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MONOPOLY PROVISION OF QUALITY AND WARRANTIES:

AN EXPLORATION IN THE THEORY OF MULTIDIMENSIONAL SCREENING!

by
Steven Matthews John Moore
Department of Economics and London School of Econonmics
Northwestern University Houghton Street
Evanston, IL 60201 London WC2A 2AE

Headnote:

We address the monopoly problem of designing and pricing a product line
of goods distinguished by different quality and warranty levels. Consumers
vary in their evaluations of these attributes, so that the problem is one of
screening. It is sufficiently complex that the local approach commonly used
does not work. Instead, we use new techniques for dealing with incentive
constraints between nonadjacent consumer types. These techniques allow us to
characterize optimal allocations that may not be monotonic. In particular,
although the more eager types of buyer do pay higher prices and yield the
monopoly higher profit, they may receive lower quality or lower warranty
coverage. We find preference restrictions that restore monotonicity: concave
risk tolerance implies that warranty coverage increases in type, and constant

absolute risk aversion implies that quality increases in type.

Keywords:
mechanism design, monopoly screening, price discrimination and bundling,

quality and warranties.



1. INTRODUCTION

Much attention has been given recently to the problem of how an
imperfectly competitive firm deals with a diverse consumer population. Such a
firm offers its customers a set of contracts from which they can choose, where
a contract specifies a total payment, the quantities of various goods and
services, their physical attributes, and remedies for nonperformance.

Ideally, the firm would like to design for each customer a contract which
extracts maximum surplus from his type. But typically the customer would not
choose this contract, preferring instead a contract meant for another type of

customer. This is the self-selection problem central to the literature on,
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for example, the design of nonuniform pricing schedules,® tax schedules,

bundling schemes,4 product lines,5 auctions,6 implicit contracts,7 and
regulatory policies.8

We consider in this paper a monopoly design problem in which each
contract specifies a different quality product and the terms on which it will
be sold. The intuition behind its solution starts with the observation that
profit is potentially greatest on contracts designed for "high" type
consumers, those with a high evaluation of quality. Because high type
consumers cannot be prevented from choosing contracts meant for low types,
this profit can only be realized by distorting the contracts meant for low
types in a direction that makes them relatively unattractive to high types.
All but the highest type of consumer should therefore receive products of
inefficiently low quality.

Although this intuition was expressed by Dupuit (as noted by Ekelund
(1970)) nearly a century ago, it was made rigorous only recently by Mussa and

Rosen (1978). Their analysis depended on several restrictive assumptions:



each contract specified only a price and a quality level, each consumer's
utility function was linear in the contract, and consumer types were
represented by a one dimensional parameter. We relax the first two
assumptions. Only the quality variable enters utility linearly: we interpret
it concretely as the probability of the product working. Consumers are risk
averse. The resulting demand for insurance is supplied by warranties that pay
back compensation for product failure. Our task is to characterize the
profit-maximizing set of contracts which specify the three variables, quality,
warranty, and price.

Our first set of results confirms and sharpens the intuition of Dupuit
and Mussa and Rosen. We show that contracts meant for low types are distorted
precisely in order to make them less attractive to high type consumers. The
way in which these contracts are distorted is to have them specify
inefficiently low quality levels and warranty coverages. Very low type
consumers receive warranties that pay back less than the price of the product.

Our second set of results differs from that of Mussa and Rosen, as well
as from that of all the screening literature we have seen. In Mussa and
Rosen, both components of an optimal contract, price and quality, must
increase with the type of consumer for whom it is intended. 1In contrast,
although we show that contracts intended for higher types do yield higher
profit and specify higher prices, they need not have higher qualities and
warranties. We present a counterexample to the proposition that higher types
must receive greater quality. Additional assumptions about consumer risk
aversion are required to show that qualities and warranties will be monotonic
in type: constant absolute risk aversion leads to monotonic quality levels,
and concave risk tolerance leads to monotonic warranty coverages.

We are able to solve a screening problem in which the optimal contracts



need not be monotonic in type only by using a new methodology. The usual
technique relies on showing that "local incentive compatibility implies global
incentive compatibility.” Showing this requires strong assumptions which,
almost incidentally, always imply that the optimal contracts will be
monotonic. Earlier results to the effect that higher types receive, for
example, a higher quality in product line models or a greater quantity in
nonuniform pricing models, are due, we believe, to assumptions made more for
technical than for economic reasons.

To substantiate this claim, in Section 2 we describe the standard local
approach to screening problems. Although some of the results in Section 2 may
be familiar, we present them in a general context and in a geometrical way
that highlights the differences in our approach. In Section 3 we discuss our
model of qualities and warranties. The key technical results are derived in
Section 4, and the economic implications are derived and discussed in Section 5.

Section 6 contains final remarks on monotonicity and the local approach.

2. TECHNICAL BACKGROUND: THE LOCAL APPROACH

A representative screening problem is of the following form:

n
(M) Maximize z n(x )f.
X, ,eee,x i=1 %
1 n
subject to
(10) U(x,,0,) » U(x,,0,) for all j # i, and
i’i bRkt

(VP) U(x,,8,) > U for all i.



Here, ¥; 1s the k-dimensional contract intended for type 8; consumers, f; is
the fraction of the consumers who are of type 8;, and n(xi) is the benefit
(e.g. profit or social welfare) obtained when a consumer chooses xi.g A
consumer of type Gi choosing contract xj receives utility U(xj,ei), where U is
continuously differentiable in x.

The first k-1 components of a contract x = (a,b) indicate the levels of
attributes —- such as quantity or quality. In general, U need not be monotone
in any attribute. But we do assume Uk < 0, with the interpretation that the
kth contract component, b, is an outlay made by the consumer.

The essence of a screening problem is the set of incentive constraints
IC. They are required because each consumer must be allowed to choose his
most preferred contract out of all those being offered; the firm cannot offer
different types of consumer different contracts either because it cannot
observe the type of any consumer, or because it is legally prevented from
discriminating on the basis of type. The voluntary participation constraint
VP is required in addition because each consumer has the option of obtaining
utility ﬁ by refusing to choose any of the contracts.

Not knowing which incentive constraints bind makes it difficult to use
the Kuhn-Tucker conditions for (M) to characterize its solutions. Instead,
the basic approach used since Mirrlees (1971,1976), and extended and refined
most recently by Mirrlees (1985) and Maskin and Riley (1984b), has been to
solve a simpler problem obtained by ignoring all but the adjacent incentive

constraints:
(AIC) U(xi,ei) 2 U(xj,ei) for all i and j = i-1,i+1.

The relaxed problem obtained by replacing IC with AIC is generally more



tractable. For example, 6 is often assumed to be a continuously distributed
scalar. Then AIC corresponds to the first and second order conditions for a
consumer optimum, both of which are local constraints on derivatives that can
be handled by control-theoretic techniques.

For this local approach to be valid, solutions to the relaxed problem

must be shown to satisfy the global incentive constraints that were

neglected. Showing this always requires a variety of assumptions; in
particular, meaning must be given to the ordering used to identify "adjacent”
types. This is done by assuming that [el,en] is a one—dimensional interval of
real numbers, and then making assumptions about the derivatives Ug and Ugg.

At this point it is useful to introduce a figure we shall use
extensively. For any contract x, refer to the graph of U(x,¢) as a utility
curve. A set {xl,...,xn} of contracts satisfies all the incentive constraints
provided that for each i, the curve U(xj,*) is the highest of the utility
curves at 91’ as shown in Figure 1. 1If the contracts satisfy only the
adjacent incentive constraints, then we know only that for each i, U(xi,-) is
above U(xi+1,°) at ei and below at ei+1.

A key property of a set of contracts can be defined in terms of their

utility curves: {xl,...,x } satisfies the single-crossing property if
n

(scp) no distinct pair of the utility curves U(xl,-),...,U(xn,-) intersect

at more than one point, and they actually cross at any point of

intersection in the interval (61,6 ).
n

This single-crossing property should not be confused with the less
fundamental, but very well-known, single~crossing property of indifference

curve maps. We shall refer to the latter shortly.



Although it has not been put quite this way before, the local approach
has always been justified by showing that solutions to the relaxed problem
satisfy SCP. This is because AIC and SCP imply IC. For, suppose to the
contrary that {xl,...,xn} satisfies AIC and SCP, but not IC. Then there
exists an i and, we can assume, some j > 1 + 1 such that type Gj prefers
contract %, the most, i.e. the curve U(xi,-) is strictly above all the other
curves at ej (see Figure 2).10 We can also assume X, # X, since we can

i+1’
always let i be the largest integer such that type Gj prefers x; the most. So
U(x;,+) is strictly above U(xi+1,-‘ at Oj, while AIC implies that U(xi,-) is
above U(xi+1,°) at 9 and below at Gi+1. This violates SCP.

In order to show that SCP holds, it is standard practice to assume that

the marginal rates of substitution are ordered by type (MRS-ordering):

{(MRSO) —Uh(°,6)/Uk(-,6) increases in 8 for all h < k.

Thus, higher types are assumed to be willing to pay more for a given increase
in any of the k-1 attributes. Although restrictive, MRS-ordering does
describe a natural way in which consumers may vary.

If k=2, i.e. if there is only one attribute, then MRSO implies that any
indifference curve of one type crosses that of another type at most once.
This is the usual "single-crossing property” of indifference curve maps (see,
e.g. (Cooper (1984)). It is equivalent to SCP holding for all sets of
contracts; the key step in the proof is the simple observation that two

~

utility curves U(x,*) and U(x,+) intersect at two points 6 and 6° if and only
if both of these types are indifferent between x and x. Thus, k=2 and MRSO

together guarantee that all sets of contracts will satisfy SCP.

If k > 2, the single-crossing property of indifference curve maps cannot



hold: two (k-1)-dimensional indifference "curves" (manifolds) generically
form either an empty or a (k-2)-dimensional intersection containing, if k > 2,
a continuum of points. It is then impossible for all sets of contracts to
satisfy SCP. An additional property is used in this case. Say that a set

{xl,...,xn} is attribute-ordered 1if

(A0) for any 1 < j, x, = (a,,b.) and x, = (a,,b,), the attribute
1 1 1 J J J

levels satisfy a < ah,j for all h < k.

b

Properties MRSO and AO together give SCP, as the following lemma implies.

LEMMA 0: 1If MRSO holds, and if {xl,...,xn} has the property that for any pair

x; = (aj,bi) and x5 = (aj,bj), either ap 1 < ap for all h < k or

a . »a _ for all h < k, then {x_,+..,Xx } satisfies SCcp.ll
h,1i h,j —— — 1 n

PROOF: Assume that for some i and j, the utility curves U(xi,-) and U(x, ,*)
J
are distinct and intersect at 6°, where x, = (a,,b,) and x, = (a,.,b.). Let
i i’ b 3773
b(a) be the function whose graph for all a between a; and aj coincides with

the indifference surface of type 6° that contains %x; and X b(a) is given by

(2.1)  u(a,b(a),o®) = U(xi,e°).12

Then b(*) is continuous, with b(ai) = bi’ b(aj) = bj’ and derivatives

-u, (a,b(a),6°)
(2.2) bh(a) = for all h < k.
Uk(a,b(a),eo)

Letting a(t) = taj + (1—t)ai and x(t) = (a(t),b(a(t)), from (2.2) we have



1 k-1
(2.3) U(xj,e) - U(x,0) = fo{hzl[Uh(x(t),e) + Uk(“(t)’e)bh(a(t))][ah,j'ah,i”dt
1 kil[ U (x(£),8) U (x(£),6%) 0
= [ U (x(t),0) - a, ;Jat
0« b=l U (x(t),8) U (x(t),6%) 3T

for all 6. Relabeling if necessary, we may assume by hypothesis that

3y, y7ap,i > 0 for each h < k. Further, ap j-ap i > O for some h < k, for

otherwise a, = aj and U(x,,eo) = U(x,,eo) would imply bi = bj’ and the two
i i

utility curves would not be distinct. Consequently, as Uy < 0, the second

integral in (2.3) is positive if g > eo and negative if 9§ ¢ eo. This shows

that {xl,...,x } satisfies SCP. Q.E.D.
n

The solid arrows in Figure 3 summarize our discussion of the local
approach so far. Any solution to the relaxed problem satisfies AIC.
Properties MRSO and either k=2 or A0 are used in addition to get that such
solutions satisfy IC and hence solve the unrelaxed problem.

We do not know of any way to use the local approach without assuming, or
obtaining as an intermediate step, the attribute-ordering property. When k=2,
A0 is a direct consequence of MRSO and AIC (see the speckled arrows in Figure
3); the standard revealed preference argument for this, which uses U, < O, is
illustrated in Figure 4. Although A0 is not implied by MRSO and AIC when
k > 2, it is then sometimes simply assumed to hold (see, e.g. Mirman and
Sibley (1980) or Proposition 8 in Maskin and Riley (1984b).13’14 In two other
papers a "regularity condition” is assumed which, together with the first
order conditions for the relaxed problem, imply that its solutions will
satisfy AO. The first is Maskin and Riley (1984a), where the regularity

condition involves the utility function, the type distribution function, and



the choice variables x;,...,x;. In the second paper, Matthews and Moore
(1986), a companion to this one, the regularity condition is simply that the
hazard rate £(8)/[1-F(8)] be nondecreasing.15

In this paper we are interested in whether an optimal set of (three-
dimensional) contracts is necessarily attribute-ordered. We must therefore
use a non—local approach. To our knowledge, only two monopoly screening
papers have discussed non-local approaches. The first is Spence (1980), where
attention is focused more on obtaining general algorithms than on
characterizing optimal contracts. The second is Moore (1984), which
introduces the approach we develop and use in this paper. It is based on a
relaxed problem derived from (M) by replacing IC with the set of downward

incentive constraints:

(DIC) U(xi,ei) > U(xj,ei) for all j < i.

This formalizes the intuition that the monopolist's principal concern is to
prevent high types from being attracted to the contracts meant for low

types. Because only one direction of incentive constraint is imposed in the
new relaxed problem, the resulting distortions in the contracts that solve it
are relatively easy to determine.

But solutions to this relaxed problem are of interest only if they solve
the unrelaxed problem, which they do if they satisfy the neglected upward
incentive constraints. The key to showing this, as we shall explain in
Section 4, is to make sufficient assumptions on the utility function to
guarantee that two utility curves cannot cross more than twice, and that they
can cross twice only if their contracts are related in a particular fashion.

Loosely put, then, the method is based on a double-crossing property of the
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utility curves.

3. THE MODEL
We now turn to the details of our model. Quality will be represented as
a probability of functioning, which is a common way of representing quality in
static models.l® Tt is also restrictive, since the dichotomy between working
and total breakdown does not represent a continuum of possible lifetimes or
partial effectivenesses. Considering warranties as monetary compensations is

also common.17

Warranties that specify compensation are best thought of as
providing insurance against an interruption of the product's flow of services;
such insurance will be desirable whenever replacement cannot be made
instantaneously,

Consumers are assumed to observe the quality of any product they
purchase. Warranties therefore will not signal unobservable quality.18 Also,

19

warranties will not affect the level of care taken by consumers, and seller-

20 These moral

buyer disputes will not occur over whether the product failed.
hazard issues are assumed away in order to focus clearly on the screening
issue. We do assume one moral hazard problem, namely, that third parties
cannot determine whether a failed product had received proper care., This
assumption prevents third party insurance, thereby allowing the monopoly to
bundle warranties with qualities.

We regard a monopoly primarily as a polar case of an imperfectly
competitive market in which screening can take place. The literature on
monopoly provision of quality and warranties is slim., Grossman (1981), who
models quality and warranty as we do, considers a monopolized market; however,

he assumes that quality is exogenously determined and unobservable, and that

consumers are identical. Braverman, Guasch and Salop (1983) demonstrate that
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a monopoly can bundle a warranty with a quality level to achieve in effect a
two—-part tariff; however, their warranties specify replacement and their
consumers are all also alike.

Our model is most like that of Mussa and Rosen (1978). It would be the
same if consumers were risk neutral. Consumers then would not care
independently about the price and warranty coverage associated with a product,
but would care only about the expected payment. Consumers' utility functions
would be linear in the two components of a contract, quality and expected
payment, and therefore satisfy the single-crossing property of indifference
curve maps. The resulting screening problem can, as Mussa and Rosen show, be
solved by using the local approach.

In our model, choosing a product corresponds to choosing a contract
x = (p,q,w) where p is the price, q is the quality, and w is the warranty.

The quality q is the probability that the product will work; the warranty w is
the amount of money to be returned to the consumer if it fails. Because not
purchasing a product will be equivalent to purchasing at a zero price a
product with a zero probability of working, we represent not purchasing as
choosing the no-purchase contract 0 = (0,0,0). The set X = R x [0,1] x R of
contracts x = (p,q,w) therefore contains all possible options for a consumer.

Consumers vary according to their willingness to pay. A consumer of type
6 has an evaluation of 8 dollars for a functioning product, regardless of his
initial income. Consequently, a consumer of type 6 who chooses a contract
(p,q,w) receives, in dollar terms, 6-p if the product works and w-p if it

fails. There are n consumer types, denoted by 91 <8, < ... < en. The

2
fraction of consumers who are of type 6; 1is fi > 0.

All consumers have the same risk preferences, embodied in a strictly

concave, increasing utility function u: (L,») »R, where - « < L < 0 and
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u(y) > -» as y>L., The expected utility a consumer of type 6 obtains from

contract X is

U(x,08) = qu(8-p) + (1-q)ul(w-p).

Referring back to the discussion in Section 2, it is readily verified that
this U satisfies MRSO if we let the attribute vector be a = (p,q) and the
"outlay” be b = -w. (The connection with the literature on optimal auctions
for risk averse buyers, Maskin and Riley (1984a), Matthews (1983), and Moore
(1984), should also be noted: simply interpret q as the probability of
winning, © as a representative bidder's evaluation of the object at auction, p
as the amount he pays if he wins, and p—w as the amount he pays if he loses.)

As in Mussa and Rosen (1978), the firm can produce any number of products
of quality q at a unit cost C(q). This assumes away reasons for product
variety based upon scale or scope economies, allowing us to focus on demand
effects. We assume C has derivatives C'" » Q0 and C'' > 0, with C(0) = 0. We
also assume C'(0) < 0,, so that it will be optimal to sell products with
positive quality to at least the highest types of consumer. We further assume
c(1) > en, which will imply that no consumer will receive a product with

perfect quality q = 1. The expected profit obtained from each consumer who

chooses contract X is

n(x) = p - C(q) - (l-q)w,

and the producer maximizes total expected profits.

Fully efficient allocations are easy to describe. First, the price p(8)

is a transfer irrelevant to the question of efficiency. Next, consumers
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should be fully insured, so that a consumer's warranty should equal his
evaluation: w'(8) = 0. The quality should then be set to maximize the
expected surplus 8q - C(q), which results in

0 if 6 < C'(0)

q*(8) =

{q ] C'(q) = 6} otherwise.
To ease the exposition, we assume in the remainder of this section that q*(s)
is single-valued, which is the case when C is strictly convex.

* *
Notice that the optimal allocation (q (9),w (e)) is independent of the

6 el
distribution of types. Furthermore, higher type consumers demand both higher
qualities and higher warranties, so that qualities and warranties are increase
in type. Finally, consumers who purchase a product do not care if it works or
not, receiving 6 - p(H) in either case.

If there are several firms competing in a Bertrand fashion by putting
contracts on the market, the resulting equilibrium will be fully efficient,
with each contract yielding zero expected profit. It has xc(e) = 0 if
6 < €'(0), and otherwise wc(e) = 9, qc(e) = q*(e), and pc(e) = C(q*(e))

+ (l—q*(e))e. All three components of a competitive contract increase in

6. Because xc(e) maximizes U(x,8) subject to w(x) > 0, the competitive
allocation is incentive compatible, i.e., consumers of type 6 prefer xc(e) to
any other market contract. Bertrand competition therefore yields the same
allocation regardless of whether firms can observe each consumer's type.

The same is not true of the perfectly discriminatory allocation, xd(e),
which is the efficient one that maximizes 7m(x) subject to the constraint

U(x,9) > U(0,6) = u(0). Interestingly, this allocation has full money-back

warranties, since all the surplus is extracted from type 6 by setting

pd(e) = 0 = wd(e), Again, wd, qd, and pd each increase in 0. This allocation



is not incentive compatible because most consumer types would prefer a

contract meant for some lower type. This follows from U(xd(e),e) = u(0),
d " d, . - - ~
whereas U(x (6),0) > U(x (8),8) = u(0) for any 6 < 0 satisfying q(8) > O.

The discriminatory allocation is therefore infeasible if all consumers choose

from the same set of contracts.

4. THE CHARACTERIZATION THEOREMS

We now consider, in the context of our model, the monopoly problem (M)
given in Section 2. The only change in notation is that U is replaced by u(0)
in the VP constraint, since u(0) is the utility level achieved by not
purchasing a product. Let (M') denote the relaxed problem obtained by
replacing the full set of incentive constraints, IC, by just the downward
ones, DIC. Our central technical result, Theorem 2 below, is that solutions
to (M') satisfy the missing upward incentive constraints; that is, (M) and
(M') have the same set of solutions.

We need to make an additional preference assumption, namely, that
consumers have nonincreasing absolute risk aversion (NIARA):

___u| l(y)
EE—— is nonincreasing.

)]

(NIARA) R(y)
u'(y)
This assumption will be maintained henceforth, as will the technical
assumption that u(e) is four times differentiable, with u' > 0 and u'' < 0.
An immediate implication of NIARA is that u' is convex in u, and that u’
is linear in u if u(+) exhibits constant absolute risk aversion (CARA).21
Therefore, for any constant y and random variable ;,

J

(4.1)  Eu(y) = uly) > Eu'(¥) > u'(y),
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with an equality in the case of CARA. Since by concavity u' decreases in u,

(4.1) has the following two implications:

(4.2) Eu(y) < u(y) => Eu'(y) > u'(y)

(4.3) Eu'(y) < u'(y) => Euly) > u(y),

where in both cases an equality on the left implies an equality on the right
if u(*) exhibits CARA.

So far we have implicitly assumed that at an optimum, the payments p; and
Wy will be deterministic., This should be justified, particularly since in
some models randomizing payments reduces the loss imposed by incentive
constraints (see, for example, the exposition by Arnott and Stiglitz
(1985)). 1In the present model, NIARA implies that stochastic contracts are
never optimal in (M'). The intuition for this is that if one type's contract
had a random payment, then replacing that payment by its certainty equivalent
(for him) would increase profits. Downward incentive compatibility would not
be upset because the higher types, who are less risk averse, would not prefer
the new deterministic contract to the original random contract.

To show this formally, let x = (;,q,;) denote a contract in which the
price ; and the warranty w are perhaps stochastic. Then the full monopoly

problem (i.e. admitting the possibility of random payments) should be written

(E) Maximize
~ ~ i

X seeerX

I o~13

E‘n(xi)fi subject to
1
n
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(1C) EU(§i,ei) > EU(;S,ei) for all j # i, and
(VP) EU(§i,9i) > u(0) for all i,
where EU(;,S) and En(;) are given by
EU(X,8) = qFu(® ~ p) + (1~q)Eu(w - p)
En(x) = Ep - ¢(q) - (l1-q)Ew.

The corresponding relaxed problem, (ﬁ'), has IE replaced by the downward

incentive contraints

(p1IC) EU(xi,ei) > EU(xj’ei) for all j < i.

There is a trivial indeterminancy in the solutions of (E) and (ﬁ'); of the

two net payments ;_ and ;,—E,, only the first is relevant if q; = 1, and only
i i7i

the second is relevant if g; = 0. We shall say {;1,...,;n} is a solution to
(i) or (E') only if each ;i (resp. ;i) is deterministic if qi = O (resp.

qij = 1). Given this convention, we have

THEOREM 1: Every contract x; in a solution to (ﬁ‘) has a deterministic

price ;, and warranty w,, That is, (M') and (M') have the same solutions.
i i

PROOF: Consider a contract x, in which the price 5, is not deterministic, so
i i

that gq; > O by our convention. Define a deterministic pj* by

k) = -5 ). The strict concavity of u implies that p * ..
u(®,-p%) = EU(S,-p,) y u imp py* > Epy
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Wk o= op k [ ing % X % = * W) wi
Let W, p;* + (wi pi)' Then, replacing X, byxi = (p,*, 9y Wy ) will not

i
affect the expected utility of type i, but will increase the monopoly's

expected profit. Moreover, DTC will continue to be satisfied. To see this,

let

$(9) EU(x, *,0) - EU(x,,0)

qu(e—pi*) - qiEu(e - pi)-

Note that (4.2) implies that ¢(9) and ¢'(8) cannot both be positive at any

6. Thus, since ¢(ei) =0, ¢(8) < 0 for all 9 > ei. So all types higher than

ei prefer ;i to ;i*’ which implies that ch continues to be satisfied.
Finally, it is clear that a non-deterministic (;i—pi) should be replaced

by its certainty equivalent. This will not affect any consumer's expected

utility of this contract, and so not affect ch, but will increase the

monopoly's expected profit. Q.E.D.

Theorem 1, when taken in conjunction with Theorem 2 below, will imply
that any solution to the full monopoly problem (ﬁ) is deterministic and solves
the comparatively simpler problem (M'). Without loss of generality, we now
omit reference to stochastic payments and drop the tildes.

The next proposition states some useful, but not surprising, properties

of solutions to (M').

PROPOSITION 1: Every contract x; in a solution to (M') satisfies

(1) ﬁ(xi) > 0; (ii) q; < 1; and (iii) if q; = O then w;-~p; = 0 and q; = 0

for all j < 1.
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PROOF: To prove (i), assume it is false. Then let i » 1 be the smallest i
such that n(xi) < 0. Then, since fi > 0, replacing X by the contract that
type ei prefers the most in {O}U{xl,-..,xi_l} increases profit without
violating DIC or VP. This contradiction proves (i). To prove (ii), note that
c(l) > Gn implies that if q = 1, then n(xi) = pi—C(l) is nonnegative only if
p; > 0, But then U(xi,Gi) = u(ei—pi) < u(0), contrary to VP. To prove
(iii), assume q; = O. Then VP implies wy-p; > 0, and (i) implies

Wi-py = —n(xi) <€ 0. So wi-pj = 0, and U(xi,6i) = u(0). If qj > 0 for some j
< i, then U(xj,ei) > U(xj,ej). But then DIC and VP imply U(xi,ei) > U(xj,ej)

> u(0), contrary to U(xi,ei) = u(0). Q.E.D.

Because of part (iii) of Proposition 1, we can adopt the convention that
x, = 0 if and only if q; = 0. That is, we shall set p; = w, = 0 if q. = 0.

We now need the first order conditions for (M'). Let u1f; be the
nonnegative multiplier associated with the first VP constraint,

U(xl’el) > u(0). The VP constraints for i > 1 need not be included: they
will be automatically satisfied because DIC implies that U(xi,6i) is
nondecreasing in i. Let xjifj’ where j < i, be the nonnegative multiplier
associated with a typical (downward) incentive constraint U(xi,ei) >
U(&ﬁ,ei). It is convenient to regard the choice variables of (M') as wi-pji,

-1
P and q;. Letting By = E xjifjf. for 1 > 1, the first order conditions
j<i
with respect to these three variables are, respectively,

i,

(aed) =1+ G- QAU = 0,
j>i
(4.5) 1 - pu (Gi-pi) + ) Xiju (gj—pi) = 0 if 9 > 0,

j>i



19

(4.6) w, - C'(q) + ui[u(ei-pi) - u(wi—pi)] - jzixij[u(ej—pi) - U(wi—pi)]

S
o
-

with equality if qf > O.

(Account has been taken in (4.4) and (4.6) of the fact that q; < 1 for all i.)
= ' - i i ive. . . can be
Let lij Kiju (wi pi), which is nonnegative if q; > O, then Hy

eliminated from (4.4) - (4.6) to yield the following two equations:

. '(w,-p. .u'(0,-p. = 1 L..)u'(86.-p,
(4.7) u'(w,-p.) + jgillju ( ; p,) (1 + jgi lJ)u (8.-p,)

[w, - C'(g ) }]u'(w -p ) =
i i i i

(4.8)
u(w, ~p.) + ) & . u(® -p,) - (1 + ) 2 Hu(s -p.),
i1 i>i ij j 1 i>i 1j i1

Two more properties of solutions to (M') immediately follow from these

conditions. First, from (4.7) and the concavity of u(e),

(4.9) q. >0 = w, <8, .,
i i i

Second, since u is convex in u', (4.7) implies that the RHS of (4.8) is

nonnegative (zero if u(e) exhibits CARA). Therefore,
(4.10) q; >0 = v, 2 C‘(qi) (with equality if u(e) exhibits CARA).
We discuss, and strengthen, (4.9) and (4.10) in the next section.

Perhaps the most important use of NIARA is in the following lemma, which

can be loosely summarized by saying that two utility curves cannot cross more
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than twice, and 1if they do cross twice then the more "curved” one corresponds
to the contract with the larger price and the smaller quality. (See Figure
5.) These properties will be the key to proving that the upward incentive
constraints can be discarded.

A A A

LEMMA 1: Let (x,x) = ((p,q,w), (p,q,w)) be a pair of distinct contracts, and

- + - +
suppose that 6 ( 60 < B are three types such that types 8 and 8

A ~

(weakly) prefer x to x, whereas type 6° (weakly) prefers x to x. Then if at

A

least one of the preferences is strict, p < p and q > q > 0. Furthermore,

+ ~ - ~ +
(i) if U(x,8 ) > u(x,6 ), then U(x,6) > U(x,6) for all & > 6 , and
(i1) if U(x,6 ) > U(x,6 ), then U(x,8) > U(x,0) for all 6 < 8 .

PROOF: Let A(6) = U(x,8) - U(x,6). Recalling our convention that x = (0,0,0)

if q = 0, it follows from x # x that q # 0 or q # 0. As at least one of the

X *
preferences is strict, there must be some point 8 such that A'(8 ) = 0. This
. . ~ R x A % 29
implies that q # 0, q # 0, and q/q = u'(8 -p)/u'(® -p). Also, another point

s k% *%
8 exists such that 0 > (6 =6 )A'(8 ). Dividing this inequality by

- *% *x ~ * -
qu'(® -p) and substituting u'(® -p)/u'(8 -p) for q/q yields

%% ~ *x ~
o % u'(e -p) u'(e -p)
0 > (8 -0)[ —7— - —5—
u'(e -p) u'(6 -p)
** ~
% % D u'(9-p) .
= (0 -6) [ [ —— ]JIR(8-p) - R(6-p)]d86,
* u'(6-p)

¢

~

where R(y) = =u''(y)/u'(y). NIARA now implies that p < p. It follows from
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- % ~ * -
q/q = u'(® -p)/u'(6 -p) that q > q.
+ ~ o+ ++ - ++
To prove (i), assume U(x,6 ) > U(x,6 ), but that U(x,6 ) < U(x,8 ) for
some 6™ > 6%, Then applying the first part of the lemma to (x,x) and

(eo,e+,e++) yields p < p, a contradiction. This proves (i), and (ii) is

proved similarly. Q.E.D.

THEOREM 2: The monopoly problem (M) and the relaxed problem (M') have the

same set of solutions. Furthermore, any solution satisfies

(i) the voluntary participation constraint is binding for the lowest

type: U(xl,el) = u(0);

(ii) the adjacent downward incentive constraints are binding for all

higher types: U(x, ,9 ) = U(x, ,8.) for all i > 1; and
i1 i-1" i —

(iii) if an upward incentive constraint is binding, then all types in the

interval receive identical contracts: if U(x ,8 ) = U(xt,e ) for
s’ s s’ ——

some s < t, then %; = xg for all i € {s,...,t}.

PROOF: We note first that (i) is satisfied. For if U(xl,el) > u(0), then p;
could be raised to increase profit without upsetting VP or DIC.

To show that (M) and (M') have the same solution sets, it suffices to
show that all solutions to (M') satisfy the upward incentive constraints

removed from (M) to obtain (M'). Let A = {(x ,...,xn} be any solution to

1

(M'). Then group the upward incentive constraints as follows:
(u1c,) U(x,,8.) » U(x_,,68,) for all i,j such that i < j < k.
k i’ i b

We must show that A satisfies UIC . We prove this by induction on k.

Trivially, A satisfies UIC;. Now assume A satisfies UIC, for some k < n. We
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show that A satisfies UICy,; in Steps 1-3 below; these steps will also

establish part (ii1) of the theorem. Part (iii) is proved separately in Step 4.

Step 1: The adjacent downward constraints are binding in {91,...,9 }, i.e.

k+1
= i < +1.
(Xi,ei) U(Xi l,ei) for all 1 < 1 k+1

Suppose to the contrary that U(xi,ei) > U(xi_l,ei) for some such i. Then

q; > 0. Because raising pj would increase profit without making x; more
attractive to any type, there must be some j < i-1 such that U(xi,ei) =

U(xj,ei). Hence U(xj,ei) > U(xi_l,ei) > U(xi_l,ei). Since IC is satisfied

for j and i-1, U(x,,0, ) < U(x ) and U(x,,0,) > U(x, ,8 ). (See
j’ i~ -1 373 i h|

i—l’ei -1

Figure 6.) The hypothesis of Lemma 1(i) is therefore satisfied

3 - .0 .+
at (x,x) = (xj,xi_l) and (6 ,07,6)

(ej,ei_l,ei). So Qj > qi_l > 0

v

and U(xj,e) > U(xi_l,e) for every © 9i- The latter implies, by DIC, that

for all k > i, U(xk,ek) > U(xi—l’ek)' By complementary slackness,

therefore, hi—l K = 0 for all k » i. So by replacing i with i-1 in (4.7) and
b

! - Ot
(4.8), we deduce that ei_l C (qi—l

(4.10) gives ej > C'(qj)- Therefore, using qj_, < 9y and the convexity of C,

Y. But replacing i by j in (4.9) and

it follows that ei—l < ej. This contradiction of j < i-1 proves that U(xi,ei)

must equal U(xi_l,ei) for any 1 < i < k+l.

Step 2a: Profit n(xi) is nondecreasing in the range {xl,...,xk+1}.

Suppose n(xi) < n(xi_l) for some 1 < i < k+1. Then, since

U(xi,ei) = U(xi_l,ei), we could replace xj by Xj_] to increase expected profit

without violating DIC.
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Step 2b: Profit is increasing on this range between any two distinct, nonzero

contracts, i.e., if 1 € j < i < k+] and O # Xj + X then ﬂ(xj) < ﬂ(xi).

In the light of Step 2a, we need only prove that for any 1 < i € k+l, a

contradiction follows from assuming 0 # X _1 # L and n(x, 1) = n(x,). First
- i- i

note that A solves (ﬁ') by Theorem 1. Another solution is

~

A= {xl,...,x, 5%

i- i+1,...,xn}, where x is defined by

s with probability 1/2

x with probability 1/2.23

A is feasible for problem (ﬁ') since U(xi,ei) = U(xi~1’ei) implies DIC is not
violated, and A solves (ﬁ') because it generates the same expected profit as
does A. Therefore, again by Theorem 1, X must have a deterministic price and

warranty if 0 < (qi—1+qi)/2 < 1. But this holds because, given 0 # x, L’
i-

A A

Proposition 1(ii) and (iii) imply that 0 < gj-7, q3 < 1. Let (p,w) be the

common value of (pi—l’ wi—l) and (pi,wi). Now 9, # a5 since X1 # x, .

A A A

This, together with U(xi,ei) = U(xi Bi) from Step 1 implies Bi—p = w-p, i.e,

-1?

w = Bi. But (4.9), with i replaced by i-1, implies that w < 91-1’ which gives

us the contradiction ei < 91—1

Step 3: UICk+1 holds; in fact, if i < k+1 and X * X then

U(xl,el) > U(Xk+ ,Bi).

1

Suppose to the contrary that the set

_ 1. <
T {i]i < k, x, # Xy and U(xi,ei) U(xk+ ,Gi)}

1

is nonempty. Then by Proposition 1(iii), Uy # 0. Let j be the largest
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element of T. We claim that xj # 0, and hence that n(xj) < n(xk+l) by Step

2b. For if qj =0,

= = = <
U(x +l’ej+l) U(xj’ej+l) u(0) U(xj,@j) U(Xk+l’ej)’
which, since A+l > 0, is strictly less than U(xk+l’ej+l). So j # k. But
then j+1 € T, contrary to the maximality of j in T. Thus n(xj) < n(xk+l), as

claimed. Replacing X by X 4) in A increases expected profit and, because j
was chosen maximal in T, does not cause DIC to be violated. This contradicts

the fact that A solves (M'").

Step 4: If U(xs’es) = U(xt’es) for s < t, then %; = x5 for 1 € {syeeu,t}.

To prove this, we use Steps 2a, 2b and 3 with k+1 replaced by t. Given

U(xs,es) = U(xt,e ), it follows from Step 3 that X, = X Therefore by Step
s

.
2a, n(xi) = n(xs) for all i € {s,...,t}. 1If Xg = X¢ = 0, then x; = 0 for all
i < t by Proposition 1. 1If X, # 0, then %; = x5 for each 1 € {sye00,t},

for otherwise Step 2b and x, # x would imply n(xi) > n(x ). Q.E.D.
s s

5. PROPERTIES OF THE MONOPOLY SOLUTION
We now derive normative results about how each contract is distorted from
full information optimality, as well as positive results about the

monotonicity properties of the contracts. The following propositions refer to

a monopoly set of contracts, which is a set of contracts solving the full

monopoly problem (ﬁ). However, we conclude from Section 4 that any solution
to (i) also solves the much simpler problem (M'). To see why, observe first
that (ﬂ) must yield profits between those of (M) and (ﬁ'), Then, since

Theorems 1 and 2 together imply that (M) and (ﬁ') yield the same profits,
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(ﬁ) and (ﬁ') must yield the same profits. Any solution to (ﬁ) therefore also
solves (ﬁ'), so that Theorem 1 implies it is deterministic and solves (M').
Therefore, any solution {xl,...,xn} of (M) satisfies the necessary conditions
(4.4) - (4.10) for (M'), which we shall use repeatedly.

The first proposition concerns the welfare properties of the contracts.
We establish that both qualities and warranties will be underprovided. Only
the highest type consumer has an efficient contract; this familiar result
follows because there is no need to distort the contract so as to deter some

other (higher) type from selecting it.

PROPOSITION 2: Every contract xi # 0, for i < n, has a quality and warranty

*
that are below their full information levels: 9y < q (ei) and W, < ei.z4 The

highest type of consumer receives a full information efficient contract:

q. € gq (en) and W= en.

n

PROOF: For i = n, it follows from (4.7) that W= Gn, and from (4.8) that
*

w, = C'(q,). Thus &, = C'(q,), so that q, € q (8,).

For i < n, we shall show that there is some multiplier lij in (4.7) which
is positive. This and the concavity of u will imply wy < 63, which with
, . *
(4.10) gives C (qi) < ei, so that 9y < q (ei).
Assume to the contrary that lij = (0 for all j > i. It follows from (4.7)

and (4.8) that ei =w, = C'(qi). Then for k < i, (4.9) and (4.10) imply
' < < 8 6, = = ! .
C'(q ) <w <8 <8 Yy ¢'(a;)

Thus wy < W, and, since C is convex, 9 < gy * Hence P < Py otherwise x,

would have a lower warranty than x; without having either a lower price or a
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higher quality, so that type ek would prefer X, to X contrary to IC.

We now show that U(x,

8 =1 i. i
41’ i+l) (xk,9i+1) for some k < i Equation

(4.4), with i replaced by i + I, gives pjy; > 0. Recall the definition

=
1]

-1
) xj,i+lfjfi+1'

i+l J<itl

. . 0 = 1 = ' _ . .
Since, by assumption, i,i+1 xi,i+1u (wi pi), k < i exists such that
Me 141 > 0. Complementary slackness now implies that

4] S = U 6 .
(%0854 = VORGEL))

From Theorem 2(ii), U(x, &) ) = U(xi,e.

1010941 1+1). Therefore A(8, ) =0,

i+l
where A(8) = u(xi,e) - u(x,,8). Also, DIC implies A(ei) > 0. So A(*) cannot

be an increasing function. However, for any 8,
A'(8) = q.u'(b-p.) - q u'(6-p ) > O,
i i k k
since 0 < qj, ay < a5 and Py < Py Contradiction. Q.E.D.

Proposition 2 is illustrated in Figure 7. Holding the price p; fixed,
the figure shows the indifference curves of a type Gi consumer and of the
monopoly over pairs (q,w). The full information optimal pair is

* * *
Y = (q (ei),ei), whereas the monopoly pair is Y = (qi,w;) << Y . Shifting Y
into the crosshatched region would make the consumer better off and, if other
(higher) types could be prevented from switching to X, would also make the
monopoly better off. 1In particular, if the incentive constriants could be
ignored, the monopoly could increase profits by giving the consumer a higher
quality and a higher warranty, without charging a higher price. The reason

for this is that increasing q; not only increases the expected utility of type
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8] but also increases the expected profit n(xi). This follows from the fact

i’

that, since C‘(qi) < W instead of C'(qi) =v., q is less than the quality

i
level that minimizes expected cost holding the warranty level fixed at LA

Although we cannot draw rigorous conclusions regarding moral hazard with
this model, we remark that Proposition 2 does imply that one kind of moral
hazard is alleviated. This is because w-p < O-p implies that the consumer
wants the product to work rather than to fail.

Proposition 2 is not refutable if the consumer types are unobservable.
Refutable propositions then refer only to the set of contracts, without
referring to the consumer type receiving each contract. The results that
follow, when taken together, are of this kind.

The next proposition is not refutable as it stands if types are
unobservable. However, it does imply that some contract should have warranty
coverage less than price, whereas some other contract should have warranty
coverage greater than price. This contrasts with the results of Section 3,
where it was shown that in every competitive or perfectly discriminating

contract, the warranty is no less than the price.25

PROPOSITION 3: Let § be the lowest type to purchase a product. If m < n,

then w, < 1 and w_ > p_.

PROOF: Since L SR 0, from Theorem 2 we have

U(x ,0 ) qu(®-p) + (l-q du(w-p ) = Ulx ,0 ) = u(0).
m m m m m m m m m-1" m

This implies w_ < p_, since 0 < g, < 1 and w, < 6_ by Proposition 2.

Also by Proposition 2, w_ = 6

a ,+ Hence, since q, > 0, DIC implies that
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u(w -p ) = U(x ,8) >» U(x ,8) > U(x,80) = u(0).
n n n n m n m m

Therefore w_ > p,. Q.E.D.

The remaining propositions establish monotonicity relationships in the

contract set.

PROPOSITION 4: More profit is made on higher types than on lower types:

n(xi) < n(xi+1) for all i < n, and n(xi) < n(xi+1)_i£_xi # X1t
PROOF: For the most part, this was proved in the course of proving Theorem

2. The only case not dealt with there is where 0 = x; # i.e. where

i F e
m=i+1, using the notation of Proposition 3. We must show n(xm) > 0.
Suppose n(xm) = 0. Then m < n, for positive profit can be made on at
least type Sn because, by assumption, Gn > C'(0). Now, since C is convex and
—_— ] : .
c(o) = 0, C(qm) < qu (qm), which from (4.10) is not more than CEUAE

Therefore n(xm) =P, " C(qm) - (l—qm)wm > Py T Voo which by Proposition 3 is

positive. Q.E.D,

If profits are observable, Proposition 4 can be used in conjunction with
other results to yield refutable conclusions. For example, Proposition 3 and
4 together imply that the most profitable contracts have warranty coverage
greater than price, but the least profitable contracts have warranty coverage
less than price. Proposition 4 can also be used in conjunction with Theorem 3

below to predict under what conditions price, warranty, and quality vary

positively with profitability.
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Theorem 3 is stated in terms of the risk tolerance function, which is

1
defined by p(y) = [R(y)] = —u'(y)/u'"'(y). Assuming NIARA is equivalent to

assuming p is nondecreasing.

THEOREM 3: 1If i < n and %; # 0, then

i <
(1) Pi pi'f'l’

. . < < .
(ii) Py Pi+1 and W, W if p is concave,

‘s < <
(iidi) 1 < p Wiile and 9 W,

if is constant.
i+l — p 15 constant

. W,
i+1?* i

PROOF: We prove (iii) first, using (i) and (ii). Assume q; > qi4) for some
i. Since q; > 0, Proposition 1(iii) implies di4+1 > 0. Therefore, as p' = 0,

. . -~ [ = t i
(4.10) implies W, C (qi) and Vi C (qi+1). Then, by the convexity of C

and a; > diep0 ¥ > w . Since by (1), P; € Pj+1s IC is now violated: type

i i+l

ei+1 prefers X, to x, because it offers a higher quality at no higher price

i+1

and with no lower warranty. (A higher quality is beneficial, since

P ) The rest of (iii) follows from

- - > w. - > -
Oi417P 2 957Piv1 2 YiTPisy P Vi Pin)

(i) and (ii).

i+l

To prove (i) and (ii), it is most convenient to put the first order
conditions (4.7) and (4.8) in terms of a function h: R2 > R that is a discrete

approximation to the risk tolerance function. Define h by

u(t) - u(s)

u'(s) - u'(t)

h(s,t) =

if s # t, and by h(s,s) = p(s) = [1/R(s)] otherwise. In Lemma Al of the
Appendix we show that h is continuous, and that its two partial derivatives,
h1 and h2, are nonnegative because of NIARA.

Now, (4.7) and (4.8) hold because, by assumption, a; > 0. Equation (4.8)
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can be written

[wi—C'(qi)]U'(wi-pi) + u(ei-pi) - u(wi-pi)

(5.1)

Y

NS [u'(ei-pi) - u'(ej—pi)]h(ei-pi,ej-pi)

i3

> h(8.-p,,0, -p.) ) 2
1 1 1

u'(®,-p ) - u'(8,-p )],
i+l N i1 i i
j>i

ij

h the last i lity foll fror laci 9, in h(6, -~ e, - by 6
where e last inequality follows from replacing ; in h( P ; pi) Y 8

and using hy > 0. Equation (4.7) can be written as

(5.2) Y

4 [u'(ei-pi) - u'(ej—pi)] = u'(wi-pi) - u'(ei-pi)-

ij

Substituting from (5.2) into (5.1), we obtain
- V(g —
(w, - ¢ (g ]u"(w -p.)

> [u'(w,-p ) —u'(8-p)][h(6 -p ,6 -p )~ (6 -p ,w-p)].
i1 i i i 17 i+l i i i i i

Rearranging this inequality now yields

(5°3> C‘(q) < H(e ’e.’p.’w._p.)’
i i+l i1 1 i

where H is defined by

+ u'(z) - u'(6-p) +
(5.4) H(8 ,8,p,z) = p+z-|[ = ]h(6-p,8 -p) - h(6-p,z)].
u'(z
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We conclude these manipulations by considering the particular case where
qi+] > q4i; this case will arise in the course of proving both parts (i) and

(ii) of the theorem. Our immediate goal is to demonstrate that inequality

(5.6) below holds when qj+] > qj. There are two steps.

First, if 44 > qy > 0, (4.7) and (4.8) both hold with i replaced by

i+l. Then by the same argument which derived (5.3), we have

P, )

1
(5.5) C (qi+ Y < H(86 ,0 il

1 i+2°01+1 7 Pi+1 Vil

Second, if q;., > q;, there will be an equality in (5.3). To prove this,

notice that from (5.1) it is enough to show that £i' = xi,u'(w,—p,) = 0 for
3 j i i

all j > i+l. Suppose to the contrary that xij > 0 for some j > i+l. Then by

complementary slackness and DIC, U(x ,6 ) = U(x_,6 ) » U(x ,0 ). But by
i3] i ] i+1° ]

Theorem 2(ii) and (iii) respectively, U(xi,ei+l) = U(x ) and, since

i+l ei+l

x, # Xy U(Xi,ei) > U(xi+l’ei)' Therefore, by applying Lemma 1 to

~

= - o + = 1 I3 3
(x,x) = (xi,xi+l) and (6 ,87,8 ) (ei’ei+l’ej)’ it follows that qi > qi4],

contrary to assumption that qi4; > 4qi.

Combining (5.3) as an equality with inequality (5.5), and using the

convexity of C(+), we obtain that for q; < qQi+1>

(5.6) 0 < H(O, o0 1 Piyy Yy Piey? T B8 8PP

Inequality (5.6) is the basis for proving parts (i) and (ii) of the theorem,

First we prove part (i). Assume the contrary, that pj > pj+] for some i,

where q; > 0. From Theorem 2, U(xi,ei) > U(x Gi) and

i+1°

U(x,

1+l,ei+1 ). Adding these yields

) = Ulx;,08; 4,
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a;luC®y  -p;) —u(B-p )] < g, [u(® ,-p; ) —ulB-p, D]

This implies, since u'' < 0 and P; > Pj41» that q4 < gy49. Therefore, since

x has a lower price and a higher quality than X, the fact that, by IC,

i+l
type ei does not prefer X, to x; implies that w;-p; > Wi, -Pj4+;+ Letting

z{ = wi~pi and zj4+] = Wi+]-Pi+1> (O5+6) can be written as

) )
i+2 + + i+l
(5.7) 0 < . i H (687,8,,p,,2,)d0 + ej Hy(8,,,,8,p;,2;)d0
i+l i
Py 25
- 6 dp - H (6. ,0. , .
f Hy(0, 500 oPe2 )P ] f 4014900141054 P42
Pinl i+1

Lemma A2(i) and A2(ii) in the Appendix directly imply, since z < ei—pi, that
i
. . ‘o < B
the first two integrals are nonpositive. If p € [pi+1’pi]’ then Zi ei Pi
implies that z; < ei+1—p. Therefore, by Lemma A2(iii), the third integral is

positive. Lastly, z € [ Zi] implies z < 6 ~P.,.» so the fourth integral

Zi410 i+1 Ti+l

is positive by Lemma A2(iv). Hence the RHS of (5.7) is negative. This

contradiction proves that pj < pj.y-°
Finally we prove part (ii) of the theorem. In particular, we show that

1

p'' < 0 implies wi < wi4). Assume to the contrary that wy > wjyy. Then,

since P; it must be that 9 < U495 for otherwise contract x, would

NRZESE i+1

have a lower warranty than R; without hving the compensation of either a lower

price or a higher quality, and so type 9i+1 would prefer X; to X

{+]1» contrary

DIC. Now (5.6) can be written
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w
i+l 1
. < H -p, )46 - H (o e d
(5 8) 0 ej (e »P ,W P ) j 4( i+l’ 141 :Pi»W‘Pi) w
. W,
i i+l
Pis) ®i42 N .
LS RICHRTLINR R Ok S A G 10141°P1412 Y141 P14y )90 ¢
P 6,
i i+)
. _ < B _ _ . .
Since w1 pi ei pi and wi+l pi+1 < 6i+1 pi+1, the first and last integrals

are nonpositive by Lemma A2(i) and A2(ii) in the Appendix. The third integral
is nonpositive by Lemma A3. Lastly, since w—pi < ei+1—pi follows from

w < wj < 6;, Lemma A2(iv) implies the second integral is positive. Hence the
RHS of (5.8) is negative. This contradiction proves that wi { W,,,e Q.E.D.

Theorem 3 establishes preference assumptions under which p, w and q are
nondecreasing in 6. Part (i) states that without any further preference
assumptions, p is nondecreasing in 8, i.e., higher type consumers purchase
more expensive quality-warranty bundles. A monopoly would obviously like to
charge those consumers more who are willing to pay more; (i) shows that this
intuition is not overturned by having to include incentive constraints.

Part (ii) of the theorem states that if the risk tolerance function of
consumers is concave, then higher types receive greater warranties. The
intuition for this is relatively obscure. Roughly, it seems that if risk
tolerance is increasing at a diminishing rate, then higher types are not so
tolerant of risk that they can be compensated for paying a higher price merely
by giving them increased quality; their reward for telling the truth must take
the form of greater warranty coverage, even if it also takes the form of
higher quality (see next paragraph). Most commonly used utility functions

have concave risk tolerance.Z2b Also, concave risk tolerance implies
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nondecreasing relative risk aversion, a property commonly thought to

hold.2’»28

So concave risk tolerance does not seem to be a bad assumption.
Part (iii) of the theorem states that if consumers' preferences exhibit
constant risk tolerance (equivalent to CARA), then higher types will receive
higher quality as well as higher warranties and prices. 1t is surprising that
an assumption as strong as CARA is required to show that consumers who value
quality more will receive higher quality -- an intuitively natural result.

The following example indicates that quality may not increase in type even if

preferences are completely standard.

EXAMPLE 1: The utility function is u(y) = log(.25 + y). The types are
91 = .6, 62 = .8, and 63 = 1.0. The distribution is given by f1 = .26,
£y = .14, and f3 = .60. The cost function is C(q) = 0. The monopoly

allocation, calculated numerically, is (pl’ql’wl) = (.4435,.7070,.2709),

(py,q,,w,) = (.4838,.6706,.3455), and (p;,44,%w5) = (.8437,1.0000, —-). Note
2

that ql > q2 and qz < q3'_9

6. FINAL REMARKS: MONOTONICITY AND THE LOCAL APPROACH

Example 1 is of separate methodological interest. Only the adjacent
downward incentive constraints are binding: U(x3,63) = ~-,9006 exceeds
U(x1,63) = -.9019. Thus, it is not true that some nonadjacent constraints
must bind if the optimal quality allocation is not monotonic in type.
However, the converse is true: nonadjacent constraints do not bind when the

optimal quality allocation is monotonic.

PROPOSITION 5: Suppose quality in a monopoly allocation is nondecreasing in

type. TIf j <k < i and xj # X > then type ei strictly prefers xi_Eg_Xj and
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type Gj strictly prefers xj_gg X; .
PROOF: Type ej cannot be indifferent between xj and X for otherwise Theorenm
2(iii) would imply x = X5 Now suppose type 6; is indifferent between x; and
xj. Then by DIC, U(xj,@i) = U(xi,Gi) > U(xk,ei). Also by DIC,

U(xj,ek) e U(xk,ek)- By Theorem 2(iii), since Xj # X, U(xj,ej) > u(xk,ej).

o .+

Therefore, by applying Lemma 1 to(x,x) = (xj,xk) and (6 ,6°,6") = (6 Gi),

j’ek’
it follows that qj > QY * This contradicts the assumption that quality is

nondecreasing in type. Q.E.D.

Proposition 5 suggests that it is the possibility of quality decreasing
in type that forces us to consider nonadjacent incentive constraints, This
accords with the discussion in Section 2. Recall properties MRSO and A0, and
that U satisfies MRSO if we let the "attributes” vector a be (p,q), and the
"outlay” b be -w. If we were to have known that both p; and q; would be
nondecreasing in i, then AO would also have held and the nonadjacent
constraints could have safely been neglected. But in our model, q; need not
be nondecreasing in i.

Onder what circumstances might q; be decreasing in i? As the example
indicates, this happens when there are few intermediate types relative to both
the number of high types and the number of low types. The intuition is as
follows. Because there are many low types, the tendency to extract profit
from them by selling them high quality is strong compared with the opposing
need to make their contract unattractive to higher types. Next, consider the
intermediate and high types as a subset. For incentive reasons, it is best to
sell the (few) intermediate types low quality, incurring only a small

sacrifice of profit from them, so as to extract high profit from the (many)
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high types. 1t seems, then, that quality decreases in type only if the
probability function decreases rapidly in an intermediate region.

This is corrobarated in a companion paper to this, Matthews and Moore
(1986). There, we assume a continuous type distribution and require that its
hazard rate function be nondecreasing. This regularity condition does not
allow the probability function to decrease rapidly in intermediate regions.
The local approach is then used to show that this condition insures that
quality will not decrease in type.

Without such a regularity condition, the local approach cannot be used in
this model. FExample 1 demonstrated that some optimal allocations are not
monotonic in type; consequently, the usual proof (Section 2) that the loc;l
approach works is invalid. This begs the question: does the local approach
work nevertheless? The answer is no. We conclude the paper with a
counterexample., Alter the distribution in Example 1 to f; = .32, fy = .16,
and £, = .52. Then, solving the relaxed monopoly problem in which only the

3

adjacent incentive constraints (both upward and downward) are imposed yields
(pl’ql’wl) = (.5070,.8554,.2955), (pZ’qZ’WZ) = (.5314,.8187,.3624), and
(p3,q3,w3) = (.7663,1.0000,-——-). This allocation does not solve the

unrelaxed monopoly problem, since it is not incentive compatible:

U(x1,63) = —.7250 exceeds U(x3,63) = —.7262. The local approach therefore

does not work.
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APPENDIX A

LEMMA Al: The function defined by

u(t) - u(s)
h(s,t) =

u'(s) - u'(t)

if s # t, and by h(s,s) = p(s) [= 1/R(s)], is continuous. Moreover,

hl(s,t) = hz(t,s) >0 for s # t, and if h=p if p is constant.

PROOF: By L'Hopital's rule,
u'(t)
lim h(s,t) = 1lim ———— = p(s).
t>s t+s -u''(t)
Hence h is continuous. The symmetry of h implies hy(s,t) = h,(t,s).

s # t, differentiation of

f; u'(y)dy

h(s,t) = T
js R(y)u'(y)dy

with respect to t yields

hy(s, )" ()= ()17 = () [E[R(Y) - R(Ou'(y)dy,

For

which is nonnegative because u' > 0 and R is nonincreasing. This equation

also shows that h is constant if R' = 0. Q.E.D.

+ +
LEMMA A2: At a point (6 ,6,p,z) satisfying 6 < 6 and z < 6-p, the

derivatives of the function H defined in (5.4) have the following signs:

+
(1) Hl(e ,8,p,2) < 03
+
(ii) H2(9 ,8,p,2) < 05
+
(iii) H3(6 ,0,p,2) > 0; and

+
(iv) H,(8 ,8,p,2z) > 0.



PROOF: (i) Differentiating H yields

. u'(z) - u'(6-p) +
1,(67,8,p,2) = - | h, (6-p,8 -p).
u'(z) -

+
Therefore, since z < &-p and h2 > 0, Hl(e ’e’p’zi) < 0.

(ii) Differentiating H yields

. ull(e_p) .
Hz(e ,9,p,z) = D“‘*’__J[h(e‘P)e ‘P) - h(e—p,z)]
u'(z)
u'(z) - u'(6-p) u'(6-p) - u'(z) .
+ [ ]hl(e—p,z) + [ ]hl(e—p,e -p).
u'(z) u'(z)

The third term is nonpositive because h, > 0 and z { O0-p. By straightforward

1

differentiation of h(6-p,z) with respect to 6-p, the sum of the first two

terms can be shown to equal
ull(e_p) . u||(e_p)
[——)(h(6-p,8"-p) - h(&-p,2)] - [———][h(6-p,0-p) - h(6-p,2)].
u'(z) u'(z)

+
This expression is nonpositive because h2 >0 and 6 < 6 . Hence (ii) holds.

(iii) Differentiating H yields
Hy(8',0,p,2) = 1 - H (8 ,8,p,2) - H(8,8,p,2).
Hence (iii) follows from (i) and (ii).
(iv) Differentiating H yields
u'(z) - u'(6-p)

H4(9+,6,p,2) = [ ]hz(e—p,z)
u'(z)

-u''(z)u'(6-p) .
+ [ >——1[h(8-p,8"~p) - h(6-p,2)] + I.
u'(z)




+
Because h2 > 0 and z < 6-p < 6 -p, the first two terms are nonnegative. Hence

(iv) holds. Q.E.D.

LEMMA A3: 1If the risk tolerance function p = 1/R is concave, then

H3(6,6,p,w—p) S Ha(e,eyP:W'P)'

]

PROOF: Let z = w-p. Note that p(y) = h(y,y) and p'(y) = 2h (y,y).
Hence, by differentiating H, and also differentiating h to derive an

expression for hj, we obtain after some manipulation,

u'(z) - u'(6-p) h(6-p,z) - p(6-p)
(H3_H4)(e:espyz) = [ ]p'(e—p) - [
u'(z) p(z)
p(z) - p(6-p)
+
p(z)
1
= ————— {[u'(z) - u'(6~p)lp(2)p'(6-p)

u'(z)p(z)

- [u(8-p) - u(z)] =~ u'(6-p)p(B-p) + u'(z)p(2)}

The term in curly brackets is equal to

o-
[, Pl= ut(9p(2)p (8-p) - u'(y) - u' (e (y) - u'(y)o’ (y) 1y,

which in turn is equal to
[P lo(2)p " (9-p) = p(y)p" (1)1 [-u" " (y)]dy.

Because p' > 0 and p'' < 0, the integrand in this expression is nonpositive.

Q.E.D.
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Footnotes

This paper has benefited from the comments of Roger Guesnerie, Tom Holmes,
Bill Rogerson, John Weymark and two anonymous referees, as well as from
seminar participants at the 1984 Summer Econometric Society Meetings, the
FTC, Caltech, Berkeley, Stanford, and Paris. We owe a special debt to
James Mirrlees for many insightful comments. We thank Brian Pinto and
Arthur Kennickell for computer assistance. We are also grateful for the
hospitality and congeniality of the Department of Economics and CARESS at
the University of Pennsylvania, and support from NSF Grant SES 8410157 and

the Suntory-Toyota International Centre for Economics and Related
Disciplines at the LSE.

Such as Goldman, Leland and Sibley (1984), Harris and Raviv (1981), Maskin
and Riley (1984b), Mirman and Sibley (1980), Roberts (1979), Spence
(1980), and Stiglitz (1977).

Such as Guesnerie and Seade (1982), Mirrlees (1985), and Weymark (1986).

Such as Adams and Yellin (1976), Chiang and Spatt (1982), and Palfrey
(1983).

Such as Maskin and Riley (1984b) and Mussa and Rosen (1978).

Such as Maskin and Riley (1984a), Matthews (1983), Moore (1984), and
Myerson (1981).

Such as Hart (1983).

Such as Baron and Myerson (1982).

Our analysis would be the same if the benefit obtained from a contract
depends upon the type of consumer who chooses it, so that n(x,,8.)
replaces n(xi). For example, a contract might provide insuraﬁcelagainst
an accident whose probability depends upon the risk class 6 of the
consumer who chooses it, as in Stiglitz (1977).

The alternative case is that j < i-l, which is handled by basically the
same argument.

The property described in Lemma O is weaker than A0, and it is vacuously
satisfied if k=2, Lemma 0 therefore formally proves what was stated
above: MRSO alone implies that SCP holds for all contract sets if k=2.
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We assume a solution b(a) exists to (2.1) for each a between a; and a;. A
variety of assumptions that are innocuous in specific contexts will imply
this.

Roberts (1979), treating the multiproduct nonuniform pricing problem using
income level as the type parameter, does not assume AO. He instead claims
that A0 must hold if all goods are normal. As this is incorrect, his
characterizations of optimal contracts using the local approach are
necessarily valid only if A0 is assumed.

Rather than A0, the weaker property stated in Lemma O could be assumed in

such models. But this would be to no benefit, since that property, in
conjection with MRSO and AIC, can be shown to imply AQO anyway.

Similar regularity conditions have been used when k=2 (see Baron and
Myerson (1982), Maskin and Riley (1984b), Mussa and Rosen (1978), Myerson
(1981) or Spence (1980)). They are used when only the downward adjacent
incentive constraints DAIC (or, in a continuous types model, only the
consumers' first order conditions) are imposed. Such a doubly-relaxed
problem, (M'') say, is typically straightforward to solve. The regularity
condition is needed to insure that solutions to (M'') satisfy the
neglected upward adjacent incentive constraints UAIC (or, in a continuous
model, the consumers' second order conditions). But, as stated above,
there is no need for any regularity condition when k=2 if all of AIC is
imposed.

Alternatively, recalling that AO is a necessary condition when k=2, it is
valid to impose AO as an explicit constraint together with DAIC, in which
case AIC will be satisfied if, as is usual, the DAIC bind (recall Lemma
0). This technique also does not need a regularity condition. See, for
example, the discussion of the discrete k=2 case in Spence (1980), or the
continuous k=2 case in Maskin and Riley (1984b) and Mussa and Rosen
(1978).

Quality is a probability of functioning in Braverman, Guasch and Salop
(1983), Corville and Hausman (1979), Grossman (1981), Palfrey and Romer
(1983), Schwartz and Wilde (1982), and Spence (1977).

Warranties are monetary compensations in Corville and Hausman (1979),
Grossman (1981), Heal (1977), and Spence (1977).

Warranties act as signals in Corville and Hausman (1979), Grossman (1981),
and Spence (1977).

This moral hazard problem is discussed in Priest (1981).
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Seller-buyer disputes are studied in Palfrey and Romer (1983).

u'[u_l(u)]. Then
v'(u) = —R[u_l(u)]. So from NIARA (CARA), v''(u) > (=) 0.

To prove this, define v(*) by v(u)

1]

The remainder of the proof is simple if NIARA is strengthened to
*
decreasing absolute risk aversion (DARA). Since & 1s a local maximizer

of A(*), the second order condition implies

* * * ~ x A x ~
0> A" (8 ) = qrR(8 -p)u'(6 -p) - qR(H -p)u'(8 -p)
* % * A
= qu'(® -p)[R(6 -p) - R(6 -p)],
where R(*) = -u''(¢)/u'(+), and the second equality follows from the first

order condit}on q/q = u'(e*:;)/u'(é*—p). Hence, from DARA (but not
NTARA), p < p. But if p = p, then it would follow fr?m the first order
condition that q = a, and all types Yould rank x and x in the same way,
contrary to Ehe hypothesis. So p < p, and the first order condition

implies q > q. The proof of (i) and (ii) is in the text.

Alternatively, % = (;,q,;) is given by q = (qi_1+qi)/2; ;=pi_1 with
robabilit o= ith probabilit

3 obability qi_l/(qi_1+qi) and p=p, W p 3 ability qi/(qi—l

= with probability qi_l/(qi_1+qi) and w=w, with probability qi/(qi_1+qi)-

+q.); and
i

As q*(') may be multi-valued, q; < q*(ei) means that q; is less than each

*
element of q (ei).

If (a) the warranty is greater than the price, (b) the firm cannot
restrict the quantity a consumer purchases, and (c¢) a consumer can
(circumspectly) break a product without invalidating the warranty, then a
consumer would buy and break an unlimited number of units. This moral
hazard problem would force w < p even in the competitive case. 1In the
monopoly case this problem could be handled by imposing w < p as a
constraint, which would probably not change many results. -

Most commonly used utility functions are in the HARA class, which is
characterized by linear risk tolerance.
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See Arrow (1970) for why relative risk aversion is generally thought to be
nondecreasing.

Relative risk aversion is r(y) = y/p(y). Hence r' > 0 if and only

if yp' < p. But p concave implies that yp'(y) < p(y)-p(0), which is less

than p(y) because p(0) > 0. Therefore r' > 0 if p is concave.

The cost function in this example violates our assumption that C(1) > 1.
This is why q3 is at its maximum possible value, q3 = l. We chose C = 0
deliberately so that the example would also illustrate an optimal auction
for one risk averse bidder in which the probability of winning actually
decreases in the bidder's evaluation of the object being sold. See Maskin
and Riley (1984a), Matthews (1983) and Moore (1984).
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The Utility Curve Hlustration of IC
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Figure 2

SCP Is Violated If AIC But Not IC Holds



Figure 3

The Local Approach
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The Standard Revealed Preference Argument for AO
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This Configuration Implies that p </1\) and q >/c\1 > 0, and

that the Two Curves Cannot Cross Again
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