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"Some Notes on Natural Cubic Spline Functions,
Nonlinear Regression, and the Elastica”

Abstract

A simple shooting forward method is suggested for the computation of
natural cubic spline functions through given knots. The method requires 0(n)
calculations and lends itself to programming easily. The use of such splines
for nonlinear regression is discussed, and to that end a search method is
applied to the values at the knots-—-with derivatives of the objective function
by such changes in the knots introduced, to enable the use of Quasi-Newton
search procedures with derivatives. On the plane, these ideas.can be extended
to optimal trajectory problems such as the alignment of a highway and solving
for the elastica itself. Since the elastica 1s the "parent” of the natural

cubic spline,-this is in a sense a very natural and called-for extension, and

closes a cycle, so to speak.






Introduction

The Euler-Bernoulli elastica (see [2] for an extensive discussion and
references) is the curve defined by a flat spring which is made to pass
through nt+l ordered and indexed points or "knots" x;, yy3 1 = 0,1,...,n, on a
Euclidean plane in such a manner that it can slide and rotate freely at the
knots (but not move them). Since the elastica, by its physical nature,
minimizes the spring's potential energy, it must satisfy the following

mathematical model (E):

t 2 2
. d 2 d 2
(1) (E) min ftn [(——;J + (-—%J Jat
x(t),y(t) 0 dt dt
s.t.
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2 2
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dx . dy .
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dx i dy ®
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dt =t n’ dt t=t n
n n




dxy2 dyv2 _ 4. .
(6) (3?) + (EE) =1; ¥t € [t ,t_]
(7) 0=t, <ty < eve <ty <ty <

(1) is directly proportional to the potential energy of the spring, which is
why it is to be minimized; (2) answers continuity up to the second derivative
(or curvature); (3) makes the curve pass through the knots; (4) and (5)
reflect the fact that knot 0 and knot n can rotate, gut if the spring's angle
igs fixed at any of them, then (4a) or (5a) are used instead to reflect the
angle of this fixation; (6) forces the parameter t to be the cumulative
distance along the curve from ty (which we arbitrarily set to 0). (Without
(6), (1) does not minimize the potential energy of the spring.)

If we assume that: (a) %9 < % < X9 ... < x,, and (b) y'(x) is small for

any t, then it can be shown that the following model (NCSF) replaces (E):

®) o d?ya2
(8) (vscF)  min [ 7 (-5)%ax
y{(x) 0 dx

(9) s.t.  y(x) € C%[x,,%,]
(10) y(xi) = yi; Vi = O,l,...,n

2
(11) g -0

dx x=x0
or.

dy _ .
(11a) ax YO

X=Xo




2
(12) dy =0
2
dx" |x=x
or
dy _ .
(12a) Ix =Y,
X=X

where (8), (9), (10), (11), (11la), (12) and (12a) replace (1), (2), (3), (4),
(4a), (5) and (5a) respectively, while both (6) and (7) are satisfied under
the assumption. We denote this model as NCSF standing for the "natural cubic
spline function,” though strictly speaking, if (lla) or (12a) are used instead
of (11) or (12), we have a cubic spline function which is not necessarily
natural (denoted as CSF). This complies with a well known theorem by Holladay
(see [1]) who proved that the unique set of cubic polynomials defined between
the knots in such a manner that the second derivative at the knots is
continuous across the knots (thus satisfying (9)), and such that (10), (11) or
(11a) and (12) or (l2a) are satisfied, minimizes (8) as required. Thus, the
NCSF is a special case of the elastica, but it certainly does not solve the
elastica problem. The NCSF can be solved by an efficient method, namely by
using B-splines involving the solution of a four band matrix linear equations
set [l], however, in this paper, we suggest a new solution which is more
straightforward in its approach, is more efficient, and lends itself to some
applications better——specifically, it can accommodate some constraints more
directly when used for regression. The method can also be extended to include
derivatives for such regressions.

Since this research was.conducted originally With the singular purpose of

solving highway alignment problems [3], we will use these as examples here.



For the same reason, we focus our attention on CSFs, which are sufficlent for
that purpose. However, the basic ideas can bevapplied easily to other spline
cases, such as higher (or lower) order splines. We do show, however, that our
vertical alignment case generalizes the regular nonlinear regression so our
method can serve for it too. We conclude with the elastica itself.

In the next sectlons we present our basic results in the format of

questions (problems) and answers (solutions). Then we show the applications.

Basic Results

(P1) Solve (NCSF) for the equidistant arguments case, i.e.,

x; - %31 = (X, - %g)/n =45 ¥io=1,2,...,0.

(S1) We first transform the argument x, and for the ith segment, i.e.,
between %;_7 and %;, we shall define a local argument z; €[0,1], such that

z; = (x - xi_l)/A. Clearly for i = 1,...,n —= 1, if z; = 1, then 23,1 = 0.

For any other argument x, only one local argument exists.

Under these conditions, the NCSF is fully defined by an n x 4 matrix, §,
where the ith row gives the parameters of the ith cubic polynomial, defined
for z;, i.e., for the ith row, the polynomial is: Sio * S4121 t Sizz% + Si3z%

where the columns of the matrix are 0, 1, 2 and 3 and the rows are

1,2,...,n. We have to find the 4n values Sij’ which conform to the following
linear equations:
(13) Sio = Yi_l; Vi = 1,2,...,n

(14) Sil + Siz -+ $i3 = S(i+l)0 - Sio; ¥i = l,2,...,n -1

(15) Sil + 23i2 + 3Si3 = S(i+1)l; ¥i=1,2,...,m -1



(16) Siz + BSiB = S(i+l)2; ¥i = l,2,...,n -1

(17) Sn3

Yo = Sh0 ~ Sa1 T Sn2

(18) Slz =0

(19) Spp + 3Sg3 = O.

Where (13) makes the NCSF pass through the knots, except for the last one y_,
which is taken care of by (17); (14), (15) and (16) ensure continuity up to

the second derivative at the knots; (18) ensures (11); and (19) takes care of
(12). ((18) or (19) could be changed easily to accommodate (lla) or (1l2a), a

variation which we will discuss below.)

The Shooting Forward Solution: Clearly, by (13), (14) and (18), the first row

of S, S(l) is:

(20) S(l) = (Yo, K: 0, YI - yo - K)

where A is a bounded, well defined, scalar--this is a direct result of a well-
known existence and uniqueness theorem for the NCSF [l1]. ©Now, had we known A,
then by recursive application of (14), (15) and (16) on the rows of S,
starting with the known S(l)’ we would easily obtain S. Since we do not have
A, we may guess a value for it, and try to adjust it later so that (17) and
(19) will be satisfied simultaneously (which happens if aund only if A is
chosen exactly right). This is the general idea of the shooting forward

method.



From here on, we use the term NCSF not just for the natural cubic spline
function itself, but also for any (n x 4) matrix such as S, which satisfies
(13) through (19). Similarly, such a matrix which satisfies (13) through (17)
is a CSF. Since there is a one-to-one relationship between the matrices and
the cubic splines, this double usage is defensible.

Clearly if A and B are CSFs for the same values of X;, but not
necessarily the same values y; (say we have the values y% and y? for them,
respectively), then aA + 8B is a CSF for the knots (xy, ay% + By?). In other
words, the CSFs span a linear space. Specifically, if we take y% = y; and
y? = 0; ¥ i, then A + wB is a CSF for our original knots!

How, let A be the CSF defined for our original knots with A = O, and let
B fit the knots (xi, 0), but with » = 1, i.e., the first row for B is
0, 1, 0, -1 and the first éolumn contains only zeros. It is easy to verify
that both A and B conform to (13) though (18) (and not just through (17)).
Therefore, any combination of the form A + wB also conforms to these. It
remains to choose w in such a manner that (19) is satisfied as well (and by
the existence tneorem, this is clearly possible). TFor convenience define for
CSFs such as A, B, C or D (we shall introduce C and D la;er), the values «, B,

Y, and & to be the second derivatives at the nth knot, respectively. E.g.,

@ = a,y * 3a,3. Now, if we choose
(21) w=X\x=-a/B,
then

(22) "~ NCSF = A + AeB = A - (a/B)+B!



(By negation, and the existence theorem, B # 0, so (21) is well defined.)
Note now that B is independent of the data! That means that it can be
stored 1in memory (say, 30 rows, where we use as many as we need, and add more

if necessary). The first five rows of B are as follows:

0, 1, 0, -1
0, -2, -3, 5
B = 0, 7, 12, -19
0, -26, -45, 71
0, 97, 168, -265

The readers may notice that the numbers grow exponentially. This means that
for numerous knots some computational problems may occur. We will discuss a
possible solution to this problem below. A more immediate conclusion 1is that
double precision should be used if available, as was done in [2] and in [3],
for instance. Note that it would not suffice to merély reduce bll’ since the

ratié between the extreme values would not be affected by it.

The Computational Complexity of the Model: For better performance we prefer

up to three additions over one multiplication, so we would perform S + S + S
instead of 35S, etc. Using this convention we calculate the number of
additions and of multiplications separately.

In order to compute A, we must use (14), (15) and (16) n - 1 times, each
costing seven additions or subtractions. Hence A requires about 7n
additions/subtractions. B requires about S5n additions/subtractions, plus one
sign change. However, we can store the last three columns of B, as mentioned
above (clearly we do not need to store the zero column of B). The

computations required are illustrated in the following table:



Number of
Additions or Cumulative
Operation Subtractions Number
(a) let C.= Sil + Si2 1 1
(b) 8i3 = S(i+1)0 - 8,0~ C 2 3
(€) S(yi1yp = Sip F 843 F Sy3F 845 3 6
+ C 1 7

(@ Si41y1 = Sei41)2

Where for B, (b) can be executed by just inverting the sign of C—_S(i+1)0 and
S;o being zeros in this case.

Finally, in order to utilize (22) we need 3n multiplications and
additions, so our total is 10n additions and 3n multiplications, if B is ready
(or 15n additions if it is not). Compare this to the B-splines method which
requires 13n additions and 15n_mu1tiplications'(gssuming that the three band
matrix linear equations system used there is solved by shooting forward, which
would require 5n additions/subtractions and 3n multiplications). The shooting
forward method is clearly more efficient here both in thé total number of

operations required and in the mix between the types of the operations. 0

This concludes our preliminary discussion for the equidistant arguments

case, and we now allow different distances, as follows:

(P2) Same as (Pl), but x, - x.

5 i-1 * ®5 ~ x4-1 for some 1,j.

J

(S2) Let Ay = %y - %313 1 =1,2,...,n and let vy = A;4q /843
i=12,...,n - 1. Now, (13), (14), (17), (18) and (19) remain valid for our
new case; for (15), we have to multiply the right side by v; and for (16),

likewise, by v%.



This time it 1s not expedient to prepare B in advance, and we need some
more multiplications too, i.e., we will require about 1l6n
additions/subtractions and 9n multiplications. However, the B-splines method
is much worse off here, since we have to recompute the basis for the given set
{xi}, a task which would be at least three times as complex as the shooting

forward method. i

If we return, for convenience, to the equidistant case, we can show now
how the NCSF can be used as an interpolating method for the minimization of

functionals, utilizing quasi-Newton search methods:

(P3) Let J(f) =J = IZF[f(x),g(x)]dx, be a functional where F(f,g) and
g(x) are given functions, and we look for f(x) to minimize J. £, f' and f"

may have to conform to some constraints, which may be incorporated into the

functional by proper fenalty functions.

(S3) £ can be represented by an "equidistant”™ NCSF with n + 1 knots, and
if n is large enough, the approximation converges to any function in Cz[a,b]
superlinearly. (See the "best approximation” theorem in [1] and also a
detailed discussion there of the merit of choosing an NCSF for approximation
in such cases.)

Obviously the problem of searching for the optimal f has now been
transformed to the problem of searching for the best n + 1 y; valués. For

this purpose, we may want to utilize Newton or quasi-Newton search methods

6J

6yi'

may be easier to obtain the partial derivatives of J by the 4n elements of the

which make use of the n + 1 partial derivatives of J(NCSF), However, it

NCSF matrix, which means that we have to do some transformations to obtain the
result we need. Hence we assume that matrix E is given where the elements are

the partial derivatives of J by the 4n corresponding values of the NCSF, i.e.,
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(E can be found numerically or analytically, depending on the case.)

In order to transform the matrix E with its 4n dependent elements to our
required gradient with n + 1 independent partial derivatives, we make use of
cardinal NCSFs, such as X which is an NCSF for Y =1, and y; = 0; ¥ i # k.

If we have Ck, we can use the chain rule to obtain:

e k
1343°

o
<

(23)

-

I i=1 =0

O
Ll‘l\/.\w

Hence, we only need X for k = 0,1,...,n to complete our transformation.
Solving for ck is an instance of (Pl) for each k, but we discuss it in
some further detail (for a reason which will become obvious soon).
Let DX be the analog of A, i1.e., its first column is filled with zeros

th element which is one, and d%l = 0. There is no reason not

except for the k
to prepare DX in advance, and as an example we list here the six pks for n = 5

(which we can use for any lower number as well):

1, 0, 0, -1
0, -3, -3, 6

50 - 0, 9, 15, -24
0, -33, -57, 90

0, 123, 213,  -336

0, 0, 0, 1

1, 3, 3, -7

ol - 0, -12, -18, 30
0, 42, 72,  -114

0, -156, -270 426
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O OO —r~

o o & &

OO OOm

o & a8 & &

OO OOm

o & A &

OO OO~

OO OO~

o & & & &

OO OOOo

o & & & &

OO OOOoO

o & 6 &

OO OOO

But the sharp—eyed readers must have already noticed that given Dl, we

Now by (22) we

actually have DX for any k > 1; so we just need DO and Dl!

obtain

DX - (56%/8)+B

k
C

(24)
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which completes (S3). 0
Incidentally, since in effect we now have the cardinal basis, we can use
it for the direct computation of any equidistant NCSF. Or, put in another

way:

(25) NCSF = )

0

and we only need to store B, D” and Dl for an almost straightforward

application of (25). Also, we do not really have to store the first column of
o9 or Dl, since we know where the "one"” is. It follows that for n rows we
merely need 9ny RAM, which (today) is negligible indeed for ny < 50 or so.

However, even if we had all the Ck ready, we would still need O(nz) additions

and multiplications to use this method, so it is not efficient.

2

Example: We take C2 for 5 knots, i.e., n = 4 as an example. Since C” is an
NCSF, this may serve as an example for (S1) as well. Here B = -45 + 3 x 71 =

168 and 62 = -18 + 3 x 30 = 72, hence -82/8 = ~3/7 and % = D% - (3/7)+B or

0, 0, 0, O o, 1, 0, -1 0,-3/7, 0, 3/7
CZ = 0, O, 0, »1 _(3/7) N 0, -2, -3, 5 = 0, 6/7> 9/7’ -8/7
1, 3, 3, -7 0, 7, 12, -19 1, 0,-15/7, 8/7
0,-12, -18, 30 0, 26, =45, 71 0,-6/7, 9/1, -3/7

Before presenting some applications, we address the issue of computing
CSFs with a large number of knots. The problem here is that the elements of A
and of B tend to grow exponentially in absolute value. We will éeal
explicitly with the equidistant arguments NCSF case—the other being ‘similar.
It turns out that in order £o solve this problem we have to solve the

general CSF problem first (for a small number of knots). Clearly there are
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two degrees of freedom associated with any CSF passing through given knots,
and in (S1) we used them to adjust the second derivative at the endpoints to
zero, while the first derivatives are determined by the algorithm. 1In
general, out of the four derivatives at the endpoints we may wish to set any
two to predetermined values. We now proceed to describe a general method

designed to achieve that.

(P4) TFor the equidistant arguments case, solve for the CSF such that:
1

(1) £ (0) = £4, £ (0) = £5 5 or

(11) £(a) = £, £ (n) = £,'); or

(ii1) £ (0) = £, £ (n) = f.3 or

]

(iv) f"(O) = fél, f '(n) = f;'; or

(v) £(0) = £y, £ (n) = £, ; or, finally,

n

(vi) £ (0) = £, £ (n) = £,.

(S4) We proceed to describe a unified solution for all six cases. This
solution is not necessarily the most efficient for each case separately,
though. The general idea is like (S1)'s, but with two B-type CSF matrices,

namely, B itself and G, which is designed to "adjust” f"(O) as follows:

0, 0, 1, -1
0, -1, . -2, 3
G = 0, 4, 7, -11
0, -15, -26, 41
0, 56, 97, -153

Note that adding A¢G to a CSF adds )\ to f"(O), and leaves f'(O)
unaltered. Since A is designed with f'(O) = f"(O) = 0, it follows that a CSF
, .
with £(0) = £y and £ (0) = £5' is simply A + £5+B + (£ /2)+G--which solves

case (1) immediately. (A more efficient method here would be to start with
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) L) ) tt
the first row of the CSF, namely [yq, fq, £ /2, ¥1 - y90 = fo ~ £ /21, and
proceed with recursive application of (14), (15) and (16).)
In general, for the n + 1 equidistant arguments case, if

CSF = A + A*B + ueG then exactly two of the following equations must hold:

(26a) . A= fo;
1t
(26b) w= £y /2
. 1]
(26¢) a + 2an2 + 3arl3 + Mbnl + 2bn2 + 3bn3) + p.(gnl + 2gn2 + 3gn3) = fn;
Tt
(264) 2anz + 6arl3 + >\(2bnz + 6bn3) + p.(2gn2 + 6gn3) = fn .

Since A and p are the only unknowns, we can obtain them by solving the
appropriate two (independent) linear equations. E.g., in case (ii) we use

(26c) and (26d); case (iii) implies the use of (26a) and (26¢); case (iv)

Tt

implies using (26b) and (26d4); etc. (Note that if we set fé' =f, =0, as in

(P1), then (26b) implies p = 0 and (26d) implies A = ~a/B as in (S1).) 0
We are now prepared to tackle cases with numerous knots, as follows:

(P5) Solve (Pl) for large values of n without numerical problems due to

the exponential growth of the elements of A, B (or G).

(85) 1t 1is always possible to partition the knots to, say, m parts each

with a small enough number of knots, say kj <30, ¥ j=1,2,...m, s.t. the

last endpoint of the j—th part is the first endpoint of the (j + 1)-th part:
¥ j=1,2,...,m - 1. Now, for each part, say j, we can construct an A-type

CSF matrix A7 = . We also have B and G. Therefore,

j
{ars}r=1,...,kj,s=0,...,3
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for any pair of derivatives at the endpoints of part j we can solve the
partial CSF Ad + XjB + ij. It only remains to choose values for the pairs

A so that the resulting CS¥s will comprise the complete NCSF we are

AL
looking for (or, similarly, any other type of CSF as in (P4)). To that end

solve the following system of 2m (five-band-matrix) linear equations:

(27&) p.l = O,

j 3 ]
(27b) akjl + Zaka + 3akj3 + xj(bkjl + 2bkj2 + 3bkj3)

_ gt o g 4= -
+ “j(gkjl + 2gkj2 + 3gkj3) =) + )\j+1b11 +p’j+1°ll’ ¥ji=112,...,m -1,
h| 3 -
(27¢) akj2 + 3akj3 + xj(bka + 3bkj3) + p,j(gkj2 + 3gkj3) =

3 b, o= _
aly + >‘j+1b12 + p,j_*_lglz, ¥ji=1,L2,.c.,m -1,

1
o

m m
(27d) a2t 3akm3 + Km(bka + 3bkm3) + p’m(gka + 3gkm3) =

Clearly, if m 1s.small, our problem is solved, though the complexity is
slightly higher than in (S1)~-chiefly due to the fact that we need two
"correction matrices” (B and G) instead of one. If m is large, note that (27)
can be solved by a similar shooting forward method, and therefore we can
partition it again! 1In theory, for huge values of n we might need 0(log n)

partitions, so our algorithm would become 0(n log n). 0

Application 1l: At this stage we are ready to discuss the highway vertical

alignment problem as an application of (P3). This will also serve as a

nonlinear regression example with any monotone "penalty” function to be



- 16 -

minimized.

In [3,5] it was shown that if we want to optimize the vertical alignment
of a highway—-—that is, plan its elevation along the given horizontal aligmment
in such a manner that the earth moving costs together with the capitalized
projected users costs will be minimized (other costs, such as pavement, land
use, etc., are not sensitive to the vertical alignment)-—then what we have to
do is to minimize a functional defined along the horizontal trajectory as

follows:
tn t tt

(28) J(£) = [, [EMC(£(t) - g(t)) + UC(f (t)) + B(f (t))]de,
-0

where EMC is a convex function of the elevation f minus the ground level g
(EMC is also influenced by the ground side slope, so it variés along the
trajectory, but it is stiil convex as a function of f - g); UC is another
convex function reflecting the users' costs in time and fuel combined (see [4]
for a detailed proof that fuel alone is not sufficient for convexity); and P
is a convex penalty function of the second derivative of the alignmment,
designed to make sure that the vertical curvature of the highway will not be
excessive. In [3,5] it is also demonstrated that the convexity of EMC, UC and
P makes our functional (strictly) convex too, in the sense that only one local
minimum exists, which is also the global minimum. Furthermore, it is easy to
show that if we restrict f to be an NCSF (with equidistant knots or any other
fixed arguments case), then we still have a strictly convex functional on our
hands. Add to that the convergence properties of the NCSF, and it follows
that by specifying enough knots, we can approximate the optimal value of f as
closely as we may wish by an NCSF. (In the partiéular case of the highway

alignment problem the NCSF is very attractive for another reason too, namely,
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that in a sense it minimizes the squared curvature, and the curvature is a
constrained variable for a highway. 1In other words, for a given set of knots,
the NCSF tends to satisfy the curvature constraints [if they can be
satisfied], and it does that along the whole length of the highway.)

It follows that what we have to do is use a search procedure to determine
the optimal values of the knots, using the NCSF to interpolate between them,
and calculating (28) along the NCSF. Now, this could be done by the existing
NCSF procedures (such as B-splines, as discussed in [lj), as well, but our
method has an advantage here, since it allows additional constraints (not
reflected in (28)), on the maximal value of lf - gl, or similar max or wmin
type constraints on the value of f at the knots, to be incorporated into the
search almost without any extra effort, and such constraints are imposed
sometimes for this problem. In contrast, dealing with this issue using
B-splines, would be cumbersome, to say the least. The use of derivatives is
also important but it could be adapted to the B-spline method as well.

When we say that the vertical alignment problem is an instance of
nonlinear regression, what we mean is that we actually sample (although not
necessarily randomly) values of g (the ground level along the highway), and we
can calculate J in (28) numerically as the sum of the values we obtain,
properly weighted. If we sample at equal distances along the highway (but
much more closely than the n + 1 knots!), then we can use the sum of the
values we obtain for the integrand in (28), multiplied by the distance between
our data points, as a numerical approximation for J. In this paper we will
assume this manner of numerical integrafion. In a nonlinear regression
context, we would also have more data points than knots, and we would
generaily want to minimize the sum of the "penalties"” associated with each

data point as a monotone function of the vertical distance between the point
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and £f. Thus, the analogy between the cases is obvious. (However, in [3] a
more sophisticated numerical integration was utilized where if each of our
segments is subdivided to m parts, thus obtaining m + 1 integrand values, then
an NCSF is passed through these values and integrated analytically. This is
easily done since it is a set of polynomials which can be readily
integrated. Finally, the sum of the n integrals thus obtained is used for J.j
| To recapitulate, we have n + 1 equidistant arguments, (substantially)
more than n + 1 data points, each of which "belongs” to one of the segments
(if it happens to coincide with the argument of a knot between segments, it
can be assigned arbitrarily to any one of them), and we wish to minimize the
sum of nonlinear monotone penalties associated with the distances of the data
points from an NCSF passing through n + 1 knots which are our decision
. variables (and thus, under our contfol, possibly with some constraints). We
shall also‘assume convexity. (But if we do not have it, we will still obtain
a minimum, though not necessarily the global one.)

Any search method which does not use derivatives can now be utilized to
locate the optimal values of the knots witﬁin a prescribed tolerance.
However, in the highway vertical alignment instance, and conceivably many
others, the penalty functions associated with the data points are
Vdifferentiable, and this will enable us to use (S3) and obtain the gradient of
J by the n + 1 knots y;. In order to show that, we just need the first "1link"”
in our "chain rule” derivatives of (23), namely, the partial derivatives of J
by the 4n elements of S, Sij These are easily obtained as the sum of the
contributions of all the data points associated with each row (segment). For
instance; if for segment i, & data points are given with tragiformed arguments

. 1]
zi,zi,...zﬁ, then for any of these, say z%, we obtain the values of fj, fj

and fg' (where the index is as for z%):
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3 .
- jym
(29) fj = mZO s;.(23)
! 3 jym1l
(30) £ = (1/a) [ msg (23)
m=1
31 f" = (1/ 2 3  jm2
(31) j = ( AY) Y a(m - 1)sim(zi) .

m=2

Recalling that g is given (see (28)), we now have all the necessary arguments
for EMC, UC and P (which we are using in this example). Since all these are
differentiable, we have the three respective first derivatives of EMC, UC and

P as well. Using the chain rule again we finally obtain:

(32) - % aemc °f5 _ % dEMC
10 © 85, k) dF; 85, b dF
|
(33) _83 _ v oammc f5  auc Ofy
e1 =55 - L g ' T 58,
il j=1 8,  df i1
3 ]
dEMC duc
IR 2]+ Lanp,
j=1 h| af
v 1y
(34) - % (dENC fj ,avc®y | ap %f; -
i2 ~ 88, a 5s. T &S, T §S,
i2 j=1 i2 df . i2 df | i2
3 3
Y aEnMc duc
) [E——( J) + 2=—(1/4))z J + 22— (1/A )],
=1 as | as .
3 ]
and
| 1t
i3 ~ s, Lo U3F, T 8s, T 88, N
i3 j=1 j i3 df, “7i3 df .,
i 3
Y amc duc
= 1 IEREH? 2 Ran)Eh? + e ranhe.

j=1 df. f.
J J 3 j



This, we recall, is "chained" again as per (23) to obtain 8J/&yy, as
required.

This scheme was indeed used to find the optimal vertical alignment of a
"simulated” highway, using a rather complex function for EMC (see [5]). For
P, the following function was used, where p € (0,1) is a small user specified

11
parameter, and p is the constraint for £

T 1

3
(36) Pp(f )

|

[ /% =1+ 012705 (5 /e -o,1)

\ \

' 2 ! 2

[(E /w)™ +p/21/p ;s (F /w1
Both EMC and Pp (and likewise UC) are contindo;sly differentiable. Pp is
based on an idea developed by Zang in [6] for the representation of a step
function by a continuously differentiable approximate function. The smaller
we take p, the sharper the penalty. Pp has the following advantages over
penalty functions such as (f”/p,)2N with a large N (used by some
practitioners): (a) no penalty when we are well within the bound; (b)
virtually no risk of overflow for large deviations from the bound. Also,by
tightening p between iterations the bound may be forced as closely as we may
wish, without serious numerical problems. In practice we used p = 0.01 which
was tight enough to begin with (since the real bound is rather arbitrary
anyway), and no numerical problems were encountered. We may note here that UC
may include a "built in" bound on f', but, as discussed in [3,5], this bOuﬁd

can be much higher than those practiced by highway engineers today, since UC

takes care of the users' interest, instead of a tighter bound.
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Before we conclude the discussion, note that for a regression situation
the data may be scattered unevenly, and this may motivate us to use variable
distances between the arguments, as in (P2). This can be done without any
difficulty (even though it may be cumbersome). However, if we do that we have
to decide where to place the arguments in addition to the decisions concerning
the vi values, thus it would be wasteful in terms of degrees of freedom.
Rather than do that, we can double the number of the knots! Therefore this
refinement will not be beneficial in most cases. If we take into account the
complexity of (S2) relative to (S51), and the additional programming effort, we
might be justified in omitting this extension. However, other situations may
egist where we will have to use (S2). For instance, it is possible to obtain
a fair approximation of the elastica itself by parametric NCSFs, but in this
case we cannot maintain the distances equal, and have to resort to (82).

Before discussing the'elastica case, however, we describe an application

to a curve fitting proBlem where practically the equidistant knots proved

successful, even though at first glance it seems they would not do.

Application 2: Having solved the highway vertical alignment problem we now

tackle the horizontal alignment as well. 1In this case we are looking for a
curve which may not be approximable by any function, due to the possibility of
backwards bends. In addition, both the convexity result we had for the
vertical alignment, and the analytic derivatives we had there, cannot be
generalized for the horizontal case (which is the reason we chose to decogpose
the alignﬁent problem in the first place).

Since we cannot use any regular function (though it has been done in
practice by some), we choose to use a parametric function. Specifically, we
choose to use parametric NCSFs (see [1]) for x(t) and y(t), where for t we use

an approximation of the cumulative distance along the chosen alignment.
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(Below when discussing the elastica again, we elaborate on the reason t cannot
be taken as the exact cumulative distance, though we would like that to
happen.)

Usually, when we look for the exact (or nearly exact) horizontal
alignment, we do so after having found an approximate piecewise linear
alignment (see [4] for an extensive discussion of this part of the problem).
This piecewise linear solution is actually a set of knots py = (xi,yi);
i=0,1,...,n (which we may later add to, delete from, shift around, etc.).
In order to pass a parametric NCSF. through these knots, we initialize a
vector t € Rn+1 where ty = 0, t; = t;_; + d(pi_l,pi); i=1,2,...,n and
d(pi,pj) is the Euclidean distance between knot p; and knot Py With
this t, there is no problem in finding NCSFs for x(t) and for y(t) (here t is
taken as a continuous parameter, having the values t; at the knots). Now we
may correct the value of t by taking a numerical integral of
[(%%92 + (%%92]1/2 along it (NCSFs may be useful for this numerical
integration too). In practice t converges very fast—-one or two iterations.
We do not offer ardy theoretical results for that issue here, however.

Note that for this procedure we must use (S2), since the distances
between the knot§ may not be equal. We may continue this way, and use a
search method to relocate the knots until our objective function—-calculated
by solving (28) for the given knots—-is minimized. (We do not discuss
stopping criteria here.)

However, the original knots have no special importance to us. Hence we
may redistribute them along the smooth trajectory obtained after the first
iteration, in such a manner that they will be equidistant! Also, when

searching for better locations for them, shifts perpendicular to the present

trajectory are practically sufficient. However, every once in a while we may
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have to readjust to maintain the equidistance property to a sufficient
degree. We may also wish to redefine the perpendicular search directions on
these occasions

This scheme was adopted, satisfactorily, in [3].

The last case we discuss 1is the case of the elastica itself. Since
parametric splines can approximate any curve in C2, and since they do stém

from the elastica, the temptation to apply them is. too strong to resist.

Application 3: Through n given knots, pass the elastica. I.e., find a curve

which satisfies (1) through (7).

Pseudo-Theorem: 1If the parametric spline (as discussed in Application 2 for

the given knots) converges, it is the elastica for the same knots.

Pseudo-Proof: Convergence implies that the cumulative length of the "spring"

along the knots 1s the same for x(t) and for y(t) since the knots t; are the
same for them. (As an aside, this makes it worth our while to store the "B
type” matrix of (S2), to use on both x(t)'s and y(t)'s NCSFs

approximations.) Now, by Holladay's theorem (see in [1]), NCSF(x) minimizes

t 2
(37) [EH? ae.
0 dt

Similarly NCSF(y) minimizes

t d2
(38) [P dt.
t 2
0 dt
So obviously their sum minimizes (1). Also, NCSF(x), NCSF(y) is certainly a

curve in CZ, as required by (2), and it is easy to see that 1t satisfies 3),

(4) and (5). (6) and (7) are taken care of by the stipulated convergence of t
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to the cumulative distance at the knots. a

Note that the convergence requirement is not really restrictive, since
the elastica is indeed not guaranteed to converge, unless the length is
bounded!

It turns out that the pseudo—proof would be a valid one except for the
very last sentence. Indeed, the parameter t can be made to match the length

at the knots themselves, but along the trajectory (6) is not satisfied! This

is especially significant if the curve changes its direction considerably
between some consecutive pairs of knots, while else it is practically not an
issue.

The pseudo-theorem does indicate that the parametric spline can serve as
an approkimation to the elastica-——but this was to be expected anyway, since
the elastica is in CZ. However, the really important point is that if dx/dy
remains fairly constant between each pair of knots, then the parametric spline
converges to the elastica. This is a simple generalization of the claim
(mentioned above, and see [1]), that 1if y' is small enough, the NCSF converges
to the elastica.

What we can do, then, is to add a sufficient number of “search-knots”
between mal-behaved pairs of "fixed" knots, pass parametric splines through
all knots, and search for the 5est location of the search knots so as to
mninimize (1). -

Furthermore, since NCSFs are differentiable, extending (S3) to (P2) will
enable us to use analytic derivatives for this search. Note that between
pairs the searcﬁ knots can be distributed equidistantly, if we so wish, which
would make some of the v; (see S2) equal to 1, with adjustments necessary only
at the fixed knots.

Also note that using this method it is very easy to force the total
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length to be any specified wvalue, so long as it is long enough to connect the
fixed knots with & > 0 to spare (else (1) would be unbounded). This version
may be of some interest to engineers and physicists.

In conclusion of this example, the cycle elastica-NCSF-elastica has been
closed, for any set of knots. (In contrast Malcolm [2] specifies
2y < x < ... < x, or similarly for y.) However, it remains to test the

efficiency of the algorithm as compared to other methods in practice.
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