect a dimensional increase for Nash-implementation. The exact magnitude of that

increase is given in the following:

Theorem 4.1.: let §;= R and suppose g: S - Z is differentiable. If <.§1S,-, g>
1=
implements W:E - Z such that their exists a point ¢ E at
which the Nash-correspondence p:E - S has a linear thread, then
Ski2n el —1) +y(n, £)
=1

where ¢(n, /) is defined as:

4’("; !)=_Inln {EI("“I)'EE([—I)} ’ m={1’2’ 3$--'}
keIN

According to Theorem 4.1. the dimensional increment depends on the relationship
.between n and /. In particular, if n >/, one extra dimension is needed; if n=2,
then the dimension of the strategy space has to increase by (¢ — 1) over that required
for realization. For general n and /7, y(n, ?) is the unique positive integer satisfying

the equation:
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(- =[yn &)~-1n-1)+h O<h<n-1

There is always a unique pair (n, /), h satisfying this equation. The condition of
linear threadedness in the Nash-correspondence will greatly simplify the proof of our
dimensional formula. Instead of having to work with a system of partial differential
equations, the argument reduces to an analysis of the rank of a system of linear
equations.” We believe, however, that our formula remains valid even when the
thread of the Nash-correspondence is not required to be linear. To substantiate this
belief, we provide a general analysis for the case, n>/, in Appendix B. Before
giving the proof of Theorem 4.1., we first construct a mechanism which implements

Walrasian allocation with a strategy space of the indicated size.
Let the class of economies E be characterized, by the following conditions:
1) weX;, wi+R, cx;.
(ii) Preferences are monotone increasing in the numeraire good.
Since non-equilibrium outcomes may be individually infeasible, it is necessary to
extend the preference relation to all of R!. This extended preference relation is

denoted by R; and is chosen such that it preserves the preferences R; on X; and

every point outside the consumption set is strictly inferior to any point in X;. Formally:

if x,x eX, then xRx iff xR’

7 It should be noted that the familiar mechanisms of Groves and Ledyard [1977], Hurwicz [1979a],
Schmeidler [1980], and Walker [1981] all meet the linear threadedness condition on E .
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if xelX, x ¢ X; then xﬁ,-x' but not x'R_,.x

Theorem 4.2.: The (smooth) mechanism < _;’cIlS,-, g>, Si= ]Rki,
1=

as defined in equations (5)-(8) implements W:E -+ Z such that

Skimno(=1) +9(n, 0

Proof: Let S,-=]R["1 1<i<n-1 Sn=]R’—1 x RY(mO)

An element in S, will be represented as (s, u); s=(51,..., Sy, ¥) .

(5) gis)=si—si,; 1<icn 1<j<l—1

where the subscript (n+ 1) is understood as "modulo n".

6) £©)=-Dpl)glls) 1<isn-1

jem1
-1 . ¥ D) B(m) 2

D gl == D PG ghs) = > (u,— > s2"™)
J=1 mm1 re=1

where a(r, m)=(m-1)(n-1)+r
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n—1 if m<y(n, ?)

B("’)={ 2 it m=y(n, )

Recall that k& is given by the equation

- =@n ) -Dn-1)+k

Define h(j), k(j) , by the equation:

J= k@M -D-1D+h() 1<k() ¥, ), 0<h(G) <n-1

Finally,

31;(/) if h(G) #1i
N Bk())
(8) p}](S) = {uk(]') _ 2 S;I(r,k(})) if h(]) =i

r=1
réi

We note in passing than this outcome function is balanced for all but the
numerarie good. Interpreting the p{ () as prices at which the i-th agent
trades the j-th good, it is important to notice that p{ does not depend
on the i-th agent’s strategy choice. In other words, every agent is a price
taker. Now, suppose that s € p(e). Since the n-th agent’s preferences
are monotone increasing for the numeraire good,

s~ is a Nash-equilibrim only if
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B(m)
up— 255 =0 1 <m<yn b)

r
r=1

Therefore, at a Nash-equilibrium,

Pl =pish I1<ii'<sn  1<j<t-1
and > gl(s)=0 1<j</
im=1

Furthermore,

w; + g (s .)Ri (epw; + z;
. (=1,
for all z e {z'i | zi=gi(s_;, 5), 5, € S,'} = {z’i ! 21 P+ 2l = O}
j-
In particular Z;=0 is one attainable alternative so that, if s is a
Nash-equilibrium, it must be the case that w;+ g;(s*) € X;. It
follows that (gi(s’) e 8n (s")) is a Walrasian allocation with equilibrium

price vector (pl(s') ...p!_l(s'), 1).

Conversely, for ee E, let
(X1,.er Xp) € R"*’ be a Walrasian allocation with equilibrium prices
(p 1, s P ¢ ‘1, 1) . We construct a strategy-tuple, which is a Nash-equilibrium

at e e E and induces the Walrasian allocation. Set

34



5‘}/;(,')=17j 1<j<t-1
where, again, h(j) is the unique positive integer satisfying
=k -DE-1)+h(), 1<k()<i¥n ), 0<h(G) <n~1

Next, consider the system of linear equations

%/=sl—sl 1<j<l-1, 1<i<n

i+1

For every good j there are (n-— 1) independent linear equations in (n— 1)
variables (recall that the value of s};(j) is already fixed). Therefore, there

exists a unique solution such that:
(81(s), ..., g,(5)) = (x4, ..., X,;) and y,’;(j) =17j

Finally, set the "auxiliary' variables {u,} such that

B(m) ( )
a(r,m
Uy, = z Sy

r=1

where again a(r, m)=(m—-1)(n-1) +r, 1<m<y(n,?)

if m<y(n, ?)

n—1
and B("’)={ Eif m=y(n, 0

As shown above, the set of allocations attainable for the i-th agent by
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by unilateral deviation from s e S is the budget plane given by the price system

(171 ...ﬁ['l) and endowments (1...1, W[) .

Since (g1, (s), ..., & (5)), (131, e ﬁ[‘l) is a competitive equilibrium by
hypothesis, s is a Nash-equilibrium. This completes the proof of Theorem

4.2.

The mechanism presented, like the one in Section 2, has the feature that the set of
Nash-equilibria forms an n« (/ — 1) dimensional linear manifold within the strategy
space; it is the intersection of y(n, /) different hyperplanes. We note that the linear
threadedness condition of Theorem 4.1. is satisfied in this case. The intuition under-
lying our mechanism is to rule out monopolistic behavior by providing that no agent
controls the prices at which he trades commodities. Every agent has one strategy
variable with which he affects the allocation of the j-th good. Because of the
balancing requirement there are only (n— 1) independent allocations to be made for
any particular good. Roughly, this leaves one variable to determine the price. In our
mechanism, the n-th agent also chooses a number of auxiliary variables. Independently
of his characteristics the n-th agent has an incentive to choose these auxiliary variables
such that each one of them lies in a given plane with, at maximum, (n— 1) different
price setting variables, one provided by each of the remaining agents. Our mechanism
reveals what may be a general fact, namely that one auxiliary variable can ensure
price taking behavior for at most (n— 1) commeodities in an economy with » agents.

It is this fact that governs the increase in dimensionality.

We now turn to the proof of Theorem 4.1.
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Lemma 4.3: If <S8, g> implements W on E, then for any two points e, &€ E :

Proof:

p(e)Np(e)=¢

Suppose to the contrary that two environments have a Nash-equilibrium in
common, i.e., s € p(e) Np(e) . Implementation requires that W(e) = W(e) .
Also, since the Nash-correspondence p(e) is a coordinate correspondence,

it follows that:
sep(e) VeeE with €;¢ele, &}

All environments on the "cube' formed by e and & have to have s € S

as a Nash-equilibrium. A straightforward calculation shows that

wie)=Lim-1e- el

i’

From these linear equations it follows immediately that Wi(e) = W (¥) for

all ¢ on the cube formed by e and &, only if in fact e=¢é.

Proof of Theorem 4.1:

Step 1:

Suppose that §;= RY and k= 21 ki=ne(/—-1)+ k. We have to show
that k > ¢(n, /). By assumption, at the point &€ E, referred to in the
statement of the theorem, there exists, locally, a linear selection of the
-1

Nash-correspondence. Denote this linear thread by ¢ It follows from

37



Lemma 4.3 that t_1 is one~to-one and consequently tﬁl(i) forms a linear

n * (2-1) dimensional manifold7a in the strategy space S. Recall that

n + (2-1) is the dimension of E. Next, the inverse of the Nash—-correspondence
y:p(E) +» E has to be a function, because p(*) is injective. Denoting the

inverse of t '(+) by t:t ' (E)+ E, it follows that Y‘t‘1<i> -t

Let (f1..1,) t;: S~ E denote differentiable threads from the correspon-

dence (yy...vn) as defined in Theorem 3.1. It follows that
t =1

g

since according to Theorem 3.1 all y,’s have to be identical on the set of
Nash-equilibria p(E). This implies the existence of a k x k matrix A

which has rank n e (/ —1) such that for each se t‘l(f) :
Dy(s)oA= .. Dt (s) 04 = Dit(s)

Hence, A4 is the matrix of the linear transformation mapping S to o~ UE).
We write the derivative of the linear function ¢(.) as:

Di(s) = [By, s B] Bje R™¢-D

Then the derivatives of the functions r;(«) can be uniquely expressed in

the form:

7a For notational simplicity, we take the neighborhood on which the Nash-
correspondence has a linear thread to be all of E.
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Eoo Eoo
Di(s) = | By + D, mi N(s), ..., B+ >, m} M(s)

j=1 j=1

for all se:~1(E). The M(s) are arbitrary vectors in R"(=1 and the
vectors {m!...m*} span the nullspace of A (recall that by definition

k=k-ne(/-1)).
To invoke the first order conditions for Nash-equilibrium as stated in (4),

Section 3, we first calculate the gradient of the indirect utility function

Vs (~1(s)) = UW; (e~ 1(s)) | (1= 1(s));) which becomes: 8

[_l . .
VUW, (7)) 1 (T H9)) o DW T () == > Wi () - ¢

J=1
where ¢/ € R"™~1) is the following vector:
/-1 /-1 /-1
¢= (0..1..0, 0..1..0, ..., 0..1...0)
jth jth jth
¢/ has n: I’s and O’s otherwise. W,j (= 1(s5)) s just the Walrasian

allocation of the j-th good to the i-th agent for the environment r~1(s).

8 This calculation is shown explicitly for the case n=2=/ in section 2 and for the case n=3 =/
in the Appendix.
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Step 2:

It may be noted at this point that though the gradients of the indirect
utility functions are elements of R0 they all lie in some (/-1)
dimensional subspace spanned by the vectors (u!... #!—1)' This feature
must be considered special to the Walrasian choice rule and ultimately

explains the increase in dimensional requirements.

First-order conditions for the j-th agent then read as follows:

-1 ) .
® -3 W6

j=1

3 _ P
0,0, Be_ o1+ Dymh_ o1 NS, B+ D mf N(s), 0...0
j=1

j=

=[0, ..., 0]

The columns in Dti(t_l(s)) that correspond to the i-th agent’s strategies
(Sx,_;+1---S¢,) have to be orthogonal to the gradient of the indirect utility

function.

If the terms involving M(s) were zero in equation (9), that equation would
imply that the p’s belong to the orthogonal complement of the space
spanned by {u! w2?=1} . Tt is shown in Appendix A that if there are M(s)
satisfying (9), then there must be fixed vectors )\,-1 Af? such that the k;

vectors:
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k- k- . .
(10) {Bkl—l+1 + kai—l','l A{""Bk‘,'*' Em-]](' A—{}
J=1

J=1

lie in the orthogonal complement of the space spanned by {pl ...p[_l}
provided k; > k. We denote this (n— 1) « (/ —1) dimensional subspace by

LGt w1l

The k x k matrix

By ... By

B 1
= ml ..... mk
ml ..... m;:

consisting of the ne(f—1) x k matrix [By,..., Bx] with the k vectors
{ml...mk} appended as rows must have full rank k&, otherwise

[B1, .., BxJoA could not have rank ne(/-1).

Recalling (10), every vector B, can be written as:

£
(1)  B=6,—>mlN

=1

where 0, ¢ L(y.l ...y[—l)l and the v-th strategy belongs to agent i.
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Substituting (11) into the matrix B, it should be noted that each coefficient
m{ appears in only one column of B. It is then possible to perform
elementary matrix operations which generate 0’s in the last k& rows for
k;—k columns. This can be done for each agent separately. The matrix
operations Jeave the rank of B unchanged. In the resulting matrix B’ there

are, corresponding to each agent i, k;—k columns have the form:

6

-

N
0 6, e L(u'...uf"h)

In order for B or B’ to have full rank, there cannot be more than
(n—=1)«(/ -1) (the dimension of L(,ul ...,ui_l)l) such vectors. Conse-

quently:

S =B <= DE - 1)

i=1
or k—nk<(n-1(@-1)
or n(/-D+k—-nk<n=-1)«({=1)
or (/-1)<(mn-1Dk.

Since y(n, /) was defined as the smallest positive integer u satisfying:
(n—1Du>(-1), it follows that k > ¢(n, £). This completes the proof
of Theorem 4.1.
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Though the mechanism presented in Theorem 4.2. is efficient with respect to the size
of the strategy space, it has the unappealing feature that net-trades may not be
balanced, if agents fail to reach an equilibrium. In case n >/, this problem can be
avoided by a slight modification of our mechanism. The basic idea is to allocate the
residual quantity of the numeraire good (recall that our mechanism is balanced for
all other goods) among those agents that are not price-setters. Provided that n>/
there is at least one such agent. It turns out that the residual quantity is independent
of those agents’ strategies. Therefore, balancedness can be achieved through transfer
payments which do not affect incentives. In equilibrium the transfers are zero, since

the originial mechanism is balanced in equilibrium.

However, this construction fails if n < /. Some preliminary analysis indicates that,
in case n=3 =/, it is impossible to implement Walrasian allocations with a seven-
dimensional strategy space while maintaining balancedness throughout. A possibility
result obtains when the size of the strategy space is raised to eight dimensions. This
observation suggests that the minimal strategy space needed for implementation may
change as the set of permissible outcomes is enlarged from Z to some set 2 , where
F(E)cZc 2 . For Walrasian allocations (n=3=/), the minimal strategy space
decreases by one dimension as the permissible choice set is expanded from the six
dimensional set of balanced net-trades to the nine dimensional set of possible net-
trades. While this problem remains to be analyzed in detail, we may provide some
intuition by observing that the outcome functions g; are functionally dependent, if
net-trades have to be balanced. As demonstrated in Sections 3 and 4, the dimensional
'requirements for implementation depend on the existence of correspondences
v; : § -+ E satisfying certain conditions. Since ¥;(s) € (F;” o g)(s), the y,;’s will

be constrained further by additional requirements on the g;’s.
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5. Concluding Remarks

This paper represents another step toward an integrated theory of incentives and
communication requirements for decentralized allocation mechanisms. In terms of
the size of the message (strategy) space, Nash-implementation is always at least as
costly as decentralized realization. Our general theory provides a way of testing

whether a given strategy space is big enough to implement a social choice rule.

For the case of the Walrasian choice rule we find that it is possible to construct
implementing mechanisms whose set of Nash-equilibria forms a manifold of exactly
the dimension needed for realization only. However, this manifold must be embedded
in a strategy space of higher dimension in order to give the strategies in the manifold
their Nash-equilibirum property. We do not know whether this feature is shared by
other social choice rules. Lindahl allocations in public goods economies provide an

example of a social choice rule for which there is no increase in dimensionality.

Our analysis has paid little or no attention to the important issues of balancedness
and individual feasibility of non-equilibrium allocations. Though these questions have
been addressed in the literature, they still have to be integrated with the theory of

dimensionally efficient mechanisms.
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Appendix A

We want to show that

(9 SWETIN | B+ D m NG .., B+ D mf M(s)

=1 j-l =1

implies the existence of vectors (Al ..A%) such that the k vectors:

k- . . k- . -
(10) Bi+ Om{N .., B+ >miN

jm1 jml

le in L(u! ...p.[_l)l provided that k> k. Here the subscript i has been omitted,

since the argument is made for each agent separately.

-1
Define u(s) = 21 wi (= 1(s)) o/

J=

and write

(n=1){{-1)

N =d@ue+ D EOE+ D ds) E()

v ] vl

-1 -(n-1)(2-1)
‘4 }

1 -1
where {u .. are orthogonal to L(p ...u ) and the
b

~1 ~3=2
vectors {4 (s)...u  ~(s)} are chosen such that
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gl gD ), Ble) ... 2Y¥2(s)} is an orthogonal system, The con-

ditions in (9) require that

k . .
<By, u(s)>+ D, m} I(s) <u(s), u(s)> =0

j=1

(12)

koo
<By» u(s)> = Y mj () <u(s), u(s)> =0

j=1

Consider first the case k =1. The first two equations in (12) then read as follows:
<Bi, p(s)> +mj ¢’ (s) <u(s), u(s)> =0

<By, u(s)> +my c'(s) <pls), p(s)> =0

Solving the first equation for cl(s) yields:

CI(S)=—-—1— <B1) /J'(S)>
ml | <u(9), p(s)>

(if m} =0 the claim follows immediately).

Let Al be an arbitrary vector such that

!
Bi—mineL!..uf1)

Substitution into the second equation yields:
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1

mn, 1
<Byr p($)>+ —= <B4+ my A, p(s)>=0
my

with 8¢ L(u! ...t~ 1)*

Since 8 is orthogonal to u(s) for all s, it follows that
<By —mj A, u(s)>=0

Since p(s) covers the entire space spanned by {p.l ...p.l_l} as s varies it follows that:
By —mix e L(u! ...pl—l)l.

The same argument can be made for the vectors fB3...8; .

For general k , the first k equations in ( ) can be expressed in the form:

El(s) mll Ce mlf cl(S)
a»n - | .| = .
B mi.. . mk (s)
<Bi’ P'(s)>

ith B;(s) = — #5702
it B = o>
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We can write (13) in more compact form as

—B(s) =M «c(s) .

Provided that M has full rank (an argument along the same lines can be made, if

this is not the case); we obtain

~

—M~1aB(s) =c(s)

We denote the j-th row of M1 by o/ Let % ...}\E} be arbitrary vectors such that:

r—1,4

k .
mi N e L(p' .. xfh 1<i<k.
-1

(14) Bi—

J

Equation (k + 1) in (14) requires:

k . .
Bryrr >+ 3 mb | () <pls), wls)>=0

j=1

or equivalently:

o ~
Bryys k> + X ml  [—a «B()] <uls), uls)>=0

j=1

k
Bisps B> - mb <

j=1 i

of By p(s)>=0.

k
-1

Substituting (14) into the last equation implies:

48



k k K
<B/l?+1’ p(s)> - Zmi—+1 <Za{ Zm;‘ >‘v+9i , p(s)>=0
e

jm-] vl

where again 6; is an arbitrary element of L(y! ...pi'l)l.

Since the of are the coefficients of the inverse of M it follows that
kK k. _
2, 2 (e mHNT =N
ym]l jml

and therefore:

1 _
<SS SmIav 6, |, wo)> = <V, u(e)>.
jel you]

Therefore

i
- - Lo/ =
<Bk+1 Zlmk+l>\’#(s)>—0
JH

k

which implies our claim that Bl?+1 - 21 m{éH M e L(,u1 ...p!_l)l. Again, this argument
J-

can be repeated for Biyo Bk -
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Appendix B

In this appendix we reexamine our dimensional formula in Theorem 4.1 without the
linear threadedness assumption. We focus on the case n> /; our claim is that a
strategy space of dimension n e (/ — 1) is not large enough. The mechanism introduced
in Theorem 4.2. shows that adding one additional dimension will be sufficient. To
keep the notation tractable we confine ourselves to the case n=3 and /=3, though
the reader will see that the argument can be generalized without substantial change

for general n and ¢, n>7?.

Assume, contrary to our claim, that there exists a smooth mechanism which implements

W(e) on E and whose strategy space is six-dimensional, i.e., S;= R?, 1<i<3.

Let v: S+ Z be a single valued selection, i.e., a thread of the Nash-correspondence,

such that:

(g ov)(e) = W(e)

W(E) forms a six-dimensional linear manifold in Z. The differentiable function
g:S->Z maps from the subset of vw(E) onto W(E). Hence, g is, at least

generically, invertible. It follows that on a properly chosen neighborhood
-1
v=g oW
Differentiability of W(e.) implies that v is in fact a (local) diffeomorphism. Fur-

thermore, v—!=1r is a thread of the correspondence y:S - E as defined in

Theorem 3.2.. Let
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1 2 1 2 1 2 1
f1(5'1; S1s 82, 53, 53, 5'3) =&y

2 1 2
[2(') =el .. .[5(°) =€3, [6=e3

To prove our claim we recall the first-order respresentation of Theorem 3.2., as given

in (4). It is easily verified that for all ee E :

VU(Fi(e) | ¢) 0 DF;(e) =

- % (Fl(e), F2(e), Fl(e), F2(e), Fl(e), F2(e))

3 3
1 1
Fl=z|2-Ye Fie)=7]2¢] - X &
kel k=l

ki kot

Multiplication of VU(F;(e) | ¢) o DF;(e) with the corresponding two columns in the

Jacobian of ¢(s), as required in (4), leads to the following six equations:

. ) oy dy  Ols
#H  ( tl—t3—t5)(a—Si t ot a-)+

] ]

) a, Oy 9y ~o L<i<2
(t2—t4—t6)(—a?+-$-+-aT)= <ig

i 1 i

. o1y
() Q-1 - 15)(8—% + —
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o, 9

at,
2 -1 = 1) (5= ) = <ig
(24 — 1, — 16)( s, + 3, + s 0 3<i<é
atl af3 ats
(iii) (2’5 -4 - 13)('5; + Bs. + E) +

i 1 1

a, dty O
— + — + =)= 5<ig
8s,-+6s,-+6s 0 £isé

i

(2t — 1, — 14)(

This system of partial differential equations has many solutions, in particular linear

solutions (leading us back to the case considered in Theorem 4.1).

Our conjecture

is that no solution can be onto, i.e., the rank of its Jacobian is always less than six.

It will be convenient to rewrite the system in the following way:

B1(s) = t1(s) + 13(5) + t5(s)

B2=12+14+f6 y B3=211—-I3—t5

Pa=20—l4—15, Bs=2-14—15

Be=224—lg— 1

Equations (i)-(iii) can then be represented as:

3B, aB,

o P20 1<i<2
B3 as,.+B4 3s, sis

3B, aB,

1
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3B 3B
(B +Bs) 5 + (By+Bg) 5==0  5<i<6

Note that the two systems are equivalent, since the linear transformation between

t(») and B(-) is one to one. We consider, what will be called the reduced system,

By 9B, .
—_— —_= <
a(s) 35 3, 0 1<i<?2
9B, a8,
—_— — %= <j<4
L(s) 3, + 3, 0 3<i
3B, B>
— Ly L= <i<6
(s) 3, + 3, 0 5<i

where a(s) = B3(s) / Ba(s)
$(s) = B5(s) /Bg(s)
e(s) = (B3(s) + B5(5)) / (B4(s) + Bg(s))

If the Jacobian of (B, B2, B3, Ba, Bs, Bg) has full rank then the Jacobian of
(B1, B2, a, ¢, €) has full rank as well, i.e., rank five. Suppose that (B1, B2, a, ¢{, ¢€)

is a solution to the reduced system.

B> , 081 9By , 9By
We observe that 25, / 35, = %5, / 55,

B> have the same isoquants in (sy, s») space, given (s3...5¢). Similarly, By and

= — a(s) , implies that the functions B; and

B> have the same isoquants in (s3, s4) space as well as in (ss, sg) space. This

suggests to consider functions By and B, of the form:
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B;=T; (a(s), b(s), c(s))

where T : R3 - R , 1€i<?2 and a(s), b(s), c(s) are arbitrary functions. We have

no proof that every pair of functions 1 and B, can be written in this form whenever

they have the same isoquants in the three two-dimensional subspaces.

Differentiating B; with respect to s; and s, and observing again the requirement

By 3By _ By , 3B
ds;  0s, - Os; = 0s,

implies the equation:
(15)  (Tay + T5by + TScy) » (T30, + Toby + Th)) =

(T9ay + T9b, + Ticy) o (T3ay + T9by + IScy)
where I"fE-(—aa—I;l— and alzg—;‘l.
Multiplying out in (15) yields:

(T{T3 = T9T9) @y by + (TT5 = T{T5) @y ¢ +
(LTS - TT3) a by + (T{T5 — T{T3) by ey +

(T3 — I9T%) ay ¢ + (T{T5 = T3TS) bycy = 0.

Collecting terms, (15) takes the form:
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(T9T3 - T3T5)(ay by — by ay) + (T{T5 ~ TT3) (@  — gy ) +

([3T5 — T{T3)(by ¢ — by ¢;) =0

We define new variables:

X= 918 - 1érs
Y= I'alI‘S - I'gI‘i

Z=IiT5 - 131§

ab ac be
mpp=a1by~bay, mp=a6-ga, mp=bo-cb

The next step is to perform the same calculations for (s3, s4) and (ss, sg) respectively,

keeping in mind that

a4 y a4 _ aB, y

632

6s3 ds, ds3

and

aS 4

aB,

aB, / ap, _ aB, y

6s5 8s6 6s5

6s6
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This leads to the system of equations:

ab ac be
M My My

X
(16) mgz msy m:?,j, ) Y| =0
ab ac be VA
Msg Msg Msq

We classify the constraints on (I'y, I'», a, b, ¢), according to the rank of the matrix

M in (16).

Case I: Rank (M) =0

Then all entries in M are zero. In this case:
B;=T,; (a(sy, 55), b(s3, 54), c(55, 5g)) 1<i<2

is one possible solution to our differential equations system, but there are others.9 It
will be shown that for any solution the rank of the Jacobian of the reduced system

is less than five.

First consider the Jacobian of (a, b, c):
4 G 43 44 as 4gqg
(A7) Jape= | by by by by bs by
€Gh 2 & & & G

If all entries in M are zero, then there are multipliers (depending on s)

(A1, Agy Az, py, m2, #3) such that (17) can be expressed as:

9 Leo Burwicz found this solution, and one in which ﬁl and BZ are dependent,
by a direct argument based on the observation that ﬁl and pz have the same
isoquants in the 3 subspaces noted above.
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9q4 & & 4 45 G
A7) Tpe= M@y My Moz Ayay Agas Asdg

118y M3 B33 Had4 H3ds H3dg

We now consider the Jacobian of (B1 B2, @, {, €) . It is readily verified that

da ,0a 91 9% , 08 Qe , Oe

651 852 -0_2_ 851 E_ 851 852

Hence, the first two columns in the Jacobian of (B4, B>, a, {, €) are proportional,
so are the third and fourth, and fifth and sixth. This shows that the rank can be at

most three.
Case II: Rank (M) =3

The only solution to (16) is (X, Y, Z) = (0, 0, 0) . This implies that 'y and I

are functionally dependent since the rank of the matrix
[I‘i iy ri]
b
5 I; I3
is at most one. Thus, I's = f(I'y) and

Bo(s) = f(Ty(a(s), b(s), c(s))) = f(By(s))
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Hence, 81 and B, are functionally dependent, implying that the first two rows in
the Jacobian of (By, B2, @, {, €) are proportional and hence the Jacobian cannot

have rank five.
Case I1I: Rank (M) =2

Assume, for simplicity, that the nullspace of M is spanned by vectors [1, 0, 0] and
[0, 1, O]. It follows that

ab ab ab

ac ac _ _ac _
mi, =mzg=mse=0

Therefore J,p. in (17) can again be expressed in the form given in (17') leading to
the same conclusion. A somewhat longer argument is needed when the nullspace is

an arbitrary two dimensional subspace of R3 .
Case IV: Rank (M) =1
Suppose the nullspace of M is spanned by the vector [1, 0.0]. Since [X, Y, Z] is

in the nullspace it follows that Y=Z=0. If X=0, the same reasoning as in Case

IT applies. If X# 0, we get the following determinant conditions:

[I‘? Iy T ry I9
det #0, det =0, det =0
S U R P

These conditions can be satisfied only if T{=T5=0. Since [1, 0, 0] is in the

nullspace it follows also that
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ab ab ab
myp =m3q=mse =0

Therefore (17) takes the form:

@ B 4 4 4 4
Jane = | Ma1 May Aag Ay Azas Asag
@ 2 8 49 &6 %
This leads us back to the analysis in Case I. Though we have no information about
the last row in J,,. in the present case, the conclusion remains the same since
I'f=T5=0. We find again that the Jacobian of (Bi, B2, @, {, €) has at most rank

three since the first and second, third and fourth and fifth and sixth columns are

proportional.
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