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RANDOM BEHAVIOR IN NUMERICAL ANALYSIS, DECISION THEORY,
AND MACROSYSTEMS: SOME IMPOSSIBILITY THEOREMS!

Donald 6. Saari
Department of Mathematics
Nor thwestern University
Evanston, Il1linois 40201

t{Thic is & written vercion of invited talks given at a conference on
"Dvnamics of Macrosystems" in Laxenburg, Austria, which was sponsored by IIASA,
ard &t & conference on "épplied Mathematics, Syztems Analrsic and Computer
Software" in Oclo and Geilo, Norway, which was sponsored by the Nordic Council for
Recearch Policy. Both conferences were held during September, 1%984.)
Aabztract: For many topics, including decicicon analysie, policy making, and the
normative ctudy of certain macrcsvstems, toole of analreis are applied to
determine the ecsence or the state of a problem. The one commconatity among thece
toole is that we want them to be "reliable". For certain ctandard toole, it ic
shown that thic goal @f reliability mar be impossible to attain. For come of
thece impossibility cstatemente, alternative approaches are csuggested.

1. Introduction

Certain bacic toole are commonly uced hoth with decicsion analveic and with
macrosystems. Some of these tools are devices designed to be incorparated within
the system in order to assist and to influence the subcequent dynamice. For
ingtarce, thic includes any method used to facilitate the decicsion making within
an crganizatien. Here an ocbvioue example would be voting methods used to
agaregate individual differing rankings over ceveral alternatives into one common
group ranking. Other types of tools are the techniquee used in systems analyeis.
On a theoretical level, thic may be an algorithm designed to seek a zero of a
smoGth function -~ such & zero may correspond to an equilibrium or an optimal point
for a system, Or, it may be an inteqer programming problem used to determine an
efficient policy. It may be the staticstical and probabilistic toole developed to

understand and to interpret data - perhaps to aid in a decision analysic or a



policy decision.

Central to the celection of any tool is the requirement that it is reliable,
Here there are at least two criteria. First of all, the tool should apply for all
of the situations within & clase of interect; that is, we ceek univercal
mechanisme. For instance, when we search for a zero or an equilibria of a
function g, we prefer to use an algorithm which always will work as long as g is
sufficiently smooth. Indeed, thic is part of the historical attraction of the
tatonnement story from economicsy it hac been viewed as being & universal
mechanicm where the market forces of supply and demand iteratively converge to a
markKet equilbrium price.

& mechaniem or tool is celected to achieve a specified coal. Consequently, a
cecond crucial condition is that the tool doesn’t lead to unexpected surprises,

conclusions, or consequences which may viclate or vitiate our objectives; we want

the putcomes to consictently reflect these objectives. For instance, in the

thoice of a voting method, we want the final recylt to accurately reflect the
preferencec of the electorate. Az a hypothetical example, concidger the probliem of
celecting a common beverage for lunch where a voting method ic uzed to guide us in
the decision process. Suppoce a vote leads to the ordering wine > water > beer,
Shouid wine be unavailable, we would expect toc be able to replace 1t with the
second ranked choice of water free of fear that a majority of the pecple really
would have preferred beer.

AN imposzibility theorem aricsec when certain basic objectives are {frustrated;
when there doecsn’t exist a device or a mechanism which catisfies the specified
criteria. Therefore, the theme cf this paper)which ig that impossibility thecrems
play an important role in the system sciences, is somewhat disturbing. Often such
theorems arise because mechanieme viclate conditionse which are "intuitively
obvicus": in thic setting, an impocsibility cstatement is called a "paradox"”,

In thie paper, 1711 consider several paradoxecs and impoccibility theorems
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with three goals in mind. The firct is to introduce several new impossibility
thecrems related to the topics mentioned above., The second is to take thece
seemingly disparate results and to unify them by chowing that they have a common
explanation. <Although I will not develop the theme here, this approach relates
these new results to ceveral important paradoxes such as Arrow’s Theorem, the
Alabama paradox of apporticnment, etc.) Finally, 111 briefly note some recearch,
still in its infancy, which has the goal either to circumvent, or to handle the

disturbing concequences of thece impcssibiiity results,

2.The source of the problem

~11 of the resulte to be discucssed here are caused by the ipverse image of

certain functiong being multivalued in & particular manner. To understand the

bacic itdea, concider the function f represented in Figure 1.

A'B ¢ D E

The inverce function, f-i, clearly is multi-valued; indeed, in thic figure, the
intervals A, B, C, D, E decignate those regions over which ¥-! ic cingle valued.
To see what mischief this multivalued property can create, consider the
trajectories of the deterministic svziem

2.1 Xxw+t = fixnd,

This system admits five equilibr a given by the intercection of the graph of
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y=fi{x) with the diagonal y=x; and the three asvmptotically stable points are those
equilibria in the regione A, €, E. (At thece points |f71<{1.) BRut, there ic much
mcre interecsting dyvnamice going on in the intervals B, C, and D than can be
captured by any stability analyete. For inctance, I contend that there exict

trajectories of thic deterministic system which are as "random" ac you desire! By

this I mean it is possible to specify in advance in which of thece intervals the

WTH iterate will land for all values of N=0,1,... This celection can be made by
any means decired, say & random process, and there will exist initial iteratec
with trajectoriez which will follow the cpecified pattern. For inctance, choose
the interval 1n which vou wich the initial point, xo, toc be, sar D, hen chaoze
the interval in which vou wicsh x=fi{xy) to be, car B, Continuing in this

fachion, < f» the interval in which the iTH iterate chould ltand. This

©
[4:]
(m)
-+,

definec a cequernice of labelled interwvales, csay
2,20 S= (D, B, O, ...7
where -~-& KTH szwmbcol decignates the interval in which %k-; chould be.
To establich the existence of a trajectory which will follow this designated
future, a judicious choice of the multiple inverce images will be made. T~ - do
this, let Sy dencte the finite sequence consisting of the first N entr == of &.
Then, tn an iterative fachion, we will determine all initial iterates for which at
least the firet (N-1) iteratec do what they are suppcsed to doj thery follow the
pattern given by Sn. Let K(Snw) be thic set. For inctance, for the above
choice of S, KiSz2) is the set of pointe in D which are mapped to B, the closure
of B; 1.e., Ki&;2 = f"(B’)r\D. Because the image of f rectricted tc D, 4o,
covers the cet B, thic ic the closed subset f-1p(B"),

To determine Ki(S3?, we first determine, ac above, the <et K({B,C}) =
$-1giC"). This is a closed subset of the interval B. As a result, K(§3) =
folplKRe{B,C3)) = f-1pif-1g{C")) ics & closed subset of Ki&z2)., Continuing

in this fashion, it follows that KiSy) is a nonempty, cloced subset of
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KiSw-12. (It is nonempty because the image of fg, k=B,C,D, covers the union
of all three intervale.)

The cought after cset ic given by
.2 ki = [) Kisw.

Thic cset is nonempty because it is given by the intercection of a necsted,
decreasing sequence of nonempty, compact sets, Thic establishes the existence of
arbiite with the behavior specified by S.

Some properties can be extracted immediately from this derivation. While
moet of them will not be explictly exploited in what follows, it should be clear
that ther provide additional information about the typez of behavior of systems
which we will be discussing,

1. Because there are an uncountable number of possible cequences &, there
are an uncountable number of setc KiS). For an uncountable number of thece sets,
convergence to equilibria ie imposcsible.

2, The cxyctem can exhibit sencitivitiy with reespect to initial conditions.
By using the figure to determine the set K{{D,B,C3}>», it is clear that theze sets
decreace in <ize quite rapidly. However, the initial pointe for any two
trajectories which define the same Sn, but which differ quite radically after
the NTH iterate, are in the same cet K(Sny?». This meanc that near-by points

mar have radically different futures,

3. For any Sn, KiSn) containe a nonempty open set of points which
converge to one of the equilibiria. This is because the image of f restricted to
any of thece three intervals meets A and E. Consequently, there are open cete of
points where the first N-1 iterates obey the specified pattern of Sw, and then
the WYH jterates are either in A or in E. In either cace, all subcequent
iterates asymptotically tend to an equilibria. This has several implications:

a? The bacsin of attraction for an equilibrium can be extremely complex.

b> There has been about 1027 seconds of time since the "Big Bang”. The
fastest computers on the drawing boards are projected to do 10!'2 cperations
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per second. Hence, for computatiocnal! purpoces, anr stable point in K(&N),

where N>1032 and where the last two entriec of Sy differ, are unstabie

for any practical purposes.

The above nected set construction, which depends upcon the properties of the
multivalued aspects of f-!, and the accompanying properties listed above are the
escential tdeas behind the following impossilbity thecrems. (For a comprehensive
discussion of iterative dynamics, chaos, and random motion, I highly recommend

[1,21.)

3. Rpplications

Baced upon the diccuccsion in Section 2, it iz clear that iterative dyvnamics
of deterministic syctems can lead to random, unexpected behavior. Thics iIs
particularly so should f-!' be multivalued in & <sencze indicated above. Ag cuch,
examples exhibiting this behavior are plentiful and easy tc find. For instance, a
macrosyetem where all sorte of examples and applications of this tvpe arice i¢ the
gerieral area of biclogy; this type of random motion cccurs in discrete
preditor-prey models, in the Volterra equatione adiusted for ceasonal effects, in
population genetics, etc. Other areacs include the motion of & projectile entering
the atmosphere (depending upcn ite angle of entry), and on and cn.

It 1en”t as obvious that the same behavior ic manifested in common tools of

analysis. These are the topics 1711 consider here.

Numerical Analysis [31]

Concider the problem of determining a zero of a smooth function g. To be
more specific, let
3.1 GK = { o CK+!1[0,13 | glldgily £ 03,

(The product condition is imposed only to ensure that a function from GK has a
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zero. It can be replaced with a more restrictive condition such as gv0)2>0,
gi3d<0, or with a weaker condition that g has & 2zero in [0.11.) The goal is to
find a universal algorithm; an algorithm which will determine a zero for any
function g in G*

Ferhape the best Known algorithm ic the Newtconian 1terative scheme

AN+1 = XN~ {glxn)/g (xXN1..
However, from the work of Barnma [4] (alsc see [5,6,71), we Know that such a scheme
isn“t universal; there exist poiynomials and initial points so that this scheme
never converges, So, the issue becomes to determine what information we need in
order to design an universal algorithm. A standard approach, which is in the
spirit of Newton'= method, is to ceek this information in terme of the valuecs cof
Qy ite first K derivatives, and the location of the initial iterates. <{Actually,
the goal 1e to find the class of all cuch univercal algorithme so that an optimal

choice, say in terms of computer costs or complexity, could be made.)

Definition 1. A mechanism is given by (M,D) where M is a piecewise, smooth
function from RX+! to R, and D is a subset of [0,1]. The mechanism defines the
iterative scheme

3.2) xN+t = xn + M(g(xn) .. ,00K2(xN))

where x¢ is in the set D. The mechanism (M,D) is a universal mechanism if for
any g in GK, the sequence defined by Eq 3.2 converges to some zero of g.

For the Newton algorithm, M{u,v,...7 = -u/v. The problem 15 to determine all

choices of (M,D} which are univercal mechanisms.,

Theorem 1. There does not exist a universal algorithm for GXK which is of the
type specified in Eq. 3.2.

The bacic i1dea for the proof of this theorem is that no matter how you choose
M and D, there still exists an open set of functions in GK such that (x+M)-!
is multivalued in a sense cimilar to that decscribed in the previous section. fAs
such, convergence will not occur.

A natural question is whether one could possibly destgn a more creative



Page &
algorithm -~ based upon additional information -~ toc cvercome this negative
ctatement., For inctance, perhape by incorporating a memory of the last "A"
iterates, an algorithm could be decigned to recognize earlier micstakes and to make
the appropriate adiustmente. In thic case, the algorithm would acseume the form
2.3 XN+ i=xN HMOGUxND o, g ETONND L G X N=-aY g, QK IXN-RD D
Again, the goal is to characterize the set of all (M,D)’'c which are universal
mechanisme; again an impossibility theorem recults., In fact,
Theorem 2. For any (M,D) where M is of the type given in Eq 3.3 and {for any
integer s>A&, there is an open set, B, of functions in G¥ so that if g is in B
then the trajectories of Eq. 3.3 tend toward an attractive periodic orbit of
period s.

In cther words, for any cuch g, there is an cpen cet of initial conditiane
where the trajectoriec oscillate with a periodicity Jjuct cutside the Timits of
memeory of the algorithm; thece iterates will never approach a small neighborhood
of any o+ the zeros of g. Thece results suggest that to define an effective,
universal algorithm, cother techniquee and approaches are required.

Recently, questions concerning the "complexity of algorithms" have been
ctudied to determine whether one is better than ancther., #&gain, come of these
concepts are stated from the viewpoint of "universality". HNamely, these
defintticns are in terms of the "worse cace" situaticons; in the worse case, how
many iteratec are needed to determine a zero of a function., A combination of the
ideas in the praoof of the abcove thecrem and Comment 3 in the last section can be
used to chow that for any M of the type given in Eq. 3.2, {which includec Eq 3.27,

here existe an open set of functions B in GK with the property that if g is in

B, then there is an open cet of "convergent” points for which convergence could
never be diccovered on any computer; the bounde on the number of required i1terates
to reach a small neighbtorhood of a zero can be made arbitrarily large.

Inctdently, these thecrems extend to functions from RN to RN,
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Price Dynamics [31.

The ctandard tatonnement story from economice deszcribes how the market forces
of supply and demand adjust the prices so that the iteratec converge to a price
equilibrium where supply equals demand. One attraction of thic etory is that it
describes a self-regqulating univercal mechanism which determines an equilibrium,
But, is this story correct?

It 15 known from the work of H. Sonnencchein, G. Debreu, and others (€] that
any function in the cet {gﬁtKlg(O')}-O,g(l)(O} serves as the excess demand
function for some standard, nec-clacssical econmomy. Thue, it followe from the
above that the standard tatonnement story will not always work even for the highty
restrictive cetting of only ¢ commodities! (The tatcrnement story correcponde to
the mechanism Migix)r=gi{x).,} Moreover, it alco follows from the above that there
doeen”’t exist a mechanism veing the past history of markKet forces ac captured by
the excecs demand function (which may be used ta model speculation, anticipation,
etc.) of the nature given in Eq 3.2 which will serve ac a univercal price
mechanism. Consequently, the existence of such an universal mechanism, if cne
even existe, must depend upcon a different form of information, and at this stage

it isn’t clear what it should be.

4. The tools of decision analysis

The iteration xn+1=fi{xn) can be exprecced as
XN=Fixn- =+ {xn-200=...=fR{xp); or xn=fNixp). This means we are
examining a specific sequence of functions {(fN} (which happen to be obtained by
composition), and analyzing the images as governed by a common domain point, xo.
A natural extension is to eliminate the restriction that these functions (N3

are derived in this spectal manner, lInctead, let {fny3 be any given sequence of
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functions where fnN:Bo---3Bn.

The question is the same; for a cpecified cequence of behavior described in
the different spaces Bn, does there exist & common point p in By such that
fuip) will have the decired decignated "random" future? Thic ic the type of
model I"}] discuse in this cection. (Traditionally, examplec of the type I will be
describing are analyvzed in a "static" setting. An advantage of the "dyvnamic"
approach advocated here is that it cuggests the natural extensions of well-Known

paradoxes, and it suggests the approach to determine whether they exist.)

Voting [%,10]

Concider the earlier hypothetical example concerning the choice of a luncheon
beverage among wine (wi), water (wa), and beer (ke), Assume there are 9 voters
where 4 have the ranking wibedwa, 3 have the ranking warbedwi, and 2 have the
ranking be’wi>wa., Using the customary plurality voting scheme where you vote for
your first place alternative, the group ranking ic wijwarbe with the tally cof
4,3,2.

For this voting model, By ic the zpace of all of the ware in which the ¢
people could linearly rank the three alternatives in a linear, ordinal fashion.
So, a point p in Bo represents a cpecific choice of the individual rankinge for
the voters, f3ip) ic the resulting ranking for the group, and B3y is the set of
all Yinear, ordinz’ ranv¥ings of the three alternatives. In general, if there are
N alternatives, then By corresponds to the N! wavs in which these N alternatives
can ke linearly ordered. MNote that in this cetting, the spaces Bn change with
the value of N=0,1,...

Thic example il1lustrates that plurality voting doesn’t provide us with a
desired consistency property. For inztance, if wine isn”t available, then the
above ranking suggests that watér would be the group‘s next choice. But ie i1t? In

fact, 273 of these people prefer beer to water, Indeed, a majority of them even
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prefer beer to wine! Thue, the ocutcome obtained by using this tool for decision
makKing is tnconsistent with majority sentiment over any of the poscible pairwice
comparicsoneg!

Im this example, the voting method is characterized by the vector W=:{1,0,07,
One scurce of the difficulty i the +z22t% that lower level preferencec aren”t
accounted for. A poscible remedy would be to use a vector, such ac W=02,1,0).
{Here, a firct place alternative is ascigned 2 points, a second place alternative

i

n

ascigned 1 point and a third place alternative is assigned 0 points.? With
this system, the group’s ranking becomes berwi’wa with a tally of 11, 10, 6.
Notice that for thic particular example, the reculting ranking is consictent with
how a majority view each of the three poccible pairwise comparisons,

In general, the problem becomes one of choceing a voting metheod
WN=Cwg un o W), wis 8wk, wWidwn, where wg points are tallied for &
voxter’e KTH place alternative., The objective is toc chooce a WH to "avoid”
surprisecs; to find a method which will preserve consistency in the group”’s
rankings as alternatives are eliminated. However, a clascical result due to K,
Arrow [11] ascerts the impaossibility of choosing a WN, N23, without running into
a phenomena of the type exhibited above -- for any voting method it is poscsible to
find examples where the group’s ordering ranks some cne alternative cver another
even though a majority of the votere would have the opposite ranking for this
particular pair.

The goal for sccial cheoice must be modified; the new goal ten’t to find

Q

absolute consistency, but rather to find a set of vectors WYX, j=2,3,..,N,

which will precerve as much consistency in the different rankings of alternatives
as poscsible., But, the fcollowing theorem cshows that even should alternatives be
eliminated ¢cr added? in a simple monotonic fachion, there are serious obstacles

in achieving this goal - for zny chcice of a voting method, no relatronship

whatcecever need be retatned among the rankings of the different subsets of
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alternatives'! HNotice what this conclusion impliec about "run-off elections” anc
other procedures such as the "Hare method”.
Theorem. Let &>2 alternatives, {ax), k=1,2,..,N, be given. For j=2,3,..,N,
tet Sy={ai,..,as3. Let Al; be an arbitrary, linear, ordinal ranking of
Sy; that is, Aly is some element of By. Let Wy be any voting vector used
to rank S;. Then, there exicst examples of voters, each with a fixed, linear,
ordinal ranking of the N alternatives, such that for each j=2,..,N, when these
same voters rank the alternatives in S; by use of W', the outcome is Aly.

This result is an impossibility theorem acsserting the inability ever to
dezign voting (hallot) methods even with liberal allowances for inconsistencies
suggested by this theorem; leave alone the stricter requirements imposed by Arrow.
This result means that all sorte of counter-intuitive examples can be created;
€.q., we can find examples where the cutcome changes periodically with the number
of alternatives. For incstance, for N alternatives, there exist examplies of
voters’ preferences “i.e,, a point p in Bg) sa that the outcome is
arraz2r...2ay when J is even, but just the copposite whenever | ie odd.
Consequently, even though the votere vote in & consistent fashion, the group’s
outcomes cscillate as a;ray; for Sz, asazray for Sa,
ajrazrazlas for 54, ... In other words, Arrow’s thearem, asserting the
inconsistency of an cutcome at the binary level was only the tip of this iceberg
of possible inconsistencies!

Compare the cstatement of this theorem with that of the iterative example
given in Section 2. In each setting, the image of fn is selected in a random
fachion. In each case, f-ty ie multi-valued, <For instance, for W3={2,1,0),
there are many choices of the rankings for the individuals which lead to the came
ranking be’wirwa.) Although the technical details differ significantly, the proof
of this theorem can be viewed as being based on an intersection argument similar
to that given in Section 2, <Incidently, a related argument will provide an
alternative proof and extensions for the classical Arrow theorem.?

However, this goal of finding a proper choice of a voting system - a WN
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which minimizes the number and the types of paradoxes and inconsistencies - still
holds, and it can be ancwered. By increasing the number of subcets of the N
alternatives which need to be ranked (e.g., by requiring that not juct those
subicets ctated in the theorem must be ranmked, but all possible subzets of the
alternatives must be ranked’, it turns out that the Borda method,
BN=(N-1,N-2,..,0), ic the unique "best choice" method to reduce the
inconsictencies of voting. Thics will be described in a subsequent paper. (Also,

cee [7).)

Probability and Statistics [?]

The tocols of probability and ctatistice are not only indispencible for the
analyeis of data, but their concepts have become crucial in the development of
several other areas. For instance, such bfic ideas are fundamental for decision
making ‘e.g., the Nach Baysian decicicn analyeic which currently is popular in
management science’, in thecoretical constructs (such as in the evolutional stable
strategies tn Biclogyd, and in numereous cther areas. But, are thesce tocle
reliable? Can ther cause curprises and unexpected, undesired behavior?

That they can should be expected from the fact that the inverce image of
standard probability constructs generally are multi-valued. A simple illustration
of these unexpected inconsicstencies can be cbtained by identifying an important
ranking problem from statistics with the voting discussion given above. MNamely,
consider the problem of determining which one of N firms produces the highest
quality product, say a certain tvpe of csteel. An obvious approach to sclve this
problem would be to collect camples from the N firms; after the camples are
compared, they are rank ordered, In this way, each sample describes a rank
crdering of the firms, <o a sample point can be identified with a voter who has &

particular ordering of the N alternatives.
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Before a decision is made, the problem is to aggregate the infocrmation
embedded in several samples. But thic problem ic equivalent to the voting problem
of aggregating voters” preferences. For inctance, a natural approach would be to
celect the firm which hace the top rating over most zamples., Thic ic equivalent to
using the plurality voting method WN=¢!,0,.,,0). Thus, this problem inherits all
of the difficulties, inconcistencies, imposcibility theoreme, and complexitiec
described above in the <ection on voting. <«Moreover, the Borda Count is the
urique cet of weights to reduce the number of inconsicstenciecs.)

Even more can occur; it turns out that pairwise comparisons cof the firms can
lead to any decired paradox, To see thie, concider the process where from the
samplec we compare the quality of firm K with that of firm §, where firm j is
better than firm K iff for & majority of the samples, firm § had a better product
than that of firm k. HNow, for each of the NiN-1)/2 different choices of firme,
designate (in a completely random fachion if you like) which firm is to be the
better one. It turns cut that there exist examples of data which will satisfy &i’
ot thece (possibly inconsistent) rankinge simultaneously! [?)

In both of these examples, the rankings are determined by "inequalities”,
thue the inverce image of the defining functions are, in general, multivalued.
From this and an independence condition, the above conclusions follow, and they
chould be expected.

This difficulty for probability and statistics extends to other constructs
for much the same reason. For instance, the concept of “conditional probability”
has been used in all sortse of models of decision analysis {"do thie if that
cccurs"), economic and pclitical science models ("because we are in such a
situation, we can expect ..."), etc., But, ic there a consictency which is
preserved as the conditions change - even if they change in a simple, monotonic
fashiion? The answer is no, not necescarily!

The easiest way to illustrate this is to consider the following game which
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involves a decision., There are two urns marked I and 11; both contain a mixture
of red and blue marbles. The game ic for vou to select one of the two urnse, and
then, at random, select a marble from thic urn. Success is if vou selected a red
martile. The decicion problem ic, of course, to celect the urn which maximizes
vour chance for success.

Now cuppose there are two sets of urns labelled (Ily,I1ty), j=1,2, where
it is Known that from either set of urns it is more likely to select a red marble
from the urn 1!y than from the urn I1'y; i.e., PCRITVSIDPCRITIN Y, j=1,2,
where R is the random variable indicating that a red marble has been selected,
For this setting, the decicion analyesis is trivial to resolve -~ celect urn Ity,

Suppose that the marbles from urns 1!, and 1!z are poured into an urn
I1¢, while those from 11V, and 11'z are poured into an urn 110, You have
the same decision problem, but now with these new urns. MWhich urn should vou
celect? Presumably by now the reader hac develcoped enough caution to avoid the
"“intuitively obvious" answer of urn 10, This is fortunate because the same
random behavicor exicets; for either choice of the sign of F(RII®)Y-P(RIIIC),
many examples illustrating this behavior can be found. <(For the sKeptic, consider
the fcllowing allocation: Ity has @ red cut of 24 marbles, 11!} has 2 red out
of 6 marbles, 1!z has 3 red out of & marbles, and Il'z has 1! red out of 24
marbles, A simple computation showe that PC(RIT!/ ) XP(RITI;), =1,2, but
PCRITGYSPCRITION D

This behavior ic Known as Simpson’s paradox [12,13], and it can be extended
in many directions [?l. For instance, the number of urnc in each set can be mcre
than two, the number can vary, etc. It can be extended to N levels, where
initially there are 2N cets of urns. Then, the marbles from urns INz2y-y and
IN;y are poured into an urn labelled IN-1;, while thcose from IINz5., and
IIN;; are poured into an urn IIN-ty, This defines the contents of the 2N-!

sets of urns at the (N-1)TH Jevel, This process is continued through the
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different levels, k=0,..,N. The problem concerns whether there needs toc be any
consistency in the signs of PC(RITKs)-PCRITIKsY, k=0,1,2,..,N, s=1,2,..,2¥,
It turns out that ttiere need not be; for each choice of the indices, you can
choose the sign in an arbitrary fashion, and there exicst initial apportionments of
marbles so that all conclusions will be cimultaneously satisfied! Again, the
proof can be viewed as being based upon an "intersection argument”, where By is
the space of initial allocations of marbles tco the urns.

The implications of this result for decision maKing should be obvicus, It
points out that the compornent parts of a decision analysis can differ sharply from
ite aggreqate. For incstance, cuppose the problem is comparing success ratec of
two different methods; say a comparison of the prcposed cure of & dicsease with the
standard method. In thic setting, the urns IK; correspond tc pool of people
being subjected to the new treatment, while 11Ky corresponds to those receiving
the standard treatments; the indices identify the locations where the experiments
are being conducted and the level of aagregation of these figurecs. (If k=N, then
the figures are the raw figures at the experimental locations. If K<{N, then the
figures correspond to a partial agaregration of the result at different
locations.) If R corresponds to "regaining health", then the cign of
P(RiIKz)-P{RIII¥s) indicates which treatment was more successful at that
particular cite and level of aqgregation. The above indicates that the
conclusions from such a study can be random and highly unexpected; local
concltusions may differ from a global, or from a partially aggregated analycis.

This result impacts on decision analysis on the comparison of two Cor more?
strategies I and II, say tn a military context or in an economic plan faor a
society. Here we see the existence of the apparent anomaly that, on the global
level, ctrategy I i1s better than strategy II, PCRITOIIPCRIIIC), evern though
thiz same <trateqr is weaker in each cf the local situations,

PCRITEGDCKPORITIKRGY for all k>0 and j. A phenomena of this tvpe occurred at



Page 17
Berkely [14]. The objective was for the university to improve the percentage of
women it hired in ore year (I) over the preceeding year (II>. The stategy to
accomplish this was for each of the academic units to increase its hiring
percentage of women (F{RIT;)>P(RITI; ;Y. But, the aggregated results for the

total university chowed a reversal, (PI{RIT){P(RIII))!)

S. Summar)y

From this brief deccription, it chould be clear that random, unexpected
behavior can occur not onl¥ in determinictic dyvnamics, say the dynamics of
decicston theory or of macrozysteme, but also in the basic tocole employed to
analyze them, and in the devicses designed to be implanted within srstems to
facilitate certain procecsses (as price mechaniemse in economice or voting in
political science>. In this survey, 17ve selectively described only standard
tools - tools coming from rumerical methods, voting, and probability - which are
common and familiar to most readers. However, it is easy to demonstrate that the
same phenomena extends to optimizaticon problems [13] {ecuch as optimal growth or
overlapping generations problems?, to integer programming problems (such as an
apportionment problem of the type coming from the acssignment of legislative seats
or draft quotas to regions, or in the economics of decision making), and on and

on. Indeed, it probably ic cafe toc speculate that such behavior is prevalent in

the tcols of decicion making and in macrosystems; cuch a speculative comment is

bazed upon the fact that for most tools of analysis, inverse images of the Key
detining functions generally are multivalued!

But, if random, unexpected behavior is an inherient part of these tools -- a
fact which reducecs their reliability -~ then we are faced with a serious problem.
Decicsions must be made, syctems must be analyzed, certain tools must be used!

This means that these systems must be analyzed to determine the root cauces for
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this behavior; then this information must be used either to develop indicators
which will warn when such counterintuitive behavior is occurring, or to wesion
different approaches which will eliminate these problems. The first approach is
needed where a system is alrexdy specified, as in a gambling problem where the
dice are given, ac in the dynamics of evolution, as in a strategic situation where
the laws of probability are already defined (an analysics of population data,
strategic planning, gambling, etc.), or as in a voting situation where the type of
ballot tally ic decignated by law. Here the iccue becomes to develop the
appropriate tools of information to ascertain, in advance, whether or not the
randaom, unexpected hehavior applies to the existing, current situation. This w.]
warn us when an accompanying decision analyvsis need not be "monotone” - when the
conclusions need not mean what we are assuming they mean - and we need to know
this.

R different avenue is open for the "decign” of tools; the decign of
algorithms to achieve a specified goal, the design of probabilistic techniques
which avoid certain pitfalls, or the deczign of mechanisme which achieve a desired,
self-enforcing <tatus within a macrosystem such as in economics and in political
science. Here the objective or the goal of the desired mechanism is ctated; the
design problem is to determine what type of information structures, communication
rules, and decisiocn approaches can be applied to implement thece goale., On cne
hand, this may involve finding or designing a procedure which does minimal damage
to these goals (as in the choice of a Borda count for voting>. On the cther hand,
it may involve finding structures which elimirnate the existernce of these random
behaviors. Here, following the 1lead of L. Hurwicz, some work at an initial stage

has been done. [148].
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