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Euler's Problem of Polygon Division

and Full Steiner Topologies ~ A Duality

Abstract

In this paper we show that the problem of finding all the possible
divisions of a convex planar polygon into triangles by diagonals is identical
to the problem of finding all the full Steiner tree topologies for the
vertices of such a polygon. We also identify a one-one relationship between
all the ordered pairings of n-1 factors and the polygon divisions, which

explains the known fact that there is an equal number of these pairings.

Keywords: Steiner tree topology, polygon division, consecutive pairings.



Introduction

A classical problem posed and solved by Euler in 1751 is, according to
Dorrie [4], as follows: "In how many ways can a (plane convex) polygon of n

sides be divided into triangles by diagonals.'" Euler's solution formula

was:
(1) E_ = 2.6.10....(4n-10)/(n-1)! ,
and the reader can easily verify that

(2) E = [2(0-2) ]!/ [(a-1) 1 (n-2)1 ]

Dorrie proceeds to show that there is a strong connection between this
problem, and problem posed by Catalan (1338): '"How many different ways can a
product of n different factors be calculated by pairs [if their order is

X, and X

1° X2’ 3 4 these give

prescribed]?" As an example, take four factors X

rise to exactly 5 different paired ordered multiplications:

(3) ((xl-xz)-x3) * X (xl-(xzox3)) « X (X1'X2) . (x3-x ),

4 2 4 2 4

X, o ((XZ-XB)-XA) » X

| . (Xz'(x3°xa))

1

Dorrie shows by (algebric) induction that
(4) E =¢C

(where Cn denotes the solution to Catalan's problem), and thus he is able
to prove Euler's formula by solving for C,-

Courant and Robbins [3] posed a problem, named by them: 'The Street
Network Préblem,” which states: '"Given n points [on a Euclidean plane],

Al""’An’ find a connected system of straight line segments of shortest



total length such that any two of the given polnts can be joined by a polygon

"connected

consisting of segments of the system." It can be shown that the
system'", i.e., the required network, 1s a tree with up to n-2 additional
points, each of rank three, with no intersectingz arcs, and where no angle
between adjacent arcs is less than 120°. The Street Network Problem 1is
widely known today as 'The Steiner Problem" [6]. The additional points ave
called Steiner points, any tree which satisfies the above condition is called

'it is called a

a Steiner tree, and if it is "of shortest total length,
minimal Steiner tree. In this work we shall refer to any tree which spans n
given points plus exactly n-2 additional points of degree three each, and
where no arcs intersect each other as a "Full Steiner Topology Tree.'" Note
that we do not require the arcs to be straight or the angles to be at least
120°, since our interest is only in the topology.

An important question concerning Stelner trees is: How many different
Steiner topologies exist for n points? The answer to that question depends
on the configuration of the points. For the basic case where the points are
the vertices of a convex polygon and thus have a natural cyclic order the

answer was given by Cockayne [1] (who later applied the result to other

cases [2]):
(5) s_ = [2(-2) [1/[G-Dta-2)1 ] .

Not only 1is Sn = En’ but in fact Cockayne showed that each full Steiner

topology is associated with a unique pairing of the first n-1 vertices.
Thus, in effect, Cockayne solved for Cn-l to obtain Sn' As an example of

such a pairing, its equivalence to an instance of Catalan's problem, and the

resulting Steiner tree, we refer to Figure l, where a Steiner tree 1s given

Insert Figure 1 here




using the construction known as the Steiner Construction [6], with
Cockayne's notation: (((1,2),3),4),5 [1]. The reader can easily see that
the notation actually gives a pairing of the first n-1 = 4 points, which
corresponds to the first case in (3). The other four cases in (3) give rise
to four other Steiner topologies.

Thus, at least in effect, the computations for En and Sn by Dorrie and
Cockayne respectively are actually solutions for Cn—l' In this paper we
close the cycle, so to speak, and show in a direct manner that Euler's
problem and the Steinmer topologies problem are indeed dual to each other, and
the result En = Sn should be expected. We also give a new proof to Dorrie's

result En by showing explicitly the one-one relation between the

Cn-l’

divisions and the pairings.

The Euler-Steiner Duality

Theorem 1: For any full Steiner topology defined for the vertices of a
convex polygon there exists a division of a convex polygon into triangles,
and for any division of a convex polygon into triangles there exists a full

Steiner topology for the vertices of a convex polygon.

Insert Figure 2 here

Proof: (see Figure 2) A convex polygon divided by diagonals into triangles
is a planar graph, and hence it has a planar dual graph associated with it
which can be obtained by the D-Process (i.e., by connecting the adjacent
faces, which serve as dual nodes, by new arcs which intersect each of the
original (boundary) arcs {5]). This dual graph has one node outside the
polygon and n-2 nodes in it, corresponding to the n-2 triangles. It is easy

to verify that the rank of all the inner nodes is three, since they are each



connected by three arcs, as three arcs are required to intersect the three
sides of each triangle; and the rank of the outer node is n, since the
polygon has n sides, and through each of them we have an arc. ©Now, if we
mark the n poilnts where the n arcs intersect the n sides and look at the part
of the dual graph within the polygon we have a full Steiner topology tree
connecting the n marked points, which are (as can be shown) the vertices of a
convex polygon. On the other hand, take any full Steiner topology tree,
connect its n leaves (original points) to an outer node and construct the
dual graph, and we obtain (topologically at least) a polygon divided by

diagonals into triangles (the dual of the dual is the primal), I

Note: We used the convexity assumption implicitly by assuming that the
polygons are not self intersecting. Otherwise, by allowing curvilinear arcs
we can use non convex polygons as well, so long as the cyclic order is well
defined. Cockayne [2] has shown that the points may be on the vertices of a
polygon he defines as a "Steiner polygon', and still the cyclic order is
clear. 1If this polygon has n sides there are still Sn full Steiner
topologies which should be checked out in order to find the minimal Steiner
tree. However, if r (1 € r < n-4) points are within the Steiner polygon then
Cockayne claims that there are (n-1)!/{(n-r-1)! different cyclic orders for
the n points, hence he claims that Sn(n—l)!/(n—r—l)! full Steiner topology
trees have to be checked. This is true as an upper bound. However, for
r > 1 some of these cyclic orders must result in self intersecting polygons

which would not yield true Steiner topologies.

A New Proof for Dorrie's Theorem

In this section we present a new proof for Dorrie's theorem: Cn—l = En.

To that end we show that for any pairing (i.e., a Cockayne notation) there



exists an Euler division, and for any Euler division there exists a pairing.

First, however, we need a simple (well known) lemma:

Lemma: For any convex polygon with n 2 4 vertices divided to triangles, at
least two of these triangles have one diagonal and two sides of the polygon

as sides.

Proof: By simple induction, choosing any of the diagonals used in the

division to get two smaller polygons. I

Henceforth we shall refer to such triangles as "outer" triangles. We

are now ready to prove Dorrie's thoerem.

Thoerem 2 (Dorrie): C = E

n-1 n
Proof: We prove for n 2 4, since for n € 3 the result is clear. Mark the
sides of our polygon by the index 1, 1=1,2,....,n in a clockwise direction.

Beginning with side 1 we scan the sides until we find the first outer tri-
angle. By the lemma, there are two such triangles at least, so the first one
does not include side n. Now mark the diagonal which is the third side of
this triangle as a pair, and drop the original sides (e.g., if sides 3 and &4
are part of the outer triangle (as in Figure 3), then the diagonal is marked

(3,4) and sides 3 and 4 are dropped). We now have a polygon with n-1 sides.

Insert Figure 3 here

If the number of sides 1s three, then pair the first two and we have a
pairing of the first n-1 sides. Otherwise, repeat the process. We see that
for any division there 1is a pairing. We still have to show that for any
pairing there is a division. This is achieved by a reversed procedure,
starting (as usual) from the inner parentheses of the pairing draw a diagonal

for the pair, and so on. Since the number of pairs for n-1 elements is n-2,



we get n-2 diagonals as required, and since we can drop the resulting

triangles it is ensured that no two such diagonals will intersect each

other. f

Conclusion

We have shown the explicit relations between the Euler polygon division
problem and the full Steiner topology problem; and between the problems of
Euler and Catalan. As a result, we can find a polygon division for any
Cockayne notation (or Catalan pairing) and vice versa; find the Steiner
topology for any Cockayne notation and vice versa; and finally, find the
polygon division for any Steiner topology and vice versa.

We believe that these results provide fresh insight to the three

problems concerned.
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