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CLOSED-LOOP EQUILIBRIUM IN A MULTI-STAGE INNOVATION RACE

1. Introduction

In recent years there have been many efforts to rigorously model
innovation processes and competitions. The work of Kamien and Schwartz (1982)
concentrated on the decision-theoretic problems associated with innovation,
leading to the work of Loury (1979), Lee and Wilde (1980), Reinganum
(1982a,b), and Dasgupta and Stiglitz (1980a,b), which study equilibrium models
of competition in innovation. These analyses examined one-shot innovation
processes——as long as no competitor won, all competitors were equal. Also, it
was assumed that there was just one available innovation technology.

In this paper, we examine the equilibrium of a race for a prize where
each of two agents controls independent R&D projects. At each moment, both
agents work to advance his state of knowledge. The race ends when one of the
firms has achieved a critical state of knowledge, which we shall call
"success.” A success results in some social gain, a portion of which becomes
the winner's prize. This model is intended to be a stylized representation of
a multi-stage R&D race. We first characterize and prove existence of
equilibrium of the stochastic game we use to model this race. We then use
approximation techniques to more precisely examine the nature of the subgame-
perfect equilibrium of the game. This analysis is of independent interest
since it represents a way to analyze subgame-perfect equilibria without
imposing strong functional form restrictions.

If the prize and social benefits are small or if the rate of time
preference is large, we find several specific results. First, if the prize
equals the benefits, there is excessive innovation effort, a result common to
innovation models of this nature. Second, since agents can be at differing

levels of knowledge, we can compare the relative efficiency of resource



allocation across firms. We find that lagging firms are less efficient and
that if there is to be a momentary subsidy of innovation effort, the first
dollars of such a subsidy should go to the leading firm. Third, in spite of
the relative inefficiency of the lagging firm, it is optimal to let the
competition continue until a firm enjoys complete success. Fourth, in spite
of the excess innovation effort, it is optimal to set the prize nearly equal
to the social benefit.

Fifth, our model allows our agents to allocate resources across projects
of varying riskiness. The multiple-project nature of our model allows us to
examine the efficiency of investment across projects, finding that there is
relatively excessive investment in the "riskier" projects. Sixth, a strategic
feature of mch interest is the nature of the reactions of each innovator to
the other's advances in knowledge. We find that if one player advances, the
other will reduce its effort in risky projects, but may increase effort in
less risky projects.

Some of our results hold because the multiple-stage nature of the game
disappears if the social benefit is small or the rate of time preference
large. However, other results, in particular the nature of players' reactions
and the risk allocation decisions, are related critically to the multiple-
stage closed-loop nature of our analysis, indicating that we have successfully
peaked into the nature of closed-loop equilibrium in innovation races. The
approach to closed—-loop subgame perfect equilibrium analysis we take is not
gspecific to this model and therefore of general interest in game-theoretic

analysis of dynamic strategic interaction.



2. The Model

We will investigate a simple model of multi-stage innovation with two
firms. Competition takes the form of a race. The position of each player is
denoted by a scalar with player 1l at x and 2 at y. Success is defined by one
player crossing 0; therefore we assume x and y to both be negative initially
and the current state is represented by a point 1n the third quadrant of the
plane. A player can attempt to improve its position by investments which
determine the probability of a jump to a better state of knowledge. Jumps

occur in two ways. There are gradual jumps which have a probability of F(a)

of hitting O and otherwise have a probability of f(s,a)ds of landing in the
interval (s, s + ds), s < 0, if a player is at point a < O, There are also
leaps to 0, the probability of which is proportional to both investment in
that process and G(a) if a player is at a. The leaps will be called more
risky since if investment is such that leaps and gradual jumps have the same
expected jump, the expected gain in value of any convex function of position
is greater for leaps. For the sake of simplicity, we assume square cost
functions.

The following notation summarizes the basic model:

x (y) <O State of firm 1 (2).

udt (vdt) Probability that a gradual jump of x (y) occurs with u (v)
being chosen by 1 (2).

f(s,a)ds Probability of jump from a to (s,s + ds) if a gradual jump
occurs. If s < a, then f(s,a) = 0. Otherwise, we assume that
the distributions of the jumps are ordered by first order
stochastic dominance, that is, if a' > a, then f(s,a') first
order stochastically dominates f(s,a).

F(a) Probability that a gradual jump hits O from a if a gradual jump
occurs. F(a) is increasing in a, by the stochastic ordering of



€
f in a. F is positive everywhere. F(a) = 1-lim_ ff(s,a)ds

e>0 a
wG(x)dt Probability 1 (2) leaps to O from x (y), where 1 (2) chooses
(zG(y)dt) w (z). G is bounded above and positive everywhere.

au2/2 + Bw2/2 Firm 1's costs and the soclal costs associated with u and
w choices. «,B8 > 0.

av? /2 + BzZ/Z Firm 2's costs and the social costs associated with v and
z choices.

P> 0 Prize to winner.
B>O Social benefit of success.
p >0 The social and private discount rate.

This model differs from earlier work in substantial ways. In the multi-
stage analysis of Reinganum (1982b), when one firm succeeds in achieving stage
n, all firms are able to compete equally for being first to achieve stage n+l;
therefore no firm is able to pull away from the others. In Lee and in Telser,
a firm may pull away in the sense that it may achieve an increasingly superior
cost structure, but the leading firm has no advantage in achieving lower
costs. Also, in their models there are prizes for intermediate success,
whereas we assume no such intermediate prizes nor social benefits. In this
model, a firm may pull away from its competition and final success is easier
to achieve the farther along it is. This feature is also present in models
analyzed in Fudenberg-Gilbert-Stiglitz-Tirole (1983) and in Harris and Vickers
(1983) but they all assume a very special structure to innovation costs and
limit the investment choices of innovators. In particular, innovation is a
natural monopoly with their specifications of costs, a feature which limits
the ability to address issues in patent policy and the structuring of
incentives for innovation. In contrast, in our model below is social value to
having competing innovators.

We also compare the relative allocation of resources among projects of



varying riskiness, a feature absent in these models. We find that competition
leads to excessive investment in risky R&D projects.1 We also determine how
the relative efficiency of the two firms is related to their relative
position, finding that the lagging firm is less efficient. We address the
issue of when a competition should be ended and a winner granted the monopoly
right to the innovation, a question previously ignored. We find that no
patent should be granted to an agent until he achieves complete success.

While the initial analysis is confined to the case when social benefits are
small, we later demonstrate that these results continue to hold when the

social benefit is arbitrary but the social rate of time preference is large.

3. An Example: The Case of a Single Firm

To illustrate the analysis used below, we will first examine the simple
case when B is infinite and there is only one firm. This case will be used
below when we examine the optimal stage at which to end the race. If M(x) 1is

the value of position x to the firm, then the dynamic programming equation is

2

(1) M) = Max{ (—%—dt +VE)( - pdt) (1 - wdt) + (1 - pdt)udt(f?{ M(s)f(s,x)ds)) + udtPF(x)}
u

where dt is the infinitesimal unit of time.2 The individual terms of the

maximand represent the expected value of innovative effort. If the rate of

1Dasgupta and Stiglitz (1980b) also model riskiness choice. However,
their analysis is of questionable validity since their equilibrium equation,
(36), often does not have a solution. In particular, it cannot have a
solution if N=1 and riskiness is strictly increasing in a since there is no
cost to increasing a and increasing riskiness is always of value in their
model. This possibly explains why their conclusions contradict those of this
study. Bhattacharya and Mookherjee (1984) have examined a static portfolio
choice problem.

2Throughout this essay we will employ the intuitive infinitesimal
notation of equation (1). However, all the dynamic programming equations can
be derived formally, as in Bryson and Ho.



effort is u, then the expenditure during dt is -(1/2)au?dt. With probability
1 - udt there will be no success, implying that the state of knowledge dt
units of time in the future will remain x, the value at that time will be
M(x), and that the current unconditional expected value of that contingency is
(1 = pdt)(1 = udt)M(x). With probability udt there will be a jump in x to
some s € (x,0]. If x jumps to O, an event with probability F(x) conditional
on a jump occurring, the immediate reward is P. If x jumps to a point x €
(s, s + ds), an event with a conditional probability of f(s,x)ds, the value
becomes M(s). The final term of the maximand in (1) represents the current
expected value contributed by these possibilities. Throughout this
paper, jg evs f(s,x)ds will represent lig_ fi «ss £(s,x)ds, thereby ignoring
>
the atom at x = 0. Therefore, the portion of the current value due to the
chance of jumping to x = 0, PF(x), is a separate term. We use this notation
to distinguish the value of reaching an intermediate stage from that of
winning. (1) states that the value of position equals the maximum expected
current value of future positions net of current costs. This is just the
principle of optimality of dynamic programming.

Solving the maximization problem in (1) shows that
0
(2) qu = jx M(s)f(s,x)ds + PF(x) - M(x)

Substituting this first—order condition into the control equation yields the

standard Bellman equation for this control problem:
0 2
(3) 0 = (Ix M(s)f(s,x)ds + PF(x) - M(x)) /20 = pM(x)

By standard dynamic optimization methods, there exists a unique such M. By



arguments developed below, we can assume that we have the following asymptotic

representation for M around P = O:
) M(x) = P2k2(x) + PIRO(x) + ...

Since P = 0 implies that M = 0, we need no constant term in the asymptotic
representation. Since u = 0 when P = 0, the envelope theorem implies that no
term linear in P is present in (4). Substituting this asymptotic expression
into the optimality equation, (3), and equating P2 terms implies

that 0 = PZF(x)z/Za - pszz(x). Therefore,

(5) kz(x) = F(x)2/2ap

2
Equating P3 terms implies that 0 = F(xlffo F(s) f(s,x)ds - E%g%—) - pk3(x).

Therefore,

) S - F(x)ffO F(s) £(o.x) ds _g%;_)

From these expressions we may infer several properties of the optimal
control for small P. For example, that if P is small, effort increases as one
is closer to the finish. This follows from the observation that the PF(x)
term dominates in (2) since M is O(Pz), implying that u rises as F(x), and
hence x, rises. Also, u falls as o and p rise, an intuitive result since both
represent costs. Using this approach, we next examine the total social

optimum when we have two separate projects and two firms.

4. Social Optimum

Let W(x,y) be the social value function when current states are x and

ye. Then the Bellman equation becomes



(7)  W(x,y) = Max {(-au2/2 - av2/2 - Bw2/2 - Bzz/Z)dt
u,v,w,z 0
+ udt:(fx W(s,y)f(s,x)ds + BF(x))(1 - pdt)
+ vde([2 W(x,8)E(s,y)ds + BF(y))(1 - pdt)
+ (wG(x) + 2zG(y))dtB(1 - pdt)

+ (1 - pdt)(l - (u + v + wG(x) + zG(y))dt) W(x,y)}

(7) is derived just as (1) was. The first-order conditions of (7) imply

(8a) aqu ISW(s,y)f(s,x)ds + BF(x) - W(x,y)

(8b) Bw = G(x)(B - W(x,y))

av and Bz may be expressed similarly. Let

EX{W(s,y)} jg W(s,y)f(s,x)ds + BF(x)

Ey{W(x,s)} fg W(x,s)f(s,y)ds + BF(y)

represent the expected social value conditional on a jump in x, y,
respectively., Using the first—order conditions, (8), for u and w, and the

corresponding conditions for v and z, the Bellman equation becomes

(9) 0= (2 {u(s,y)} - Woy D2 + (B UGk} - WGx,y )P/
+ @GOG - Wk, y)N2/28 + (D (B - Wix,y)NE/28 = oW(x,y)

Theorem 1l: There exists a unique solution, W(x,y), to the social optimum

problem, and W(x,y) is C° in B and p—l.

Since the proof is a straightforward modification of the proof in Theorem

2, we omit it here.

3h3(x,y) + ... is the asymptotic expression

Suppose W(x,y) = Bzhz(x,y) + B
for W around B = 0, which exists by the smoothness of W with respect to B.

Then the quadratic term is computed to be



- 0 -

2 2 2 2
2 _F(x)" + F(y) G(x)™ + G(y)
(10) h (X,Y) = zpa + ZBP

and the investment rules are approximated to 0(82) by

(11a) au £ BFG) + B7([2 n’(s,y)E(s,x)ds ~ h’(x,y))

(B - Bzhz(x,y)]G(x)

(11b) Bw

and similarly for v and z. The first-order approximations for u and w are as
if the current hazard rate of immediate success was common to all stages,
since au = BF(x) and Bw = BG(x) to O(B). This indicates that the first-order
behavior of this multi-stage game at any stage reduces to the behavior of a
single-stage game., In particular, to a first order, the presence of other
projects has no impact on investment rules. Intuitively, this is because for
small B, effort levels are "small,” the probability of success for any one
project is "small”, and by independence the probability of success by two
projects is "small squared”, hence negligible. Therefore, most of the
interesting multi-stage questions will require examination of h2 and h3.
Straightforward substitutions and examination of (10) and (11) prove

Corollary 1:

Corollary 1l: For small B, the following hold for the optimal innovation
policy:
(i) as x (y) increase, u (v) and w (z) increase and v (u) and z (w) decrease;
(ii) w (z) is increasing and concave in B;
(iii) u (v) is increasing in B but may be convex or concave in B;
(iv) W is increasing and convex in (x,y) if F(x) and G(y) are convex;
(v) u and v (v and z) are decreasing in p and a(B); and

(vi) w and z are decreasing in «a.
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Particularly note that, if the two firms were managed in a socially optimal
fashion, each firm would increase its efforts on both projects as it advances,
and the other would decrease its effort. Also, the magnitude of these
reactions are on the order of Bz- These features will be substantially

different in the equilibrium of the R&D race.

5. Equilibrium of the Innovation Game

We next solve for the closed-loop symmetric subgame-perfect equilibrium
of the corresponding game. We are implicitly assuming that the current states
of both players are common knowledge since if we had assumed that no player
could observe the position of his competitor then the open-loop solution would
be the correct equilibrium concept. While this common knowledge aspect is
certainly valid in sports races, it may appear awkward here. It asserts that
player l's knowledge of the value of y has no impact on the value of x, i.e.,
that a firm may know how much its opponent knows without knowing exactly what
its opponent knows. Academics, for example, should not be uncomfortable with
this assumption since they often judge colleagues' relative levels of
knowledge about a subject without having an equivalent level of expertise in
the area. In sum, we are assuming that firms may determine their relative
positions without actually having access to each other's knowledge. It will
also be sometimes true that players will want to reveal their position if they
can do so without revealing useful knowledge. For these reasons, we stay with
the race analogy.

Let V(x,y) represent the value to firm 1 of state (x,y). We will examine
symmetric equilibria, implying that V(y,x) will represent the value to firm 2
of state (x,y). The Bellman equation for firm 1 will be

(12) v(x,y) = Max{(—au2/2 - Bw2/2)dt
u
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+ udt(f: V(s,y)f(s,x)ds + PF(x))(1 - pdt)
+ wG(x)dtP(1 - pdt)
+ vdt(fg V(x,s)f(s,y)ds + 0:G(y))(1 - pdt)

+ (1 - pdt)(1 - (u + v + wG(x) + zG(y))dt)V(x,y)}

The first—-order conditions from (12) allow us to express its strategy in terms

of the value function at that point and later points:

(13a) au(x,y) = [0 V(s,y)E(s,x)ds + BE(x) - V(x,y)

(13b) pw(x,y) = (P - V(x,y))G(x)

By symmetry, the strategies of firm 2 are

(14a) av(x,v) = fsV(s,x)f(s,y)ds + PF(y) - V(y,x)

(14b) Bz(x,y) = (P - V(y,x))G(y)

The characterization equation for equilibrium is found by substituting these

equations for strategies into the Bellman equation, which then reduces to
0 2
(15) 0 = (J’x V(s,y)f(s,x)ds + PF(x) - V(x,y))“ /2
2 2
+ (P - V(x,y)) G(x)7/28

+ (IS V(s,x)f(s,y)ds + PF(y) - V(y,X))(IS V(x,8)f(s,y)ds - V(x,y))/x

(o + L VG0X)’

2 1V(x,y)

Theorem 2: There exists a P > O such that for P € [0,5], there is a
symmetric closed-loop subgame perfect equilibrium V(x,y), which is C* in P and

p-l and represented as a solution to (15).

Proof. First, suppose that the game is confined to a lattice, i.e., define
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(16) X, = -né, y, = nd, n>? 0

where § is any positive real. The jump processes are then confined to the
lattice given by {(xn,ym)ln,m b O}. Note that with this restriction, the
jump densities, f(*,*), are Dirac delta functions since the jump distributions
have only atoms in their support.

The crucial fact is that at each (x ) we have a subgame similar to the

n’*Ym
Lee-Wilde (1980) game. We use this together with the fact that the states are
monotonically increasing as the game evolves to recursively solve for the

intermediate values of the equilibrium value functions. At any (x ) the

n*Ym
unknown value for player 1 is V(xn,ym) and V(ym,xn) for player 2. A leap for
either player ends the game and yields a prize of P to the "leaper” and a
prize of O to the other player. If the next jump is a gradual jump, then the
game 1s not over., Hence, the players today care about the expected value of
the game at the next stage conditional on a gradual jump being the next

jump. We let Wij(xn,ym) be the expected value of the game to player i

immediately after the next jump if player j achieved that jump. If player 1

enjoys a gradual jump, then the expected future value of the game is the prize

0 .
an V(s,ym)f(s,xn)ds. A jump for
player 1 will also affect the value of the game for player 2, causing him to

. . 11
for 1 in stage (x,,yp) and is W (xn,ym)

. vt 21 _ (0 .
receive a "prize" of W (Xn’ ym) = jx V(ym,s)f(s,xn). Similarly, a gradual

n
jump for 2 yields sz(xn,ym) = fg V(s,xn)f(s,ym)ds for 2 and
12 _ 0 n
W (Xn’ym) = fymV(xn,s)f(s,ym)ds for player 1.
In the (xn,ym) subgame, player 1 effectively faces a subgame payoff of

2 2
a7 3 e PET(utwiviz)t - - va’- oyt wl? s updae

_ (auz + sz)/z +oawll o+ vw12 + wP

- (p +0 +w+ v+ z)
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= nl(u,v,w,z,wll,wlz,P)

Symmetrically, player 2's payoff in state (xn,ym) is

—(av2 + Bzz)/z + vw22 + uw21 + zP

p+o+v+tw+ oz

(18)

= nz(u,v,w,z,W21,W22,P)

Equilibrium in the (xn,ym) subgame is any (u,v,w,z) choice such that

(19) n,=m,=m,=mn, =0

Examination of the equilibrium conditions show that if wiil=p= 0,

i,j, = 1,2, then u = v =w =2z =0 is the unique equilibrium. Also, there is
some E such that if 0 < P, whl ¢ P, i,j = 1,2, then there is a unique
equilibrium since the system of equilibrium equations in (19) locally satisfy

the invertibility conditions for expressing u,v,w,and z as functions of p—l,

1 2 are ¢ in their arguments,

Xy Yp» P> and the W's. Also, since = and =
equilibrium is locally C° in P and the Wij. Once u, v, w, and z are solved,
V(xn,ym) and V(ym,xn) are also solved since they equal player l's and player
2's payoffs, respectively, in this (xn,ym) subgame.

Since Wij(xn,ym), i,j = 1,2, are averages of V(xy,yy), for k < n and & <
m, and since V is bounded by P in all states (the best possible event is
immediate success), the W's are always bounded above by P. Therefore, if P is

sufficiently small that our local solution for stages {(xk,yk): k < n, < nﬁ

is valid, then it 1s also sufficiently small for the local solution around



P = 0 to represent the solution for stages {(Xk’yl): k < n, £ < m}. Clearly,
V(0,y) =P for all y < 0 and V(x,0) = 0 for all x < 0. We assume that the
firms split the prize if they simultaneously hit zero, implying that

v(0,0) = P/2. By induction, we are therefore able to compute the equilibrium
value function, V, on {(xk,yl): n, m > O}.

Second, we need to deal with the case of a connected support for the
jumps of the jump processes. However, if we take a hyperfinite discrete
approximation to the random variables, then we may repeat the above recursive
computations to find a nonstandard solution to V. This solution will be
hypercontinuous since all computations are internal and all derivatives are
bounded by standard reals. Therefore, the nonstandard solution will be a
hyperfinite approximation of a nonstandard extension of a real solution to the
equilibrium equations. (See Keisler (1978) or Davis (1977) for the relevant
nonstandard analysis. 1In the latter, "microcontinuous” is our
"hypercontinuous.”) The solution will be smooth since all derivatives of the

nonstandard extension are bounded by standard reals. Q.E.D,

Suppose V(x,y) = Pzgz(x,y) + P3g3(x,y) + ... is a Taylor series
approximation of V(x,y) for small P. By Theorem 2, such a representation
exists and is unique for small P, By substituting this representation for V

in (15) and equating coefficients of like powers, we find

2 2
o K
2 2
(20b) g3(x,y) = Eégg{fi gz(s,y)f(s,x)ds -~ gz(x’y)) _ g;ﬂx,ggG(x)

EAS 24 2
¥ Fép) IS gz(X,S)f(S,y)ds - gz(x’y)) - Gég) gz(x,y)
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_ F(x) (0 (F(s)z N c(s)?

roo’ o’
ap “'x ° 2ap 2Bp

Yf(s,x)ds - 2ap 260

2 2 2 2 2
_ (G(x) G(y) F(y) F(x) G(x)
( Bp * Bp * ap ) ( 2ap * 28p )

The equilibrium strategies are therefore approximated to O(P3) by
(21a) au(x,y) = PF(x) + Pz(fg gz(s,y)f(s,x)ds - gz(x,y))

+ (2 £ (s, 9)E (s 3088 - £ (x,9)))
(21b) Bw(x,y) = (P - Pzgz(x,y) - P3g3(x,y))G(x)

and similarly for v(x,y) and z(x,y). This solution and its approximation now
allows us to compare equilibrium with the social optimum and evaluate the

competitive equilibrium allocation of resources.

6. Comparisons of the Optimal and Equilibrium Outcomes

We next will compare the levels of innovative activity under social

control with those levels in the game equilibrium. If P = B, the difference

C

between innovative effort under competition, u®, w®, and the socially optimal

levels, u®, w°, is expressed, to O(Bz), by

2 2
. g2
22)  al® - ) = (I s ey
2/F 2 G 2
(23) (v - Sy = —B2(E 4 B gy

2ap 28p

The difference between firm two's choices, vc, zc, and the optimal controls
vS, zS, are similarly expressed. First note that there is excessive

investment in all projects under competition, a conclusion common in these

models. The excess is greater as either firm is closer to success. Also the
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excess 1lnvestment relative to the socially optimal investment increases for
each firm as the other firm is closer to success. These results are expected
since each firm ignores the social value of the other's presence in the
innovation process (see Mortenson (1982)).

We also note that it is not clear which firm is more excessive in R&D
investment. Let E, , be the difference between the two competitor's excessive

investment in their gradual jump processes:

(24) E, = al € = u%) - (v© - v®)]

L REOEGED - F@) |, S FE - 6 F())
28p 28p

If there are no "leaps,” G = 0 and then E , < 0 if x > y, that is, the
laggard's investment is more excessive than the leader's. This holds also if
the leap and gradual jump processes are sufficiently similar, in particular if
G = )\F for some scalar A » 0. However, if F(y) is small but G(y) is not, then
Ew 2> 0, and the leader invests more excessively in gradual jumps.

In relative terms, however, we can be more precise since

s - %)

S
u

F? |, ey

(23) 20p 28p

;B(

is increasing in y. (w® - w®)/wS is similarly found to be increasing in y.

S (o4 S

The dependence of v® - v% and z® - z% on x are symmetrically expressed.
Therefore, the laggard's excess investment in both gradual jumps and leaps

expressed as a fraction of the socially optimal investment is greater.

Theorem 3 summarizes these comparisons.
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Theorem 3: For small B, if P = B then

if and only if x < y.

These comparisons do not necessarily say anything about the efficiency of
resource allocation given that there is competition. For example, one may be
tempted to conclude that if society could increase current investment in one
of the firms, but could not (or at least could not commit itself) assist
future investment, it would decide to shift resources to the leader. However,
this may not be true since society should, in its consideration of current
policy, take into account its impact on the future nature of the distorted
allocation of resources due to the competition. For example, maybe society
should not help the leading firm if the trailing firm increases its excessive
investment in response to jumps in the position of the leader. We next
address this issue for the case P = B.

If P = B, the social value of the game is V(y,x) + V(x,y) since all
benefits of innovation are appropriated by the firms. At any position, the
net social marginal values of u and w per dollar of expenditure are computed

to be

12 (U(s,y) +V(y,8))E(s,x)ds + () = au = V(xy) = V(y,x)

au

(26a) NSMV =
u

fz V(y,s)f(s,x)ds - V(y,x)

2 VG pEGs0ds + PRGO - Txy)

_ _V(y,x)
(26b) NSMVW = -P——_—%-E;’W
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where we use (13) to simplify expressions. Using our expansion for V(x,y),

(26) implies

2 2
(27a) NSMV = 5 ;P g (y,x)g(xg
PF(x) - P7(g (x,y) - [, & (s,y)f(s,x)ds)

2 2
P g (y,x)
2 2
P - P g (x,y)

(27v) NSMVw =

Similarly, the net marginal social values of v and z are

2%, 1)F ()
PE(y) - P2(g (y,x) - [0 &7 (s,00(s,y)ds)

(27¢) NMSV

22
(274) NMSV = —F %—éxly)
P ~-Pg (Y,X)

As P converges to 0O, we have

(28a) Pl omisv 2 -g%(x,y) = P02/ 20 - 60 %/280
(28b) pl NMSV : g%(y,%) = F(y) /200 - G(y)% /280
(28¢) P—INMSVW L _r(y)?
(28d) P sy, & -F(x)?

If x > y then F(x) > F(y), G(x) > G(y), NMSV, < NMSV,;, and NMSV,, < NMSV,.
Therefore, the social value of increased investment in either type of control
is greater at the leading firm, even when we take into account the distortions

implicit in the competition,

Theorem 4: If P = B and P is small, social welfare at any stage would be

increased by shifting innovation effort from the laggard to the leader. That
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is, if (x,y) is the current state and x > y, V(X,y) + V(y,x) is increased if
au(x,y)2 is increased and av(x,y)2 is decreased by ¢, for small ¢ > 0, and

similarly for z(x,y) and w(x,y).

Another interesting issue which we can address in this model is that of
the efficiency of the allocation of resources between the risky leaps and the
less risky gradual jumps. The social efficiency of the portfolio choice by
firm one is determined by comparing the net social marginal values of u and
v. NSMV, > NSMV_ iff gz(x,y) - fg gz(s,y)f(s,x)ds < F(x)gz(x,y) which is true
since gz(x,y) is increasing in x. Hence, there is an excessive share of
resources allocated to the "risky"” project. To get an intuitive grasp on this
result, we should compare the social valuation of the intermediate stages with

the equilibrium valuation by firm one. Since the difference between g2 and h2

3 with h3 to study differences

is independent of x, we need to compare g
relevant for one's portfolio choice between u and w. Straightforward

manipulation of the optimality equation (9) shows that

(29) b1 (x,y)

2 2 2 2
F(x)r (0 (F(s) G(s) F(y) G(y)
w0 Ux Cop Y e Y et g Ee )

CF? et Frm? G(y)z)
ap Bp ap Bp

+ Eégl{fg gz(x,S)f(s,y)ds - gz(x,y))

2 2
G- 2 _ewm- 2
TR (x,y) 55 & (x,¥)

The difference between g3 and h3 is then found to be

2 2 2 2
(30) g2(x,y) - B (x,y) = (Fiz) + Gé;) ) (Fég) + Gég) ) + 2(y)

where Z(y) is a function of only y.
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Hence, ignoring terms which depend only on y or are of o(P3)

3pe0? |, e’y r)? |, s’
xp Bo xp Be

(31) V(x,y) - W(x,y) = P

which is increasing in x. First, this implies that investment is even more

excessive than indicated by P2

terms since the gap between social and private
values of R&D is increasing at O(P3). Second, it indicates a blas towards
“"risky” R&D projects. Since this excess increases in x, those projects which

are more likely to yield big jumps, holding the expected jump constant, will

find their private value to be more excessive relative to their social value.

Theorem 5: If P = B and P is small, social welfare would be increased if

resources were shifted from the risky R&D projects to the less risky projects.

The last comparison we will make is between the optimal and equilibrium
reactions of firms to each other's partial successes. Since gz(x,y) is
independent of y, the dependence of u and w on y for small P, is determined by

the dependence of g3 on y, and is summarized in

2 2 2 2 2 2
c _ 3 F(y) G(y) 0 F(s) G(s) _F(x)” _ Gx)
(32a) au” = .. + P 0 + 20 ) (fx G 2 + 260 YE(s,x)ds 20p 280 )
2 2 2 2
c _ _ .3 (F(y) G(y) F(x) G(x)"y

where we have displayed all terms of O(P3) which depend on y.

Theorem 6: If P = B and P is small,

05 oW N oW 5 025 0z°
dy 3y ’ dx dx

0 < au°| < - u® 0 < ove < ov°
dy l dy X X
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that is, equilibrium reactions are less than optimal reactions in magnitude.

Furthermore, d3uS/3y and av"/ax may be positive.

Proof: The comparisons of magnitude follow from the fact that 6uc/ay is 0(P3)
by (32a) but 6us/6y is O(Pz) by (lla), and similarly for the other controls.
The sign conditions for w® and z® follow from (32b). If F(s) and G(s) are

large relative to F(x) and G(x) for s > x, then the integral in (32a)

dominates and auc/by > 0. However, if F(s) = F(x) > 0 and G(s) ~ G(x) > 0 for

2 2 2 2
F(s) G(s) F(x) G(x)
+ 255 22p + 280 ) (1

auS/ay < 0 in (32a). Q.E.D.

s > x, then fg( Yf(s,x)ds ~ ( - F(x)) and

In comparing the dependence of strategies on the positions of the
players, first note that there is no reaction of one firm to another's
position to 0(P2). Hence, the equilibrium reactions of the firms to each are
smaller than the optimal reactions. Furthermore the direction may be wronge.
At both the equilibrium and optimum, we find that as y increases, w falls.
However, the reaction of u is ambiguous. The reaction of a gradual jump's
control to the other firm's movement depends on just how different the stages
are. If the stages are similar in that the probability of winning immediately
per unit of effort with a leap, G(x), or gradual jump, F(x), is nearly as
large at x as at any later stage, then u will fall, whereas if later stages
have substantially greater likelihoods of getting one to success, then a
firm's effort in gradual jumps may increase as its opponent moves ahead. In
the latter case, the improvement in the opponent's prospects proumpts one to
work harder, as if one must either work hard or concede the race.

Also note that a firm's choice of its leap control reacts more to an

opponent's improvement as the firm is closer to final success., This indicates
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that effort levels are more volatile as the game is nearing completion.

7. Implications for Social Innovation Policy

We next examine the optimal values of two parameters of social innovation
policy, the portion of social benefits to be awarded to the winner and the
stage at which a patent is to be granted, in this two firm innovation game.

We will find that when B 1s small, P should be set at B. This result
validates our focus on the case P = B in the previous section. In particular,
this shows that the misallocation of resources between projects of varying
riskiness will not change with an optimally chosen P.

Let P = 6B, i.e., 6 is the portion of social benefits of innovation which
the innovator is allowed to appropriate. We are making the simplifying
assumption that this allocation of social benefits to the innovator can be
made in a nondistortionary fashion. In the case of patents this is only valid
if demand is inelastic. If a prize is awarded, this assumes that it is
financed by nondistortionary revenue sources.

Presumably, 6 is a parameter at least partially chosen by policy
makers. Given that we found that there was excessive allocation of resources
for innovation in the equilibrium of the innovation game, the optimal 6 is not

obviously unity. Let W again represent the social value function. Then

(33) Wix,y)

—[a(u2 + vz) + B(w2 + zz)] % dt

(1 = pdt)(uF(x) + vF(y) + wG(x) + ZG(y))Bdt

+ (1 - pdt)(1 - (wG(x) + zG(y))dt)W(x,y)
+ (1 - pdt)(uji W(z,y)f(z,x) + vfg W(x,s)f(s,y)ds)dt
+ (1 - pdt)(1 = (u + v)dt)W(x,y)

Where u, v, w, and z are here the equilibrium policy functions if the prize is

6B. This simplifies to
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(34) (p +u + v + wG(x) + zG(y))W(x,Y) = ‘[a(uz + vz) + 5(w2 + zz)]/Z
+ B(uF(x) + vF(y) + wG(x) + zG(y))

+ ufg W(s,y)f(s,x)ds + vfsw(x,s)f(s,y)ds
Let W have the asymptotic representation

(35) W(x,y) = anz(x,y) + B3n3(x,y) + ...

2

Then n“ is given by

-1

(36) 02,y = 0 h e - 02 ((F0? + F()D "t + 6% + e

From the expression for nz, we see that the optimal 6 is unity when B is
small. Therefore, when the prize is small, it is optimal, in the sense of
maximizing total social surplus, to give all of the social benefits to the
innovator.

One aspect of patent policy is the stage at which a patent is granted. A
patent may be granted before final and complete success is achieved. In fact,
in the existing patent system, a patent is granted when a description of an
invention has been completed, before the development stages leading to a
workable and commercial prototype have been achieved. This may be socially
optimal if the effort of followers is so excessive and wasteful that it is
better to force them out of the race, bearing the possible inefficiencies that
may result when an innovator is given the monopoly early. In our model, this
can be modeled by assuming that a patent is granted to the first firm which
crosses ¢ € 0. If ¢ = 0, the firm must complete the project before acquiring
a patent worth P. If ¢ < O, then a firm receives a patent at ¢ and may finish
development without any competition.

Proceeding as in the ¢ = 0 case, we find that the equilibrium value

function for the players solves
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(37) 0 = (f; V(s,y)f(s,x)ds + fg M(s)f(s,x)ds + PF(x) - V(x,y))2/2a
+ (j; V(s,x)f(s,y)ds + fg M(s)f(s,y)ds + PF(y) - V(y,x))
x (f; V(x,s)f(s,y)ds - V(x,y))/a — pV(x,y)

where M(e) is the monopoly value function computed in section 2 except we have

two instruments, u and v or w and z, here. If

(38) V(x,y) = szz(x,y) + P3m3(x,y) t .o
then
(39a) m2(x,y) = F(x)2/2ap = k2(x,y) = g2(x,y)

(39b) m3(x,y) = [F(x)(fg gz(x,y)f(s,x)ds - gz(x,y))
c 2 2
+ F(y)(fy g (x,8)f(s,y)ds - g (x,y))1/ap

Therefore the loss in V(x,vy) + V(y,x), the social value function if P = B,

when ¢ < O compared to ¢ = 0 is approximated by
0 2 0 2
(40) F(y) fc g (x,s8)f(s,y)ds + F(x) fc g (y,s)f(s,x)ds > 0.

Hence, the major factor when P is small is that if ¢ < O, the contest is ended
early and the resulting loss in total effort is excessive relative to the cost
savings.,

Theorem 7 summarizes our findings concerning optimal policy.

Theorem 7: When B is small, the optimal policy is to award a prize only
when the race is completely won and the prize should be nearly the entire

social value of the innovation.
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8. The Case of Large Interest Rates

We next show that these results carry over to the case where p is very
large. In the limiting case of an "infinite” p, all social and private value
functions are obviously zero. However that does not cause effort to drop to
zero since current effort leads to a positive probability of current success
and even when p is infinite, there is still value in a current dollar. Since
the cost of current effort, e.g., auzdt/Z, is commensurate with expected
payoff, e.g., uPF(x)dt, effort will be u = PF(x)a * > 0. Similarly, v =
PF(y)a_l, w = PG(x)B—l, and z = PG(y)B—l. These values for effort levels hold
for both the social optimum and game equilibrium, intuitively because the
probability of any two projects succeeding is of smaller order than the chance
of one succeeding, and therefore there is no cross—effect of one project's
effort level on the wmarginal value of another project.

-1

Let R = p *. The social problem becomes:

(41)

[e]
|

= R(fg W(s,y)f(s,x)ds + BF(x) - W(x,Y))Z/Za

+

R(f? W(x,s)f(s,y)ds + BF(y) - W(x,y))2/2a

R(G(x)(B=W(x,y))2/28 + R(G(y)(B-W(x,y))) /28

+

- W(x,y)
At R =0, W= 0 is clear. Define the expansion around R = O,
(42) W(x,y) = Rhl(x,y) + thz(x,y) + e
Proceeding as above, we find that
(43a) ntx,y) = (B2F(x)% + B2F(3)?) /20

+ (BZG(x)2 + BZG(y)z)/Zs
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(43b) n’(x,y) = BFGO ([0 0l (s, y)E(s,x0ds - bl Ge,y)) /a

+

BF () (jg hl(x,8)E(s,y)ds - h'(x,y))/a

BG(x)°h (x,5)/8 - BG(y) ' (x,y)/8

The optimal investment levels can be expressed as before, with u given by

F()” + Fp? | 6(e)” + 6(p)°

(44) au = BF () + BBO(f) (K212 7

)f(s,x)ds

_ (@ Fe” | 6@+ ey

2a 28

(° F(s) | 6(s)°

2 2 2
F(x)™  G(x)~ _ G(y)
< Ty 2 F(x) (

2
F(y)
2% 28 28 ))

- BF(x) + RB® >

Yf(s,x)ds -

v, w, and z are similarly expressed. The game equilibrium can be analyzed as

before, with V(x,y), the value function to firm 1, being the solution to
0 2
(45) 0= R(Ix V(s,y)f(s,x)ds + PF(x) - V(x,y)) /2

+ R(P—V(x,y))zG(x)z/ZB

+

uﬁv@ﬂﬁwmms+ww>—wLw)

X

(IS V(x,8)f(s,y)ds - V(x,y))/a
- R(P - V(Y,X))G(Y)ZV(X,Y)/B - V(x,y)

By Theorem 2, V(x,y) exists and is smooth in R. Suppose V has the following
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asymptotic representation:

(46) V(x,y) = Rgl(X.y) + Rzgz(x,y) + ees

In this case a term linear in R is needed since u is not zero when R = O,

Then, proceeding as before, we find that

(47a) gl (x,v) = PPR(x)2/20 + P2G(x)/28
(47b) gz(x,y) = PF(x) (I?{ gl (s,y)E(s,x)ds - gl(x,y))/a - PG(x)zgl(x,y)/B
+ PF(y) (fg g (x,5)E(s,y)ds - gl(x,y))/a - pe(y) g x,y) /8

The crucial feature to note is that the dependence of the terms of the
expansion on x and y when we expand around R = 0 for arbitrary P and B, is the
same as when we expanded around P = B = 0 for arbitrary p. Therefore,
Theorems 3 through 7 continue to hold for the case of small R. In particular,
we again find that there is excessive risk-taking in equilibrium and that
equilibrium reactions are reduced in magnitude and possibly reversed in
direction relative to optimal reactions.

The results of this section give us some basis to believe that our
results are not overly special. We have poked at the subgame perfect

equilibria from two distinct directions—-small prize and large discount rate——

and found the same results.

9. Conclusions
We have analyzed a simple closed-loop subgame perfect model of multi-

stage innovation. We found the usual result of excessive innovative effort
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when the prize equals the social value. We have also found that, when the
social value is small or when the rate of time preference is large, there will
be excessive risk-taking, that at any moment the following firm is a less
efficient innovator relative to the leader, that the prize to the innovator
should nearly equal social benefits, and that the competition should not be
ended before one of the competitors has succeeded completely. While these
results have obvious limitations on their generality, they do tell us that the
contrary propositions cannot be generally true. While many of the results,
e.g., the excessive investment when P = B, follow naturally from the fact that
these subgame perfect equilibria are close to some open—loop equilibria and
therefore cannot deviate much from the nature of open-loop equilibria, others,
in particular the computation of the equilibrium reactions, are specific to
the subgame-perfect solution. They have therefore given us a peak into the

nature of subgame perfect equilibrium in such innovation models.
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