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AN INTRODUCTION TO GAME THEORY

by

Roger B. Myerson

1. The Decision-Theoretic Foundations of Game Theory

To understand the fundamental ideas of game theory, one should begin with
a review of decision theory. Decision theory is concerned with the problem of
one individual who has to choose among various risky options, which may be
called "lotteries."” Each lottery would give the individual a randomly
determined outcome or "prize," possibly depending upon some unknown factors
which we may call the "state"” (or "state of the world"). Using remarkably
weak assumptions about how a rational decision maker should behave, it has
been shown that such a decision maker should be able to assess subjective
probability numbers p(s) for every possible state s, and utility numbers u(x)
for every possible prize x, such that he always prefers to choose the lottery

that has the highest subjective expected utility. The subjective expected

utility of a lottery is defined by the formula

1Y ps) £(x|s) ux),

X s
where f(xls) denotes the objective probability that the lottery would give
prize x if s were the true state of the world. (Classic and seminal
presentations of this result are in von Neumann and Morgenstern [1944], Savage
[1954], and Raiffa [1968]. See also Luce and Raiffa [1957, chapter 2] and
Myerson [1979].)

This result assures us that the behavior of a rational decision maker can



be described mathematically, for both theoretical and practical purposes, if
these probability and utility functions can be assessed. However, suppose
that one of the factors that is unknown to some given individual (#1) is the
action of some other individual (#2). To assess a subjective probability
distribution over 2's possible actions, individual 1 may try to imagine
himself in individual 2's position. But in this thought experiment, he may
realize that 2 is trying to solve a rational decision-making problem of his
own, and that problem involves assessing a subjective probability distribution
over 1's possible actions. Thus, the rational solution to each individual's
decision problem depends on the solution to the other individual's problenm,
and neither can be solved without the other. So when rational individuals
interact, their decision problems must be analyzed together, like a system of
equations. Such analysis is the subject of game theory.

Game theory can be defined as the study of mathematical models of
conflict and cooperation between intelligent rational decision makers. By
"rational” we mean that each individual's decision-making behavior would be
consistent with the maximization of subjective expected utility, if the other
individuals' decisions were specified. By "intelligent” we mean that each
individual understands everything about the structure of the situation that we
theorists understand, including the fact that all other individuals are
intelligent rational decision makers. Thus, if we develop a theory that
describes how the players in some game should behave, then we must assume that
each player in the game will also understand this theory and its predictions.

It may be useful to compare game theory to price theory, for example. In
the general equilibrium model of price theory, it is assumed that every
individual is a rational utility-maximizing decision maker, but it is not

assumed that individuals undertand the whole structure of the economic model



that the price theorist is studying. In price-theoretic models, individuals
only perceive and respond to some intermediating market signals. In game
theory, we assume that all individuals perceive and respond to each other
directly. Thus, game theory may be better than price theory for describing
markets with relatively few participants, as in oligopolistic competition or
union/management relations. On the other hand, game theory is generally worse
than price theory for describing the macroeconomy, in which even the
assumption that individuals know all the prices may be too strong.

Of course, the game theorist's assumption that all individuals are
perfectly rational and intelligent (in the above sense) may never be satisfied
in any real life situation. But on the other hand, we should be suspicious of
theories and predictions that are not consistent with this assumption. That
is, if a theory predicts that some individuals will be systematically fooled
or led into mistakes that hurt themselves, then this theory will tend to lose
its validity when these individuals learn to better understand the situation.

The importance of game theory in the social sciences is derived from this fact.

2. Basic Models of Game Theory

The most general models used to describe games are dynamic models, which

describe all the sequences of actions or moves that could be made by the
players over time during the play of the game. Kuhn [1953] developed the

formal definition of the extensive form, which is now the standard dynamic

model in the literature on game theory. (See Iuce and Raiffa [1957, chapter 3],
Owen [1982, chapter 1], Shubik [1982, chapter 3], and Kreps and Wilson
[1982].) For our purposes here, however, it will suffice to discuss a

somewhat simpler multistage form (used in Myerson [1984d]).




To describe a game in multistage form, we must first specify the set of
sequentially numbered stages ({1,2,...,K}) and the set of players in the
game. We let N = {1,2,...,n} denote the set of players, with i denoting a
member of N. For each stage k and for each player i, we must specify the set
of possible signals (or new information) that player i could get at the
beginning of stage k, and the set of possible actions (or moves) that player i

could choose at the end of stage k. An information state for player i in stage

k is any possible sequence of signals that he might have gotten in the first k
stages and of actions that he might have taken in the first k - 1 stages. If
we assume that each player has perfect recall, then such an information state
would characterize what player i knows at the beginning of stage k. For any
stage k before the last, and for any possible combination of the players’
information states and actions at stage k, we must specify the probability of
each possible combination of new signals for the players at the beginning of
the next stage k + 1. For stage 1, we must specify the probability of each
possible combination of signals for the players at the beginning of the first
stage. The set of outcomes of the game is the set of all possible sequences
of signals and actions for all players at all the stages of the game. For

every player, we must specify a payoff function, which assigns a utility value

to each outcome of the game. These payoff functions describe the players'
preferences, and complete our specification of the multistage game.

A game in strategic form is a special case of the multistage form in

which there is only one stage and each player has only one possible

information state. That is, to define a game in strategic form, we need to
specify a set of players (N = {1,2,...,n}), and, for each player i, we must
specify a set of possible actions or strategies (Ci) and a payoff function

(ui)' Here, each player's payoff function is a map from the set of possible



combinations of actions for all the players (Cy x ... x C,) into the set of
real numbers. That is, uj(cy,...,c,) denotes the utility value, for player i,
of the outcome of the game when (cl,...,cn) is the combination of players'
actions (each player j using cj).

Von Neumann and Morgenstern [1944] argued that there may be no loss of
generality in restricting our theoretical attention to these conceptually
simpler games in strategic form. Given any multistage game, they showed how
to construct an equivalent game in strategic form (which is also called the
normal form of the multistage game). A strategy for a player in a multistage
game is any function that specifies a feasible action for the player, at every
stage and every possible information state. That is, a strategy for player i
is a complete plan of action for player i, at all stages and all possible
information states in the multistage game. The set of actions for any player
in the equivalent strategic-form game is defined to be his set of strategies
in the given multistage game. For any combination of strategies (sy,...,s;),
the payoff ui(sl,...,sn) to any player i in the strategic-form game is defined
to be his expected payoff in the multistage game when all players plan to use
their given strategies (each player j using his strategy sj).

Thus, when we reduce a multistage game to strategic form, we suppress its
dynamic structure and condense all decision making into one stage. This is a
major simplification in the conceptual structure of our model. However, the
set of strategies is sometimes so large that it may be more practical to study
the dynamic model than the strategic form. (For example, the set of all
possible strategies for each player in chess is a finite but astronomically
large set.)

When we theoretically analyze a multistage game, we are trying, before

the game begins, to predict what each player should do at each stage and each



possible information state. If each player is as intelligent as we are, then
he should also be able, before the game, to analyze the game and rationally
plan all of his actions in all possible events. But if all players choose
their strategies in advance (at stage "0") then the equivalent strategic form
is a precise description of their decision problems. That is, when players
plan their actions in advance, they are taking their decision-making process
outside of the dynamic structure of the game. This strongly suggests that
there may be no theoretical loss in reducing multistage games to the
conceptually simpler strategic form.

This insight is very important in game theory, even though its
limitations are now becoming re—examined in the literature (Selten [1975],
Kreps and Wilson [1982], Kohlberg and Mertens [1983], and Myerson [1984d]).
For example, sometimes a theorist may try to defend a general solution concept
for strategic-form games by arguing that players would converge to it in a
game that has been repeated many times. But such an argument would ignore the
fact that a repeated game is just a kind of multistage game, and so it can be
reduced to one large strategic—-form game itself. If the general solution
concept is valid then it should be applied to this overall game, not to the
repeated stages separately.

The argument for reducing a game to strategic form relied on the
assumption that each player could plan his actions before getting any private
information or signals. However, some parts of a player's private information
may be so basic to his identity that it is not meaningful to talk about him
planning his actions before learning this information (e.g., what is the
player's gender, native language, and level of risk aversion). Harsanyi
[1967-8] called such initial information the type of a player. If the players

have any uncertainty about each others' types, then it may not be possible to



completely reduce a game to strategic form. Instead, we must use a somewhat

more general class of models, which Harsanyi called Bayesian games.

To define a Bayesian game, we must specify a set of players
(N = {1,2,...n}), and for each player i we must specify a set of possible
actions (C;), a set of possible types or information states (Ti)’ a

probability function (p;), and a payoff function (u;). TFor every possible

type t; of player i, the probability function p; must specify a probability
distribution pi(-'ti) over the set of all possible combinations of other
players' types (T_i = T1 X eee X Ti-l X Ti+1 X ees X Tn), which represents
what player i would believe about the other players' types if his type were
t;. That is, pi(tl,...,ti_l,ti+1,...,tnlti) (or pi(t_ilti)) denotes the
subjective probability that i would assign to the event that player l's type
is ty, 2's type is ty, etc., when i knows that his own type is tj. The payoff
function for player i must specify a numerical utility value
ujcyyevesCy,ty,ees,ty) to every possible combination of players' actions
(cl""’cn) and every possible combination of players' types (tj,...,t;).

When we study a Bayesian game, we assume that the sets and functions

specified above are common knowledge among the players (that is, every player

knows these structures, every player knows that every player knows them, etc.;
see Aumann [1976]). 1In addition, each player knows his own actual type.

Thus, the type of player i is defined to be a variable that represents all of
his initial information (about preferences and endowments and other players'
beliefs) that may be unknown to other players and to us theorists. Mertens
and Zamir [1983] showed that, in principle, it should always be possible to
mathematically construct type—sets that are large enough to subsume all
possible states of each player's initial private information, so that the

Bayesian game model has complete theoretical generality among nondynamic



models. In some applications, of course, these type sets may be too large for
tractable analysis, which may limit the practical applicability of the
Bayesian game model. On the other hand, if each player has only one possible
type, then the Bayesian game reduces to a game in strategic form. If there is
at least one player who has more than one possible type, then the game is said

to be a game with incomplete information.

Harsanyi [1967-8], following a suggestion by R. Selten, discussed a
formal way of reducing any Bayesian game to a game in strategic form, using

what he called the Selten model. 1In the Selten model, there is one player for

every possible type of every player in the original Bayesian game. Thus, for
a Bayesian game with three players, each of whom has five possible types,
there are fifteen players in the Selten model. The set of actions for each
player in the Selten model is the same as the set of possible actions for that
player in the original game for whom the Selten-model player represents one
possible type. The payoffs to players in the Selten model are defined to be
the expected payoffs for the corresponding types of players in the original
Bayesian game. That is, if we let yj(tj) denote the action selected by the
Selten—-model player for each type tj of each player j in the Bayesian game,

then the corresponding payoff to the Selten-model player for any type t; of

any i would be

tZ Pyt ) u (e ey (B )t et ),

-1

For a more detailed introduction to the analysis of Bayesian games, see

Myerson [1985a].



3. Nash Equilibria

Nash's [1951] definition of equilibrium is probably the most important
concept in game theory. Given a strategic-form game, a combination of actions
or strategies for the players is a Nash equilibrium if each player's action
maximizes his expected utility, given the actions of the other players.

To prove existence of equilibria, it is necessary to allow players to

randomize. A randomized strategy for player i is any probability distribution

over the set of possible actions for player i. If oi{ 1s a randomized strategy
for player i, then o;(c;) denotes the probability that player i will select
the action c¢; in the randomized strategy oj- The players are assumed to
randomize independently in a game without communication, so that player i's

expected payoff would be

n
ui(cl,...,cn) = , y ) (-21 cj(cj)) ui(cl,...,cn),
cl,...,cn J
when the players used the randomized strategies (cl,...,cn). (Here TI
represents the multiplicative product.) A combination of randomized

strategies (oy,...,0,) is a (Nash) equilibrium if, for every player i and

every randomized strategy oy,

A

ui(cl,...,on) > ui(dl"“’ci—l’di’ci+1"‘°’cn)°

That is, each player i cannot increase his expected payoff by using any other
randomized strategy Gi instead of o;, when every other player j is using oye
Nash proved that, for any strategic-form game in which the set of players and
the sets of possible actions are all finite, there exists at least one

equilibrium in randomized strategies. It is appropriate to call this

existence theorem the fundamental theorem of game theory.
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For a Bayesian game with incomplete information, Harsanyi [1967-8]

defined Bayesian equilibria to be the Nash equilibria of the equivalent

Selten—model game in strategic form. That is, a Bayesian equilibrium
specifies an action or randomized strategy for each type of each player, so
that each type of each player would be maximizing his own expected utility,
over all his possible actions, when he knows his own type but does not know
the other players' types. Notice that, in a Bayesian equilibrium, a player's
action can depend on his own type, but not on the types of the other

players. (By definition, a player's type is supposed to subsume all of his
private information at the beginning of the game, when he chooses his action
or strategy.) We need to specify what every type of every player would do,
not just the actual types, because otherwise we could not define the expected
payoff for a player who does not know the other players' actual types.

The importance of Nash (and Bayesian) equilibria comes from the following
argument. Suppose that we are acting either as theorists, trying to predict
the players' behavior in a given game, or as social planners, trying to
prescribe the players' behavior. If we specify what strategies should be used
by the players, and if the players understand this specification also (recall
that they know everything that we know about the game), then we must either
specify an equilibrium or impute irrational behavior to some players. If we
are not specifying an equilibrium, then some player could gain by changing his
strategy. Thus, a non~equilibrium specification would be a self-denying
prophecy if the players all believed it.

This argument uses the assumption that the players in a strategic form
game are choosing their actions or strategies independently, so that one
player's change of strétegy cannot cause a change by any other player. In a

sense, this independence assumption is without loss of generality. 1If there
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are rounds of communication between the players, then the set of strategies
for each player in the strategic-form game can be redefined to include all
plans for what to say in these rounds of communication and what actions to
choose, depending on the previously received messages. That is, a game with
pre-play communication can be viewed as an extensive or multistage game, and
can be reduced to an equivalent strategic-form game as described in Section
2. (On the other hand, we will see that it is often more convenient to omit
such possibilities for communication from the structure of the game and to
build them into the solution concept instead, which will take us to the

concept of correlated equilibrium in Section 5.)

Aumann and Maschler [1972] reexamined the argument for Nash equilibrium

as a solution for games like the following example (in strategic form):

Player 2
L R
T 0,0 0,-1
Player 1
1,0 -1,3
B
Example 1

(Here Cy = {T,B}, Cy = {L,R} and the numbers in each box are the utility
payoffs (uy,up).) The unique equilibrium for this game is the pair of
randomized strategies (oy,0y), where oy(T) = 3/4, o0y (B) = 1/4, op(L) = 1/2 and
oz(R) = 1/2. However, Aumann and Maschler suggest that player 1 might prefer
to choose T and player 2 might prefer to choose L (each with probability one),
because these actions are optimal responses to the equilibrium strategies and

guarantee each player his expected equilibrium payoff of zero. But if such
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behavior were correctly anticipated then player 1 would be irrational not to
choose B, because it is his unique best response to L. Thus, a theory that
predicts the actions T and L in this game would destroy its own validity,
because (T,L) is not a Nash equilibrium.

Notice that we have not given any direct argument as to why intelligent
rational players must use equilibrium strategies in a game. When someone asks
why players in a game should behave as in some Nash equilibrium, this author's
favorite response is to ask "why not?” and to let the challenger specify what
he thinks the players should do. If this specification is not a Nash
equilibrium, then (as above) we can show that it would destroy its own
validity if the players believed it to be an accurate description of each
others' behavior. It may be better to think of Nash equilibrium as a "pre-

solution concept,” rather than as a solution concept, because being a Nash
equilibrium is only a necessary condition, not a sufficient condition, for
being a good prediction of rational players' behavior. That is, every outcome
that is not an equilibrium will necessarily be an unreasonable prediction of
how intelligent rational decision makers would behave. Thus, the concept of
Nash equilibrium imposes a contraint on social planners and theorists, in that
they cannot predict nonequilibrium behavior.

Equilibria in randomized strategies sometimes seem difficult to
interpret. It is easy to check (by examining the four possibilities) that
there is no equilbrium without randomization in Example 1. But the necessity
for player 1 to randomly choose among T and B with probabilities 3/4 and 1/4,
respectively, might not seem to coincide with any compulsion that people
experience in real life. Of course, if player 1 thinks that player 2 is

equally likely to choose L or R then player 1 is willing to randomize in any

way between T and B. But what could make player 1 actually want to use the
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precise probabilities 3/4 and 1/4?

Harsanyi [1973] showed that Nash equilibria that involve randomized
strategies can be interpreted as limits of equilibria in which each player is
(almost) always choosing his a uniquely optimal action. Harsanyi's basic idea
is to modify the game so that each player has slightly different information
about the payoffs. (See also Milgrom and Weber [1984].) For example, suppose

that Example 1 were modified slightly, to the following game with incomplete

information:
Player 2
L R
T £a,ep ga, -1
Player 1
1,eB -1,3
B
Example la

Here 0 < ¢ < 1, and @ and E are independent and identically distributed, each
with a uniform distribution over the interval from O to 1. When the game is
played, player 1 knows the value of @ but not E, and player 2 knows the value
of B but not @. If ¢ is zero then Example la becomes exactly the same as
Example 1, so let us think of £ as a very small positive number (say, 10_9).
Then @ and E can be interpreted as minor factors that have a very small
influence on the players' payoffs when T or L is chosen.

Given £, there is a unique Bayesian equilibrium for Example la. Player 1
chooses T if he observes o greater than (2 + ¢)/(8 + az), and he chooses B
otherwise. Player 2 chooses L if he observes 5 greater than
(4 - e)/(8 + az), and he chooses R otherwise. In these equilibrium

strategies, each player always gets strictly higher utility from the action
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that he is choosing than he would get from the other action (except in the
zero-probability event that o« = (2 + )/(8 + 82) or B=(4 -¢€)/(8 + 82)).
That is, each player's expected behavior makes the other player almost
indifferent between his two actions, so that the minor factor that he observes
independently can determine a unique optimal action for him. Notice that, as
¢ goes to zero, this equilibrium converges to the unique equilibrium of
Example 1, in which player 1 chooses T with probability 3/4 and player 2
chooses L with probability 1/2.

Thus, in general, when we study an equilibrium involving randomized
strategies, we may interpret each player's randomization as depending on minor
factors that have been omitted from the description of the game. Or, té put
it another way, when a game has no nonrandom equilibria, we should expect that
a player's optimal action may be determined by some minor factors that he
observes independently of the other players.

Two general observations about Nash equilibria are now in order. Nash
equilibria may be nonunique; and Nash equilibria may be inefficient.

For an example of inefficiency, consider the following games, known as

the "Prisoner's Dilemma”:

Player 2
L R
T 5,5 0,6
Player 1
6,0 1,1
B
Example 2

In this game, (B,R) is the unique Nash equilibrium, but it is also the only
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outcome of the game that is not Pareto efficient. (See Luce and Raiffa [1957]
for the story behind the names of this and the next example.)
For an example of nonuniqueness, consider the following game, known as

the "Battle of the Sexes":

Player 2
L R
T 2,1 0,0
Player 1
0,0 1,2
B
Example 3

There are three equilibria of this game: (T,L), which player 1 prefers;
(B,R), which player 2 prefers; and a randomized equilibrium (2/3[T] + 1/3[B],
1/3[L} + 2/3[R}]), which gives each player an expected utility of 2/3. The
third equilibrium is also an example of inefficiency, since both players would
prefer (T,L) or (B,R).

For games with multiple equilibria, anything (in the structure of the
game or in the commonly observed environment in which it is played) that
focuses the players' attentions on one particular equilibrium may create a
situation in which all players expect this equilibrium and thus actually

implement it. Schelling [1960] called this the focal-point effect. For

example, if the players learned the Battle of the Sexes game from a book in
which the payoff "1,2" was printed in red ink, all else being in black ink,
then the (B,R) equilibrium would be much more likely to be played.
Alternatively, suppose that player 1 is a woman and player 2 is a man in this

game, and suppose that the players come from a culture in which women have
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traditionally deferred to men. Then, even though this cultural tradition has
no binding force on the players, it probably will cause both players to have

the self-verifying expectation that player 2 will choose R and player 1 will

choose B.

Another way that the players could become focused on one equilibrium, and
so induced to implement it, is if some authoritative individual suggests it.
If one player in the game has such authority or power of suggestion, so that
he can select the equilibrium that all players will implement, then he may be
called the principal of the game. (This definition is consistent with the
usage of the term in most of the literature on principal-agent analysis.) An
arbitrator is an outside individual, different from the players, who has power

of suggestion to select the equilibrium.

4, Refinements of the Nash Equilibrium Concept

In some games with multiple equilibria, there may be some equilibria that
seem intrinsically unreasonable for the players to implement, even if a
principal or arbitrator tried to persuade the players to do so. For example,

consider the following game:

Player 2
L R
T 1,9 1,9
Player 1
0,0 2,1
B

Example 4
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There are two equilibria (T,L) and (B,R); but it may be unreasonable to expect
the players to implement (T,L). Player 2 can only gain by choosing R instead
of L. (Remember that the players choose independently, so player 2 should not
expected a switch from L to R to affect player 1's choice.) Then, if player 1
expects player 2 to choose R, B must be player 1's rational choice.

To identify and eliminate such unreasonable equilibria from our solution
concepts, many refinements of the Nash equilibrium concept have been
proposed. Three general criteria have been used to develop such
refinements: (i) elimination of unreasonable actions; (ii) sequential
rationality; and, (iii) stability against small perturbations of the game.
Let us begin by considering some ways of eliminating unreasonable actions.

Given a strategic—-form game, we say that an action c; for player i is

strongly dominated if there exists some some randomized strategy oj such that
player i would always get a strictly higher expected payoff from oj than from

¢y, no matter what actions are used by the other players; that is, for every

(e1seeesCiogrCiplseeesn)s

ui(cl""’ci""’cn) < Z oi(di) ui(cl""’di""’cn)'

d.
i

An action c; is weakly dominated if there exists some randomized strategy oj

such that player i would never get a strictly lower expected payoff from oy
than from c;, and could possibly get a strictly higher expected payoff from o3

than from c;

i»> depending on what actions are used by the other players.

It seems unreasonable to suggest that a player should use an action that
is strongly dominated, since he can surely expect better with the dominating
strategy. Similarly, equilibria that involve weakly dominated actions may be
considered unreasonable. For example, consider Example 4 above and Example 5

below:
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Player 2
L R
T 5,5 0,5
Player 1
5,0 1,1
B
Example 5

In each of these examples, there are two equilibria ((T,L) and (B,R)), but the
action L is weakly dominated by R. So, by the criterion of elimination of
dominated actions, (B,R) is the only reasonable equilibrium in both

examples. Notice that, in Example 5, the "more reasonable” equilibrium is
actually worse for both players.

After the (weakly or strongly) dominated actions have been eliminated
from a game, the smaller game that remains may have new dominated actions.
Luce and Raiffa [1957] suggested we should continue to eliminate dominated
actions iteratively until there are no dominated actions in the game that
remains. For example, iterative elimination of weakly dominated actions

leaves only the equilibrium at (21’22) in the following game:

Player 2
X2 y2 )
X 3,3 0,3 0,0
Player 1 1y, 3,0 2,2 0,2
zy 0,0 2,0 1,1

Example 6
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(The order of elimination is x; and x5 first, then y; and yj;.)
Several related criteria for identifying unreasonable actions have been
suggested. Harsanyi [1975] proposed a concept of inferior actions, Bernheim

[1984] and Pearce [1984] proposed a concept of unrationalizable actions, and

Myerson [1984c] proposed a concept of codominated actions. Each of these
concepts includes all of the weakly dominated actions. One might argue that
an equilibrium should be considered "unreasonable” if it uses actions that can
be eliminated (or iteratively eliminated) by any of these concepts.

Concepts of sequential rationality are applied to dynamic games, in
extensive or multistage form. As discussed in section 2, any dynamic game can
be reduced to an equivalent strategic-form game. The Nash equilibria of a
game in extensive or multistage form are defined to be the Nash equilibria of
the equivalent strategic—form game. Unfortunately this definition admits too
many equilibria, including some that are clearly irrational.

When a decision maker chooses his plan of action in advance, the
maximization of expected utility (as viewed ex ante) does not impose any
restrictions on what he should plan to do after observing an event that has
probability zero. Thus, when we compute the Nash equilibria from the
strategic—-form reduction of a dynamic game, we abandon all rational
restrictions on players' behavior in events that have probability zero. This
might not sound like a serious problem, since a zero—probability event should
(almost) never occur. However, in game theory (unlike probability theory),
the zero—probability events are determined endogenously by the plans or
strategies of the players, so we cannot simply ignore such events a priori.
An event that has probability zero in one equilibrium may have positive
probability in another. So we want to identify the equilibria in which every

player is behaving rationally in all events, not just in the positive-
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probability events. To do so, we must analyze dynamic games directly in
extensive or multistage form, not just in the strategic-form reduction.
For such analysis, Kreps and Wilson [1982] proposed a concept of

sequential equilibrium, which refined Selten's [1975] earlier definition of

subgame-perfect equilibrium. To characterize a sequential equilibrium, we

must specify, not only the action or randomized strategy that each player
would use at each stage in each of his possible information states, but also
the beliefs that he would have at each stage in each of his information states
(including states with probability zero). In every information state, the
designated strategies should be rational, in the sense that they maximize the
player's conditionally expected payoff given his beliefs (about the other
players and chance events) at this information state. The designated beliefs
at the various information states should be consistent with each other and
with the designated strategies, according to the rule of Bayesian inference

from probability theory. A sequential equilibrium is any such rational and

consistent designation of strategies and beliefs for all players in all
information states. (See Kreps and Wilson [1982] for a more precise

definition.)

[INSERT FIGURE 1 (EXAMPLE 7) ABOUT HERE]

Consider Example 7, which is shown in extensive form in Figure 1.
In this game, player 1 first chooses between T and B. If player 1 choses T,
then the payoffs (uj,up) are (1,9), independent of any actions by player 2.
If player 1 chooses B then player 2 is informed of this fact and must choose
between L and R. The payoffs (ul,uz) are (0,0) after B and L, and are (2,1)

after B and R. The equivalent strategic—form game is just Example 4, which



- 20a -

Example 7.

FIGURE 1
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has two Nash equilibria: (T,L) and (B,R). Let us consider the (T,L)
equilibrium. Player 1 would prefer T if he expected player 2 to choose L
after B; and, at the beginning of the game, player 2 would be willing to plan
to choose L after B if he were sure that player 1 would choose T (since the
plan would never have to be used). Thus, (T,L) is a Nash equilibrium. But if
player 2 cannot actually precommit himself to the L-if-B plan at the beginning
of the game, then we must ask what player 2 would rationally choose if he were
in the position of choosing between L and R after observing B. In such a
circumstance, player 2 should certainly choose R (giving him a payoff of 1)
rather than L (giving 0). Thus, (T,L) is not a sequential equilibrium of
Example 7. The unique sequential equilibrium is (B,R).

Of course, elimination of dominated actions already excluded (T,L) from
the set of reasonable equilibria of Example 4. However, more complicated
games, such as Example 8 below, may have Nash equilibria that are not

sequential equilibria, even though there are no dominated actions.

[INSERT FIGURE 2 (EXAMPLE 8) ABOUT HERE]

In Example 8, player 1 first chooses among x;, y;, and zj. If he chooses
X] or yj, then player 2 must choose between x5 and y,, and player 3 must
choose between x5 and y3. The dotted curves indicate that, when players 2 and
3 make these choices, they do not observe each others' choices, and they do
not observe whether x; or y; was chosen by player 1, but they do know that
player 1 has not chosen z;. If player 1 chooses z;, then the final payoffs
(uy,uy,uq) will be (1,4,4), without players 2 and 3 making any choices at
all. Otherwise, the three players' payoffs (uj,us,uj) depend on the actions

of all three players, as indicated at the right ends of the tree.
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There are two nonrandom Nash equilibria of this game, (Xl,Xz,X3) and
(zl,yz,y3); but only (x),Xj,x3) is a sequential equilibrium. To try to
justify (zl,yz,y3) as a sequential equilibrium, we would have to specify what
players 2 and 3 should believe about player 1's choice (x; or y;) if they
observed that he did not choose z; as expected. If player 2 would believe x;
and player 3 would believe y; under such circumstances then their actions
would be rational, but such beliefs would obviously not be consistent. It can
be shown that, for any probability distribution over x; and y;, either player
2 or player 3 could expect to gain by deviating from (y2,y3). Thus,
(Zl,yz,y3) is not a sequential equilibrium.

On the other hand, suppose that we revise Example 8 by setting
uy(y1,%9,¥3) and uj(xy,yp,x3) both equal to some number o, where a < 2. (In
Figure 2, we had a = 3.) Then (z;,y,,y3) can be supported as a sequential
equilibrium, by specifying that players 2 and 3 would both assign probability
1/2 to x; and probability 1/2 to yl if they unexpectedly learned that z; was
not chosen.

The concept of sequential equilibrium gives us a stronger
characterization of rational behavior in dynamic games than Nash equilibrium
does. However, we pay an analytical price for changing our solution concept
to sequential equilibrium, because we can no longer restrict our attention to
the strategic form. Two dynamic games that both reduce to the same equivalent
game in strategic form may have different sets of sequential equilibria.

Nevertheless, there is still strong interest in studying refinements of
the Nash equilibrium concept for games in strategic form. One desirable
property that we might want such a refinement to satisfy is that any
equilibrium that it accepts should correspond to a sequential equilibrium in

every dynamic game that can be reduced to the given strategic—form game. This
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property has been proven by Selten [1975] for his concept of perfect
equilibrium, by Kohlberg and Mertens [1983] for their concept of stable
equilibria, and by Van Damme [1984] for Myerson's [1978a] concept of proper
equilibrium. (Selten [1975] does not use the normal reduction to strategic
form, however. He represents each of a player's information states in each
stage by a different "agent™ in his strategic-form reduction.)

The definitions (omitted here) of perfect, proper, and stable equilibria
are all motivated by the general idea that a reasonable equilibrium ought to be
stable (in some sense) when the game is slightly altered by introducing small
probabilities of players' mistakes or small perturbations of the payoffs.

Kalai and Samet [1982] defined a concept of persistent equilibrium, which is

also derived from a concern for such stability.

Harsanyi and Selten [1985] have considered ways to try to identify one
equilibrium that would be most rational, in some sense, for every finite game
in strategic form. However, they have also shown that it is impossible to
select a unique equilibrium for every game in a way that depends continuously
on the payoffs. This results casts doubt on whether we could ever hope for a

truly satisfactory general solution to the problem of multiple equilibria.

5. Extensions of the Equilibrium Set

There are many games, like the Prisoner's Dilemma (Example 2), in which
the Nash equilibria yield very low payoffs for the players, relative to other
non-equilibrium outcomes. In such situations, the players would want to
transform the game, if possible, so as to extend the set of equilibria to
include better outcomes. We consider here three such ways that a game might

be transformed: with contracts, repetition, and communication.
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Joint contracts are the simplest way to extend the equilibrium set. For
example, in the Prisoner's Dilemma (Example 2), the players might consider
signing a contract that says: "We, the undersigned, promise to choose actions
T and L, unless this contract is signed by only one player, in which case he
will choose B or R.” The option to sign this contract may be introduced into

the game description (as action "S"); and then the transformed game

Player 2
L R S
T 5,5 0,6 0,6
Player 1 B 6,0 1,1 1,1
S 6,0 1,1 5,5

has an equilibrium at (5,S8), which gives a payoff of 5 to each player.

In general, given any strategic~form game, a correlated strategy for a

set of players is any probability distribution over the set of all possible

combinations of actions that they might choose. The minimax value (or

security level) for a player i is the best expected payoff that he could get

against the worst (for him) correlated strategy that the other (n - 1) players

could use. That is, the minimax value for player 1 would be

minimum (maximum Z G(cz,...,cn) ul(cl,cz,...,cn))
o] ¢y (cz,...,cn)

where o ranges over the set of all probability distributions on

Cy x ... x C;. The correlated strategy that achieves this minimum is called
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the minimax strategy against player 1.

Let p be a correlated strategy for all the players. The expected payoff

to 1 from p is

Ui(u) = e Z . s p(cl,...,cn) ui(cl,...,cn),
127 S,
where p(cy,...,c,) denotes the probability assigned to the combination of
actions (cl,...,cn) by the correlated strategy p. To implement p, the players
might use a trustworthy mediator (or a computer with a random number
generator) to randomly designate a combination of actions in Ciy x voe x G
according to these probabilities. Our basic question is, under what
circumstances might the players all voluntarily sign a contract that commits
them to implement p? Obviously, no player would sign if his expected payoff
from p were less than his minimax value (since he can always get at least his
minimax value, whatever the other players might do). Conversely, suppose that
each player's expected payoff from p is greater than or equal to his minimax
value; then it would be a Nash equilibrium for every player to sign a contract
that says: "We the undersigned agree to choose the actions designated for us
randomly according to the correlated strategy p, unless this contract is
signed by all but one player, in which case we will implement the minimax
strategy against that player.” (We assume in this argument that each player
signs independently, without knowing which other players have signed.) Thus,
if players' actions can be regulated by joint contracts, any correlated
strategy that gives every player at least his minimax value can be implemented
by a Nash equilibrium of the transformed game with contract-signing.
Of course, there are many situations in which the players cannot commit

themselves to binding contracts. The players' actions might be unobservable
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to the legal enforcers of contracts; or sanctions to guarantee compliance with
contracts might be inadequate; or some players' actions might be inalienable
rights (such as the right to quit a job).

The effect of repeating a game is very similar to the effect of allowing
binding contracts. Any correlated strategy that gives each player a higher
expected payoff than his minimax value can be enforced in an equilibrium of an
infinitely repeated game, if each player's objective is to maximize his long-
run average payoff per round. The essential idea is that, if any one player
diverged from his role in the correlated strategy then the others would punish
him with the minimax strategy against him for many rounds of the game, and any
player who diverged from his designated role in punishing another player would
similarly be liable for such punishment, so the punishment process is self
enforcing. This idea is known as the "Folk Theorem” because it was discussed
informally for several years before a rigorous formulation and proof was given
by Rubinstein [1979]. For a general introduction to the study of repeated
games, see Aumann [1981].

The effect of allowing players to communicate in a strategic-form game,
without binding contracts and without repetition, was first studied by Aumann

[1974]), who defined the concept of correlated equilibrium for such games. To

understand this concept, let us begin by considering Example 9.

Player 2
L R
T 5,1 0,0
Player 1
4,4 1,5
B

Example 9
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There are three equilibria of this game: (T,L), giving payoffs
(uy,uy) = (5,1); (B,R), giving payoffs (1,5); and a randomized equilibrium
giving expected payoffs (2.5,2.5). The best symmetric payoffs (4,4) cannot be
achieved by the players without binding contracts, because (B,L) is not an
equilibrium. (Player 1 would choose T if he expected player 2 to choose L.)
The expected payoffs (3,3) can be achieved by the players, with communication
but without binding contracts, by tossing a coin and planning to choose (T,L)
if heads and (B,R) if tails. Such a plan is self-enforcing, even though the
coin has no binding force on the players, because neither player could gain by
unilaterally diverging from the plan.

Even better, (3%,3%) can be achieved in this game, with the help of a
mediator. Suppose that a mediator randomly recommends actions to the two
players in such a way that each of the pairs (T,L), (B,L), and (B,R) may be
recommended with probability 1/3. Suppose also that each player hears only
his own recommended action from the mediator. Then, even though the
mediator's recommendation has no binding force, it is a Nash equilibrium (of
the transformed game with such mediated communication) for both players to
plan to obey the mediator's recommendations. If player 1 hears a
recommendation "B," then he thinks that player 2 may have been told to do L or
R with equal probability, in which case his expected payoff from B (2.5) is as
good as from T. If player 1 hears "T" then he knows that player 2 was told to
do L, in which case T is player 1's best action. So player 1 is willing to
obey the mediator if he expects player 2 to obey, and a similar argument
applies to player 2. Randomizing equally between (T,L), (B,L) and (B,R) with
equal probability gives expected payoffs (3%,3%).

More generally, for any strategic-form game (as in Section 2), Aumann
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[1974] defined a correlated equilibrium to be any correlated strategy that can
be achieved as an equilibrium with the help of such a mediator. Formally, a

correlated equilibrium is any probability distribution p over €y x ... x C,

such that, for every player i and every function 6; that maps C; into Cj,

Ui(p) P " 2 o) p(cl,...,cn) ui(cl,...,éi(ci),...,cn).
120 Cy

That is, no player i should expect to gain from disobeying the mediator's
recommendations by any rule &; (doing &6;(c;) when told to do cy), if the
mediator's recommendations are randomly selected according to the probability
distribution p and every other player is expected to obey his
recommendations. (Player i's prospective disobedience éi(ci) can depend only
on cj, the recommended action for player i, because i does not hear the
mediator's recommendations to the other players.) These inequalities are

called strategic incentive constraints (or moral-hazard constraints), because

they constrain the set of correlated strategies that a mediator could
implement without giving any player an incentive to disobey. By analyzing
these incentive constraints, we can characterize the set of all correlated
equilibria for a game. For example, it is straightforward to show
that (3%,3%) is the best symmetric payoff allocation that can be achieved by
any correlated equilibrium for Example 9. (See Myerson [1985a].)

For Bayesian games with incomplete information, communication would allow
the players' actions to depend on each others' types, as well as on extraneous

random variables like coin tosses. Formally, p is a (direct) communication

mechanism (or a generalized correlated strategy) for the players in a Bayesian
game if, for every possible combination of types (tl""’tn)’ p specifies a

probability distribution, denoted p(O'tl,...,tn), over the set of possible
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combinations of actions (Cy x ... x C ). We let p(cy,++«scy|ty,«.-,t,) denote
the probability that each player i should be told to do cj, if every player j
reported his type to be tj, in the communication mechanism p. We let Ui(ulti)
denote the expected payoff to player i from the communication mechanism p when

his type is t;; that 1is

op@lep = TopgCeyfep) Futefo) uen.
-1
(We use here the notation t_j = (ty,eee,tj1stigysceestn)s © = (Cc15ev2,Cp),
and t = (ty,...,t ))

Suppose that a mediator were to help the players implement a
communication mechanism p in a Bayesian game. Suppose also that the mediator
can communicate confidentially with each player, receiving type reports and
sending action recommendations; but he cannot force the players to report
honestly or to act obediently. Then honest reporting and obedient action by
all players would be a Bayesian equilibrium if and only if p satisfies the

following general incentive constraints, for every player i, every pair of

possible types t; and s;, and every function §; from C; into Cj:

O e > TopgCegfe) Tucele o) o (et (e,0).
-i
(Here we use the notation (t—i’si) = (tl’""ti—l’si’ti+1""’tn)’ and
(c_i,éi(ci)) = (cl,...,ci_l,éi(ci),ci+1,...,cn).) That is, no player i
should expect to gain, when his type is t;, by reporting type sy and then
disobeying according to &§;, when the mediator chooses his recommendations (as
a random function of the players' reports) according to p and when all other

players are expected to be honest and obedient. Any communication mechanism
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that satisfies these incentive constraints may be called a communciation

equilibrium (or a generalized correlated equilibrium, or an incentive-

compatible mechanism) for the players in the Bayesian game.

The above definition of communication equilibria was motivated by
considering what can be achieved by a mediator with a fully centralized
communication system. However, the class of communication equilibria defined
above actually characterizes what can be achieved by any kind of communication
system, in the following sense. Any communication system effectively
transforms any given Bayesian game into a new Bayesian game, in which each
player's "action" is a communication strategy (that is, a specification of
what messages he will send and how he will choose his action in the originally
given game as a function of the messages that he receives). TFor any
communication system and any Bayesian equilibrium of the transformed game with
communication, we can construct an equivalent communication equilibrium u (as
above) by letting p(cq,...c,|tj,++,t,) to be the probability that (cq,...,cp)
would be the actions chosen in the original game if (tj,...t,) were the
players' types, when the players use their equilibrium communication
strategies. It is straightforward to show (see Myerson [1982]) that this u
must satisfy the incentive constraints from the preceding paragraph. This

result is called the revelation principle, since it shows that there is no

loss of generality in only considering communication systems in which all
players reveal all their information to a central mediator.

By the revelation principle, for any social welfare function, the problem
of designing an optimal communication system can be solved as a mathematical
optimization problem, where the incentive constraints define the feasible
set. These constraints are linear in p, so this optimization problem can

often be explicitly solved by well-known techniques. In fact, it is sometimes
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easier to characterize the set of communication equilibria of a game than the
set of Bayesian equilibria of the same game without communication, even though
the communication equilibria include the Bayesian equilibria. The set of
Bayesian equilibria has no simple geometrical structure, but the set of
communication equilibria is a convex polyhedron.

At this point, it may be helpful to distinguish between the terms

mediator and arbitrator as they have been used in this paper. Both terms

refer to an outside individual who intervenes in a game to help the players in
some way. A mediator acts as a communication channel between the players,
thereby transforming the game and enlarging the set of equilibria. An
arbitrator (as described at the end of Section 3) helps to determine which
equilibrium should be implemented by the players in a game with multiple
equilibria. TIn short, a mediator is an outside individual who communicates
with the players in order to enlarge the set of equilibria, whereas an
arbitrator is an outside individual who uses his authority or power of
suggestion to help the players to select among multiple equilibria. Of
course, there are many situations in which an individual may serve both as a
mediator and as an arbitrator in a game, but these two functions are logically
distinct.

To appreciate this distinction, suppose that the players in some game are
in communication with many different mediators, each of whom uses a different
incentive-compatible mechanism for determining his recommendations. There are
many equilibria of this transformed game with communication. For example, the
players could simply babble to all the mediators and implement some Bayesian
(or Nash) equilibrium of the original game without communication. (We may say
that a player babbles to a mediator if the player's report to the mediator is

chosen independently of the player's type and the player's action is chosen
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independently of the mediator's recommendation. We may suppose that a
babbling player simply randomizes uniformly over the set of possible type-
reports.) It is also an equilibrium for the players to be honest and obedient
to one particular mediator and babble to all the others. An arbitrator could
designate any one of the mediators as the one whom the players should obey.
In some situations, a mediator may also have the power to act as an
auditor or as a regulator of the players in a game. A regulator is an
individual who can directly control the players' actions, so that they cannot
disobey him. (When we considered the effect of binding contracts, we
implicitly assumed the existence of a regulator.) If a mediator is also a
regulator, then he can implement any communication mechanism that satisfies

the following informational incentive constraints (or self-selection

constraints) for every player i and every pair of possible types t; and 85t

RCT DRI NN S TG NI RN EX
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(That is, the mediator only needs to guarantee that no player could expect to

gain by lying about his type.) An auditor is an individual who can directly

observe and verify the players' types, so that they cannot lie to him. A

mediator who can both regulate and audit the players can implement any

communication mechanism, without regard for incentive constraints.

Dynamic multistage games with communication have been studied by Myerson
[1984d]. The set of communication equilibria for such games are defined by
incentive constraints that are similar to those for strategic-form and
Bayesian games. Unfortunately, the set of communication equilibria of a
multistage game cannot be identified with the set of correlated equilibria of

the "equivalent” strategic~form game (as in Section 2), because opportunities
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for the players to communicate after the beginning of the game would be
suppressed in the reduction to strategic form. To characterize sequential

rationality in multistage games with communication, a concept of sequentially

rational communication equilibria has also been defined. Myerson [1984d]

showed that a communication equilibrium of a multistage game 1s sequentially

rational if and only if it never involves the use of certain sequentially

codominated actions, which include dominated actions. Thus, two approaches to
the refinement of the Nash equilibrium concept (sequential rationality and
elimination of unreasonable actions) can be unified in the context of

multistage games with communication.

6. The Nash Bargaining Solution

We have seen that the problem of multiple equilibria can create the role
of an arbitrator, an outside individual who can, by his authority or power of
suggestion, determine which equilibrium will be implemented. If there is no
arbitrator and no other external determinant of a focal equilibrium, then one
prestigious player (called the principal) might have a similar authority to
select among the equilibria. But another possibility is that the players may
jointly determine the equilibrium to be implemented, by some process of pre-
play bargaining or negotiation. That is, the focal equilibrium could be
determined by a consensus among all the players, where the consensus is
reached through negotiations in which every player has an opportunity to

participate. The fundamental problem of cooperative game theory is to predict

the negotiated focal equilibria that might be selected by such a process. The
second half of this paper (Sections 6-9) is an introduction to the ideas of

cooperative game theory.
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Let us begin by considering Example 10, the "Divide the Dollars" game.

In this game, there are two players who can divide $100 between themselves,
provided that they can both agree on the division; otherwise they each get
nothing. To be specific, let us suppose that each player simultaneously
chooses a demand, which is any number between 0 and 100. If the sum of their
demands is less than or equal to 100, then each player gets a payoff equal to
his demand., 1If the sum of the demands is greater than 100, then each player
gets a payoff of zero. (This example is a special case of the demand games
studied by Nash [1953]. 1In this case we are identifying utility with money.)

This game has multiple equilibria; For any number x such that
0 < x € 100, there is an equilibrium in which player 1 demands x and player 2
demands 100 - x; so every efficient allocation is achievable in an
equilibrium. There are also inefficient randomized equilibria. For example,
there is an equilibrium in which each player (independently) randomizes
between demanding 1, with probability 1/99, and demanding 99, with probability
98/99, so that the probability that both get nothing is almost 98%.

In Section 3, we argued that the outcome of such a game with multiple
equilibria is likely to be a focal equilibrium which may be designated by an
arbitrator or other environmental factors. Since "envirommental factors” are
not included in the given mathematical description of the game, analysis of
such focal equilibria may be beyond the scope of mathematical game theory.

For example, if player 1 is male and player 2 is female, and if there has been
a tradition that males take 75% of mutually-feasible gains in the players'
society, then the (75,25) equilibrium is the focal and most likely outcome of
this game. On the other hand, if the selection of a focal point depends on an
arbitrator, rather than on some exogenous social tradition, and if we assume

that an arbitrator's judgement should depend only on the given mathematical
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description of the game, then we can hope to apply the methods of mathematical
game theory to predict the outcome of the game. To do so, we must develop a
theory of arbitration in games.

For the Divide the Dollars game, it seems clear that an impartial
arbitrator should recommend the equilibrium in which each player gets 50. We
should expect that an impartial arbitrator would recommend a symmetric
allocation, because players 1 and 2 are completely symmetric in the
mathematical description of the game. The (50,50) equilibrium is the only
symmetric equilibrium in which the players are sure to divide all the
available money. Thus, the (50,50) equilibrium is likely to be recommended by
an arbitrator because it is the unique outcome that is both equitable and
efficient.

Once (50,50) has been identified as the impartially arbitrated solution,
it is not really necessary to have an arbitrator actually present when the
game 1s played. The two players, being intelligent, can predict arbitrated
settlements as well as we theorists can. Thus, it should be common knowledge
among the players that an impartial arbitrator would recommeﬁd the (50, 50)
equilibrium, and this fact gives the (50,50) equilibrium an intrinsic focal

property, even when no arbitrator is present. That is, properties of equity

and efficiency can determine a focal equilibrium in a game, as well as social

or environmental factors. Thus, in the Divide the Dollars game, unless there

is some strong social tradition pointing to some other outcome, the (50,50)
equilibrium is the most likely outcome to be chosen by the players, even when
there is no actual arbitrator.

To extend this analysis to other games, we need a general theory of fair
arbitrated settlements in games, The first and most compelling of such

theories in the literature (see Roth {[1979]) is the bargaining solution of



- 36 -

Nash [1950, 1953].
The Nash bargaining solution can be defined as a function of a feasible

set (F) and a disagreement point (v), which in turn depend on the strategic

form of the game. The feasible set of an n—-player game is a closed and convex

subset of TR, representing the set of all allocations of expected utility
that the players can jointly achieve. If the players can make jointly binding
contracts to regulate their actions, then we may define the feasible set F to
be the set of all vectors (Uj(p),...,U,(p)) such that p is any correlated
strategy. 1If the players cannot make jointly binding contracts, then we may
define the feasible set F to be the set of all vectors (U;(p),...,U,(p)) such
that p is any correlated equilibrium, satisfying the strategic incentive
constraints.

The disagreement point of an n-player game is a vector in R’ that

represents the utility payoff that each player could guarantee himself if he
did not coordinate with the other players. One way to formalize this idea is
to define the disagreement point to be the vector v = (vl,...,vn) where each
v; is the minimax value for player i. An alternative suggestion is to let v
be the vector of expected utility payoffs that the players would get in some
focal Nash equilibrium. A third suggestion, developed by Nash [1953] is to
define v to be the vector of expected utility payoffs that the players would
get if each carried out some (endogenously determined) optimal threat. (The
distinction between these definitions corresponds to different assumptions
about whether the players can commit themselves before arbitration to
offensive and defensive threats that would be implemented if some player
subsequently refused to accept the arbitrated settlement.)

Once a feasible set and a disagreement point have been specified, it

seems reasonable that one should be able to define an equitable and efficient
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payoff allocation as a function of these two structures, without further
reference to the underlying strategic-form game. The efficient payoff
allocations, in the sense of Pareto, are precisely the points on the upper
boundary of the feasible set. That is (xl,...,xn) is efficient if it is in
the feasible set and there is no other vector (y;,...,y,) in the feasible set
such that y; > xy for all i, with at least one strict inequality. The
definition of equitable allocations is more problematic, but equity is
supposed to mean that each player's gains from the arbitrated settlement are
in some sense commensurate with every other player's gains. Once the
disagreement point is specified, to represent the consequences of rejecting
arbitration, the utility gains from arbitration can be computed for each
player at each feasible payoff allocation.

let us assume henceforth that there is a point in the feasible set in
which every player does strictly better than in the disagreement point, so
that no player would want to force disagreement.

Nash [1950] listed several axioms that an impartial arbitration procedure
should satisfy. 1If the players are symmetric, as in the Divide the Dollars
game, then they should get equal payoffs. The payoff allocation selected by
the procedure should be on the efficient boundary of the feasible set, and
should give each player a higher payoff than he gets at the disagreement
point. 1If a game is changed in such a way that the feasible set is made
smaller, but the disagreement point is unchanged and the old arbitrated
settlement is still feasible, then the new arbitrated settlement should be the
same as the old (because the lost utility allocations would not have been used
anyway, so they are irrelevant). If a game is changed by multiplying one
player's utility function by a positive constant or by adding a constant, then

his payoff in the settlement should be changed by the same multiplicative or
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additive constant, and all other players' payoffs should remain the same.
(This is because multiplying by a positive constant or adding a constant does
not change any of the decision-theoretic properties of a utility function.
Thus, a player's utility function can only be defined up to such linear
transformations.) Nash's remarkable result is that these properties are
satisfied by only one arbitration rule: choose the utility allocation
(X15+++,%,) that maximizes

n

izl (x; = v
the multiplicative product of the players' gains over the disagreement point
(Vy,ees,v,), subject to the constraints that (%j,...,x;) is in the feasible

set and %y > vy for every i. This allocation is the Nash bargaining

solution of the game.

An alternative characterization of the Nash bargaining solution may
clarify in what sense it is equitable. We use here the fact that no decision-
theoretic properties are affected by multiplying a player's utility function
by a positive constant. Thus, any weighted-utility function Aju;, where
Aj > 0, can represent player i's preferences as well as the given utility
function uy. This fact creates a problem for the arbitrator who wants to
treat the players equitably in his recommended settlement. Since there is no
decision-theoretic basis for distinguishing between the different weighted-
utility functions as representations of a given player's preferences, which
functions should be used in making the interpersonal comparisons that equity
requires?

There are actually two kinds of interpersonal comparisons of utility that

people often try to make in games: wutilitarian comparisons and egalitarian
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comparisons. Utilitarian comparisons are implicit in the sentence: "You
should do this for me because it will help me more than it hurts you.” A
utilitarian optimum is a feasible outcome that maximizes the sum of all
players' utilities. Egalitarian comparisons are made implicit in the
sentence: “You should do this for me because I am doing more for you.” An
egalitarian optimum is an outcome in which all players gain equally over the
disagreement point. In general, there may be nothing that is optimal in both
senses at once. Furthermore, if we make comparisons in weighted utility
scales, the sets of optimal outcomes change as the \; weights are changed.
However, there always exists some vector of weights (xl,...,xn) such that,
when we make interpersonal comparisons in terms of weighted utilities, the
utilitarian optima and the egalitarian optima intersect; and this intersection
is exactly the Nash bargaining solution. That is, given the feasible set F
and the disagreement point (vl,...,vn), an allocation (xj,...,%x,) in F is the
Nash bargaining solution if and only if there exists some vector of positive

weights (Aj,...,A;) such that

A,X, = maximum
i1 , .
1 yin F i

AjYs

N~
[ =]

i 1

(where y = (yy,+++,¥,)) and
xlxl i xlvl = xzxz - xzvz = tee = xnxn - xnvn.

We may refer to the A; that satisfy these conditions as the natural utility

weights for the given game. Thus, the Nash bargaining solution gives the
players equal gains over the disagreement point, in terms of the naturally
weighted utility scales for the game.

Nash [1950] stated that his bargaining solution was intended to predict

the outcome of bargaining, without an arbitrator, between two players who have
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equal ability to bargain and who can jointly select any feasible correlated
strategy for the given game. ("Feasible" here may mean either subject to
incentive constraints or not, depending on whether binding contracts are
possible.) As in the Divide the Dollars game, we can make the logical
transition from the theory of arbitration to the theory of unarbitrated
bargaining by invoking the focal-point effect. Thus, for any two-person
bargaining problem, we may predict that the equity and efficiency properties
of the Nash bargaining solution will lead the players to select it in their
bargaining process, unless some other envirommental factor or tradition
focuses more strongly on some other outcome.

There may be situations in which players have unequal bargaining
ability. To describe such situations, nonsymmetric versions of the Nash
bargaining solution have been proposed. Nonsymmetric bargaining solutions may
also be applied in arbitration, when the arbitrator feels that one player's
welfare deserves relatively more weight, because of the player's intrinsic
personal characteristics. For example, if player 1 is single and player 2
represents a family of four people, then an arbitrator in the Divide the
Dollars game might recommend the 20-80 division, to equalize per capita gains.

In general, a nonsymmetric Nash bargaining solution may be defined as any

solution function (mapping feasible sets with disagreement points into payoff
allocations) that satisfies all of Nash's axioms except the axiom of symmetry.
It can be shown (see Kalai [1977]) that a nonsymmetric Nash bargaining

solution always maximizes some product of the players' gains raised to various

powers; that is, it maximizes
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subject to (Xj,..s,X,) being in the feasible set F and satisfying x; > vj
for all i. Here the exponents (al,...,an) are some nonnegative parameters
(not all zero) that represent the players' relative weight in arbitration or
relative bargaining ability.

The above discussion has followed the cooperative approach to the theory

of bargaining. There is an alternative noncooperative approach to the theory

of bargaining, which was originally advocated by Nash [1951] himself in his

seminal paper on equilibria. (So it is also called Nash's program.)

The noncooperate approach to bargaining is to try to explicitly describe
the sequence of decisions and actions that individual players can make during
the bargaining process. Each player's role in the process of "jointly
selecting a correlated strategy” must be made through some sequence of actions
that he controls individually (actions of making threats and offers, and
accepting or rejecting others' offers). Since the outcome of this process is
the selection of a feasible correlated strategy to be used in a given game,
and since the expected payoffs from this correlated strategy can be computed
(as was discussed in Section 5), the bargaining process itself can (in
principle) be modelled as a multistage game. Thus, Nash [1951] argued, we
should try to predict the outcome of the bargaining process by modelling this
game and analyzing its Nash equilibria.

There are difficulties with the noncooperative approach to bargaining.
Bargaining between individuals who can communicate fact to face in a
sophisticated language such as English is obviously a much more complex
process than the simple bargaining models which theorists can study. Any
tractable model must make some simplifications which may seem arbitrary or ad
hoc. Furthermore, even in a simple bargaining model, the set of equilibria

may be very large, especially if players can make bargaining decisions
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simultaneously, or if there is incomplete information on the game. From“the
perspective of Section 5, we could even say that an ideal bargaining process
would transform the game so that all of the feasible correlated strategies of
the original game would become alternative equilibrium outcomes. (See
Crawford [1983] for a comprehensive development of this idea.) In such a
bargaining process, there remains a problem of equilibrium selection, where
each equilibrium corresponds to an allocation in the feasible set. This
selection problem leads us back to cooperative game theory and concepts such
as the Nash bargaining solution.

On the other hand, the Nash bargaining solution is limited as a solution
concept by the fact that its relevance to equilibrium selection is based on
the focal-point effect. Experimental evidence (see Roth and Shoumaker [1983])
suggests that factors from the sociological environment often have much
stronger focal effect than the theoretical properties of the Nash bargaining
solution. Furthermore, the nonsymmetric Nash bargaining solutions involve a
concept of "relative bargaining ability,” which begs deeper explanation or
analysis. Thus, there has been a growing interest in exploring the
noncooperative approach to bargaining.

The noncooperative models of bargaining studied by Rubinstein [1982] give
significant insights into what might determine a player's "relative bargaining
ability.” 1In these models, there are two players who can alternately make
offers to each other. For a specific example, suppose that the two players
(beginning with player 1) altermately offer payoff allocations in the feasible
set F, either until one player accepts the other's most recent offer, or until
the bargaining terminates in disagreement. Each time that player 2 makes an
offer instead of accepting player 1's most recent offer, there is an exogenous

probability p; that the bargaining process will terminate in disagreement.
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(Actually we only need to assume that player 2 gets his disagreement payoff in
this event.) Similarly, after the first offer, each time that player 1 makes
an offer instead of accepting player 2's most recent offer, there is an
exogenous probability p, that the bargaining will terminate in disagreement
(so that player 1 gets his disagreement payoff). Otherwise, when an offer is
accepted, both players get the payoffs specified in the offer. Using the
methods of Rubinstein [1982], it can be shown that this game has a unique
sequential equilibrium, provided that at least one of the given probabilities
(pl or pz) is positive. In this unique sequential equilibrium, player 1l's
first offer is always accepted by player 2. Furthermore, as Binmore [1981]
shows, if we let p; = ex; and py = exyp and we then take the limit as ¢
goes to zero, the accepted equilibrium offer converges to the nonsymmetric Nash
bargaining solution with parameters aj; and ajy-.

Thus, the parameter aj, Which measures player i's relative bargaining
ability in the nonsymmetric Nash solution, can be interpreted as player i's
relative ability to make a credible threat to terminate bargaining if his
offer is rejected. The rationale for considering very small exogenous
probabilities of such termination is that, in these sequential equilibria,
both players would lose if termination actually occurred, so that no one would
want to enforce the termination ex post. Player i's bargaining ability thus
derives from his ability to introduce at least some infinitesimal doubt in the
other player's mind as to whether player i might "irrationally" terminate

bargaining if his most recent offer were rejected.
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7. Cooperative Games with Transferable Utility

The preceding section discussed the Nash bargaining solution in the
context of bargaining games with any number of players. In fact, the Nash
bargaining solution was originally advocated by John Nash only for the
analysis of two-player games, and this limitation seems appropriate. The
essential problem is that the Nash bargaining solution, as defined in the
preceding section, ignores the possibility that the players might form any

effective coalitions among themselves other than the grand coalition that

contains all the players together.

To illustrate, let us compare Examples 1l and 12, each a game among three
players. In Example 11, the players get payoffs of $0 unless all three agree
on how to divide $300 among themselves. 1In Example 12, the rules are the same
except that only players 1 and 2 need to agree, to implement the division of
the $300. (Let us equate utility payoffs with dollar payoffs here.) In both
games, the disagreement point is (0,0,0), and the feasible set for the grand
coalition ({1,2,3}) is the set of all allocation vectors (x;,x5,x3) such that
X1 + xp + x3 < 300, The difference is that, in Example 11 no coalition of
two players could achieve any payoffs other than zero, whereas in Example 12
the coalition {1,2} can achieve any allocation vector (x1,%xp) such that
X + x9 < 300. In Example 11, the Nash bargaining solution (100,100,100)
seems reasonable, but it does not seem reasonable in Example 12. When we take
account of the fact that players 1 and 2 do not need player 3, the allocation
(150,150,0) seems like a much more reasonable outcome for Example 12.

Before we completely dismiss (100,100,100) as an unreasonable prediction
for Example 12, let us carefully examine the assumptions implicit in this
rejection. To be more explicit, let us suppose that the strategic rules for

the second game are that, after nonbinding pre-play communication, players 1
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and 2 simultaneously propose an allocation vector (xl,xz,x3) such that

x; + % + x5 < 300; if the proposed vectors are equal then they are
implemented; otherwise all three players get zero. For players 1 and 2 to
both propose (100,100,100) is an equilibrium of this game, just as (150,150,0)
is also an equilibrium. Even if the preplay communication is made an explicit
part of the extensive or multistage characterization of the game, there is
still an equilibrium in which each of the players 1 and 2 ignores anything
that the other player might say (including: "Let's cut out player 3 and

both choose (150,150,0)," because each interprets the other's speech as
meaningless babble rather than as English), and then both choose
(100,100,100). 1If player 3 has any influence in such matters, he would
certaintly want to promote such mutual misunderstanding between players 1

and 2. Thus, the key assumption that we need, to dismiss (100,100,100) as

unreasonable, is that players 1 and 2 can negotiate effectively during

their pre-play communication opportunities.

In general, when we say that the members of a coalition can negotiate
effectively, we mean that, if there were a feasible joint change in the
coalition-members' strategies that would benefit them all, then they would
actually agree to make such a change unless it contradicted agreements that
some members might have made with other (nommember) players in the context of
some other equally effective coalition. The key assumption that distinguishes
cooperative game theory from noncooperative game theory may be Fhe assumption
that players can negotiate effectively. 1In our discussion of the Nash
bargaining solution, we implicitly assumed that only the grand coalition of
all players can negotiate effectively together. 1In this section we now assume
that any coalition or subset of the players can also negotiate effectively.

Because the interactions between 2% - 1 different coalitions in an
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n-player game can be so complex, a simplifying assumption of transferable

utility is often used in cooperative game theory. That is, there is assumed
to be a commodity, called money, that players can freely transfer among
themselves, such that any player's utility payoff increases one unit for every
unit of money that he gets.

With transferable utility, the cooperative possibilities of a game can be

described by a characteristic function v that assigns a number v(S) to every

coalition S. Here v(S) is called the worth of coalition S and represents the
total amount of transferable utility that the members of S could earn together
without any help from the other players outside of S. For Example 11,
discussed above, the characteristic function is v({1,2,3,}) = 300,
v({1,2}) = v({1,3}) = v({2,3}) = 0, and v({1}) = v({2}) = v({3}) = 0.
The characteristic function for Example 12 differs from this only in that
v({l,Z}) = 300. (In any characteristic function v, we let v(@) = O where @
is the empty set).

Given a game in strategic form, von Neumann and Morgenstern [1944]

suggested that the characteristic function should be defined by

v(8) = minimum ma;imum (i zn ] ui(US,UN_S))
N-S S

where og is any correlated strategy for the coalition S, N-S is the set of all
players not in S, oy_g is any correlated strategy for N-S, and u; (og,0-g) 1s
player i's expected utility payoff, before transfers of money, when tﬁese
correlated strategies are independently implemented. That is v(S) is the
maximum sum of utility payoffs that the members of S can guarantee themselves
against the best offensive threat for the complementary coalition N-S. It can

be shown that such a "minimax" characteristic function is always
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superadditive, in the sense that v(S U T) > v(S) + v(T) for any two

coalitions S and T such that S n T = ). Harsanyi [1963] recommended an
alternative way of deriving the characteristic function from the strategic

form, such that

v(S) - v(N-S) = Gmin :ax (i ig . u; (og,0n.g) = Z _ uj(cs,cN_S)).
N-S g j in N-S
(See also Myerson [1978b] for more on threats and the characteristic
function.)

Once the characteristic function of a game has been specified, we can try
to predict the outcome of bargaining among the players. Such analysis is
based on the assumption, discussed in the preceding section, that the focal
bargaining equilibrium will depend on the power structure, rather than on the
details of how bargaining proceeds. A player's power is his ability to help
or hurt other players by agreeing to cooperate with them or refusing to do
so. Thus, the characteristic function is a representation of the power
structure in a game.

Let v be any characteristic function of an n-player game with
transferable utility. (As usual N = {1,2,...,n} denotes the set of all
players.) We may say that a coalition S can object to a payoff allocation

X = (xl,...,xn) if

v(s) > ) X, »
. & i
iin S
so that the members of S could get more together than they get in the
allocation x. An allocation x is the core of v if no coalition can object to

X and
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so that x is feasible for the grand coalition N.

The core is a very attractive solution concept, in view of our assumption
that any coalition can negotiate effectively. Unfortunately, the core may be
empty. Consider Example 13, which differs from Example 11 in that an
allocation that is proposed by any two of the three players will be
implemented. The characteristic function of this game is v({1}) = v({2}) =
v({3}) =0, ~({1,2}) = v({1,3}) = v({2,3}) = 300 = vw({1,2,3}). 1If player i
gets a positive payoff, then the other two players must get less than the
$300, which they can get by themselves, so they can object. Thus, the core of
this game is empty. On the other hand, there are some games in which the core
is very large. 1In Example 11, any allocation of the available $300 is in the
core (as long as no player's share is negative).

Shapley [1953] considered the problem of how to select a unique
allocation or value for every game represented by a characteristic function.
He proposed several natural properties that such a value function should have
(linearity, efficiency, symmetric treatment of symmetric players, and zero
payoff allocation for powerless "dummy” players), and he showed remarkably

that only one value function satisfies these axioms. 1In this Shapley value,

the value assigned to player i in the n—player game represented by v is

S|! - |{s] - 1)! .
o 0 = 3 Ll lsl =D gy - vy
ScN-i )
(Here lS' is the number of players in S, n! = 1e2¢3e ..., en, and N-i is the
set of players other than i.) A generalization of the Shapley value to games

with infinitely many players has been developed by Aumann and Shapley [1974].
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To understand the Shapley value, observe first that it is a linear
function from the set of all characteristic functions (which, for n-player
games, is a vector space with 2% - 1 dimensions) into the set of payoff

allocations (n-dimensional vectors). Linearity is composed of two properties:
0 4;(0) = 0,
(2) o; v + (1 = Mw) = rp; (v) + (1 = Mg (W),

for any two characteristic functions v and w and any number A\ between O and 1.
(0 is the characteristic function that assigns worth zero to every coalition;
and Av + (1 - A)w 1is the characteristic function that assigns worth
Av(S) + (1 - A)w(S) to each coalition S.) Equation (1) asserts that, if
every coalition can only get zero, then each player should get zero. To
interpret equation (2), suppose that the players will play tomorrow either a
game represented by v, with probability A, or a game represented by w, with
probability 1 - A. The expected Shapley value to player i is
x¢i(v) + (1 - x)¢i(w), 1f the players plan to bargain tomorrow. On the other
hand, if the players actually bargain today, planning their strategies in
advance, then they are playing a game represented by Av + (1 - \)w, because
today any coalition S can make plans that earn the expected worth
Aw(s) + (1 - Mw(s). So the value to player i from bargaining today should
be ¢i(XV + (1 - Mw). Equation (2) asserts that it should not matter
whether players bargain today (before the resolution of uncertainty) or
tomorrow (after the resolution of uncertainty).
Now, let R be any coalition and consider the game wp defined by
1 if S o R,

WR(S) =
0 otherwise.



- 50 -

That is, a coalition that contains all members of R can get a total of one
unit of transferable utility; and a coalition that lacks any member of R gets

zero., (This game is called the carrier game for R.) In this game, the

members of R all make equally essential contributions to earning the unit of
payoff, whereas the other players have nothing to contribute to any

coalition. Thus, by the same argument that led us to predict the (50,50)
allocation in the Divide the Dollars game, the reasonable outcome of this game
is to divide the available utility equally among the members of R, giving

nothing to the dummy players outside of R; that is,

[l/lRl if 1 is in R,
(3) ¢, (wp) =

{0 if i is not in R.

-

Using basic results of linear algebra it is straightforward to show that
there is a unique value function ¢ = (¢1""’¢n) that satisfies (1), (2), and
(3) above, and this is the Shapley value. Thus, the Shapley value can be
understood as the natural linear extension of the equitable solution concept
that we applied in Divide the Dollars game. (Nonsymmetric values have been
studied by Kalai and Samet [19841].)

A variety of other solution concepts have been defined for cooperative
games in characteristic function form. Broadly speaking, these solution

concepts can be divided into two categories: equitable solutions and

unobjectionable solutions. The unobjectionable solutions include the core,

the stable sets or solutions of von Neumann and Morgenstern [1944], the

bargaining set (Aumann and Maschler [1964]), and aspiration levels (Bennett

[1983]). (See Lucas [1972], Shubik [1982], and Owen [1982] for more about
these concepts.) Each of these "unobjectionable" solution concepts tries to

identify the set of payoff allocations that are stable, in some sense, against
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each coalition's ability to make a demand for some reallocations that it can
enforce. The equitable solution concepts include the Shapley value, the Nash
bargaining solution, and the nucleolus (Schmeidler [1969]). These "equitable"
solution concepts try to identify a reasonable compromise or equitable balance
between the various players and coalitions, so that each player's gains from
cooperation should be commensurate (in some sense) with what his cooperation
contributes to other players.

The simplest way to distinguish between these two categories is by
considering the two-player Divide the Dollars game. Each unobjectionable
concept identifies the entire set of efficient allocations, from (100,0) to
(0,100), as the set of solutions. Every equitable concept identifies the
equal division (50,50) as the unique solution to this game.

In Section 6 we discussed Nash's [1951] argument that cooperative games
should be analyzed by computing the equilibria of a fully specified model of
the bargaining process. As a criticism of the existing literature in
cooperative game theory, this argument is more relevant to the unobjectionable
solution concepts than to the equitable solution concepts. The unobjectionable
solutions are supposed to include all the payoff allocations that the players
would accept without forming coalitions to demand reallocation, so it does seem
reasonable to ask for a full description of the strategic process by which
players form coalitions and make such demands. (Whatever this process is, it
always has some equilibria, by the general existence theorem; so the core
cannot be identified with the set of equilibria of a bargaining process.)

On the other hand, the equitable solutions can be defended against Nash's
argument. As with the Nash bargaining solution, we can interpret the Shapley
value and other equitable solution concepts as arbitration guidelines and as

determinants of focal equilibria in unarbitrated bargaining, when all
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coalitions can negotiate effectively. We only need to assume that the
unspecified bargaining process has a sufficiently large set of equilibria, and
that the focal equilibrium will be determined by its properties of efficiency
and equity, which can be computed from the characteristic function.

The core of a game tends to be much more sensitive to changes in the
worths of some coalitions (typically those with larger worths) than others.
That is, the core and other unobjectionable solution concepts implicitly
identify some coalitions as being more important than others. On the other
hand, all worths of coalitions with the same number of members enter into the
Shapley-value formula with the same coefficient. Thus, the Shapley value has
been criticized for failing to account for the possibility that some
coalitions might be more active and important in bargaining than other
coalitions of similar size. For example, coalitions that can object to the
value might be more active than those with no objections. Some players might
have an incentive to make restrictive covenants that prevent them from
negotiating separately with other players. For some exogenous reaons
(cultural identity, perhaps), some players might be better able to negotiate
effectively with each other than with others. To account for such factors,
Owen [1977] and Hart and Kurz [1983] have generalized the Shapley value to

games with an additional cooperation structure that specifies which coalitions

are more active than others.
In the Owen—-Hart-Kurz theory, the given cooperation structure consists of
a list of certain active coalitions or unions. We let Sk(i) denote the kth

largest active union to which player i belongs, and we assume that
N >5,(1) 25,(1) 2 ... 2 {i},

for every player i. That is, we assume that the unions are nested. If player
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j is in Sp(i) then Sy(j) = Sl(i) for every % < k, since the k largest unions

that contain i must also contain j.

Given such a cooperation structure, let us define a permissible ordering

of the players to be any strict ordering such that, for any three players h,
i, and j, if there is some number k such that S8 (i) = S (j) # S (h), then
either 1 and j both come before h in the ordering or i and j both come after h
in the ordering. (That is, a player cannot come in between two members of a
union to which he does not belong.) Now suppose that we will randomly select
among all the permissible orderings, so that each permissible ordering has
equal probability of being selected. Let (i) denote the random set of
players who come before player i in this randomly selected ordering. The

Owen-Hart-Kurz (OHK) value for player i, in a game with characteristic

function v and the given cooperation structure (denoted by

(Sl(-),Sz(-),...)), is defined to be
0;(v[8),8,,.00) = E(v(@(1) v {i}) = v@1)))

(where E denotes the expected value). So the OHK value for i is his expected
marginal contribution to the random coalition that precedes him.

If ;1) = {i} for every player i, so that there are no multi-player
unions, then every ordering of the players is permissible. In this case, the
OHK value is equal to the Shapley value.

With the OHK value as our solution concept, we may try to analyze games
to predict which unions of players are most likely to become active. 1In the
three-player majority game (Example 13, above), players 1 and 2 can gain by
forming the union {1,2}, since it would increase each of their values from 100
(the Shapley value) to 150. On the other hand, in the three-player unanimity

game (Example 11, above), players 1 and 2 would lose by forming the union
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{1,2}, since it would decrease each of their payoffs from 100 to 75. In
general, the development of a plausible model of endogenous determination of
cooperation structures remains an important unsolved problem in game theory.
A theory of bargaining that is based on a value for games with cooperation
structure and on a plausible model of endogenous union formation, could
combine the best properties of the equitable and unobjectionable solution

theories.

8. Cooperative Games Without Transferable Utility

To extend the Shapley value (and other solution concepts similarly) to
games without transferable utility, Shapley [1969] suggested the following

"A—transfer” theory. Given a strategic—form game
T = (Cl""’cn’ ul,...,un)

as in Section 2, and given any vector A = (kl,...,Kn) such that all A\; > O,

let the A-rescaled version of T be

W =
AET (Cl""’cn’ xlul,...,xnun).

That is, A*T' differs from I' only in that the utility function of each player i
is multiplied by A;. Without transferable utility, there is no decision-
theoretically testable distinction between these two games. So let us
consider any such rescaled version A*I" and analyze it as if the A-weighted
utilities were freely transferable, computing its characteristic function vh
and its Shapley value ¢(vx) = (¢l(vx),...,¢n(vx)). let xg be the payoff for

player i in the original utility scales of T that corresponds to the payoff

¢i(vk) in the A-weighted utility scales of A*T"; that is
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A_ 1
X, =
i

¢i(v)‘)-
i

l

>

N

In general, the allocation x" = (x},...,xg) would be feasible in T if

A-weighted utility were transferable; but xM

is usually not feasible without
such transfers. However, if x actually is feasible in I, without any

‘transfers of utility, then we say that xM is a Shapley NTU value (or a A-

transfer value) for T', and )\ is a vector of natural utility weights for T.

(Here NTU stands for "nontransferable utility.”) The existence of a Shapley
NTU value can be guaranteed (see Shapley [1969] and Myerson [1984b]) if we
allow any vector A in which all components are nonnegative. (For vectors in
which some A\; are zero, we may define xM as any limit of a sequence of xx(k)
allocations, such that all components of each vector A(k) are positive and the
vectors A(k) converge to A\ as k goes to infinity.)

Alternative definitions of NTU values have been suggested by Harsanyi
[1963] and Owen [1972]. Axiomatic derivations of the Shapley NTU value and
the Harsanyi NTU value have recently been developed by Aumann [1983] and Hart
[1983]. (See also Samet [1984].) 1In the case of games with two players, all
three of these NTU values are equal to the Nash bargaining solution, with the
same natural utility weights as in Section 6. For games with transferable
utility, these three NTU values all equal the Shapley value.

Roth [1980] and Shafer [1980]} have shown examples in which the Shapley
NTU value selects outcomes that seem intuitively to be very unreasonable. The
Harsanyi NTU value seems somewhat more reasonable for Roth's examples. (The
Owen NTU value seems too complicated to compute.) On the other hand, Myerson
[1984b] has been able to défine a ndtural extension of the Shapley NTU value
to games with incomplete information, but not the more complicated and

nonlinear Harsanyi NTU value. Thus, the Shapley NTU value stands as the most
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broadly defined natural extension of our two most compelling solution
concepts: the Shapley value (for games with transferable utility) and the
Nash bargaining solution (for games with two players). Furthermore, there is
reason to hope that some modification of the Shapley NTU value, perhaps based
on the OHK value with endogenously determined cooperation structures, could
provide a satisfactory analysis of all examples. Thus it is important to try
to understand the logic behind the Shapley NTU value.

Consider the Banker Game from Owen [1972]. 1In this three-player game,
the coalition {1,2} can achieve any nonnegative utility allocation (yl,yz)
such that y; + by, < 100. " The grand coalition {1,2,3} can achieve any
nonnegative utility allocation (yj,yp,y3) such that y; +y, + y3 < 100.
Every other coalition can only get zero for its members. The idea is that
player 1 can get $100 with the help of player 2. To reward player 2 for his
help, player 1 can try to send him money; but without player 3, there is a
75% chance of losing the money that is sent. Player 3 is a banker who can
prevent such loss in transactions. How much should player 1 pay to player 2
for his help and to player 3 for his banking services?

The unique Shapley NTU value for this game is (50,50,0), supported by the
natural utility weights A = (1,1,1). With these weights, vx({l,Z}) = 100,
because the maximum A-weighted sum of utilities that coalition {1,2} can get
is 100, at (y;,yp) = (100,0). Also, vx({1,2,3}) = 100, and every other
coalition S gets vM(S) = 0. The Shapley value of this vM is (50,50,0).

Owen [1972] argued that player 1 should get more than player 2, and that
player 3 should get some positive fee for his banking services; but there is
a rationale to this Shapley NTU value. Getting zero, player 3 is indifferent
between accepting this NTU-value outcome or not, so it is not unreasonable to

assume that he probably will accept it. (Think of his NTU-value payoff as
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positive but infinitesimal, while his cost of providing banking services is
zero.) So suppose that there is only some small probability q that player 3
will refuse to accept his NTU-value allocation and will break up the grand
coalition. As long as q < 1/2, players 1 and 2 can accommodate this
possibility with no loss of expected utility. They simply plan to choose
(100,0) if 3 rejects the grand coalition (no transfer of money without the
banker), and plan to choose (100 - 50/(1 - q), 50/(1 - q), 0) if 3 agrees to
cooperate (a transfer of 50/(1 - q) wusing the banker).

Now let i equal 1 or 2; and suppose instead that there were a small
probability q that player i would reject the NTU-value outcome, even though it
is better for him than the zero that he gets alone. In this case, the
expected payoffs to the other two players could not sum to more than
50(1 - q) without reducing player i's allocation in the case of agreement.
Thus, a low—-probability threat of rejection by either player 1 or 2 would
cause real losses in the expected payoffs of the other players, and in a
symmetrical manner; but such a threat by player 3 would have no effect on
expected payoffs if it were anticipated correctly. In this sense, players 1
and 2 have equal power and player 3 has none, so that (50,50,0) is a
reasonable bargaining solution.

In general, let x be an efficient payoff allocation for the grand
coalition in a given game. ILet A be a vector of utility weights such that x
maximizes the sum of A-weighted utilities (xlxl + ... + xnxn) over all payoff
allocations that are feasible for the grand coalition. Suppose that the
efficient frontier is differentiable or smooth at x. Then, to a first-order
approximation, small transfers of A-weighted utility are feasible near x for
players in the grand coalition. That is, for any sufficiently small §, if

player i reduced his utility payoff from =x; to xy - é/hi (sacrificing &
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units of A-weighted utility) then, without changing any other players' payoffs
from what they get in the allocation x, player j could increase his utility
payoff from X4 to X4 + 5/xj, minus some "transactions cost” that is small
in proportion to §.

Now suppose that the players are expected to unanimously accept the
allocation x almost surely, except that, with some small probability, a
smaller coalition S might have to choose something feasible for themselves.

In this situation, a small transfer of A-weighted utility in the event that
everyone accepts x would have the same effect on expected payoffs as a large
transfer of A-weighted utility in the event that coalition S acts alone.

Thus, when the members of coalition S plan what to do if they must act alone,
they can effectively transfer A-weighted utility among themselves, where the
coin of transfer is a promise to make a small feasible reallocation around x
in the much more likely event that x is accepted. (The players outside S
would not object to such reallocatidn because it does not affect their
payoffs. We are assuming that these coalitional plans are made before it is
learned whether the coalition must act alone or not.) $So it is appropriate to
analyze this bargaining game as if A-weighted utility really were transferable
for any such coalition S. The results of this analysis (when we compute the
Shapley value of the A-rescaled version of the game, and then convert this
value back into the original utility scales) will coincide with the originally
hypothesized allocation x if and only if x is a Shapley NTU value. 1In this
sense, the Shapley NIU values are the plausible cooperative solutions of the

game.
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9. Cooperative Games with Incomplete Information

In a cooperative game with incomplete information, the players already
know their private information or "type"” when they bargain over which
communication mechanism to implement. Recall that a communication mechanism
for a Bayesian game with incomplete information is a rule for determining the
actions of all players as a (possibly random) function of reports that the
players submit to some mediator. Let us suppose that the players can make
binding commitments to regulate their actions but cannot verifiably audit each
others' types. Thus, a communication mechanism p is feasible for the players
together only if it satisfies the informational incentive constraints
discussed near the end of Section 5.

If player i's actual type is t;, then his objective in bargaining is to
maximize his conditionally expected payoff Ui(plti) given his actual type.
His conditionally expected payoff given any other possible type, and his ex
ante expected payoff before his type was learned, would be completely
irrelevant to his welfare, since he already knows his actual type. However,
an outside arbitrator, who does not know any player's actual type, can be sure
that all players would want to make some change in their communication
maecahism only if the change increased the conditionally expected payoffs
Ui(plti) for every type tj of every player i. From such an outsider's
viewpoint, if there are three players and if there are five possible types or
information states for each player, then a change is an unambiguous welfare
improvement only if it increases (or at least does not decrease) each of the
fifteen conditionally expected payoffs for the various possible types of the
players. In general, we may say a communication mechanism p is efficient if
it is feasible and there does not exist any other feasible communication

mechanism v such that
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U, (vt > Ui(p|ti)

for every possible type t; of every player i, with at least one strict
inequality. (For a comprehensive discussion of efficiency with incomplete
information, see Holmstrom and Myerson [1983]. We are here defining

efficiency to mean interim incentive—efficiency, in the terminology of

Holmstrom and Myerson.)

In bargaining without an arbitrator, the expected payoffs for all
possible types of a player may still be relevant to the bargaining process,
because the other players do not know his actual type and he may wish to
conceal it. 1If a player were expected to demand the feasible communication
mechanism that maximizes his conditionally expected utility given his actual
type, then his demand could reveal his type—information to the other players,
and they might be able to use this information against him. Thus, a player's
optimal bargaining strategy should represent some kind of inscrutable .
compromise between his actual preferences and the preferences that he would
have had if his informational type had been different. Therefore, a
cooperative bargaining solution should be an equitable compromise, in some
sense, not only between all the different players, but also between all the
different possible types of each player.

Based on such considerations of efficiency and equity, Myerson [1983,

1984a, 1984b] has defined neutral bargaining solutions, which generalize the

Nash bargaining solution and the Shapley NIU value to games with incomplete
information. These neutral bargaining solutions satisfy equity and efficiency

properties that can be described in terms of certaln virtual-utility

functions. Without giving a formal definition here, we may say that a
player's virtual utility differs from his real utility by taking into account

the costs of satisfying his informational incentive constraints. (In a sense,



- 61 -

the definition of virtual utility is an application of one of the most basic
ideas of economic theory: that efficient social plans could be decentralized
if the constraints facing society were multiplied by some appropriate shadow
prices and added into the individual's payoff functions. The only difference
is that here we are considering incentive constraints, instead of resource
constraints. For a full basic explanation of virtual utility see Myerson
[1985a].) The essential idea of these neutral bargaining solutions is to
apply the Shapley value (in each information state) to a transformed game in
which the players get transferable virtual-utility payoffs, in the same way
that the Shapley NTU value applies the Shapley value to a transformed game in
which the players get transferable weighted-utility payoffs. 1If the resulting
allocation of virtual utility corresponds to an allocation of real utility
that can actually be achieved by a feasible communication mechanism then that
mechanism is a neutral bargaining solution.

It is best to introduce these ideas in the context of a simple two-player
example. Let player 1 be a (monopolistic) seller and let player 2 be a
(monopsonistic) buyer of some commodity. The seller has a supply of one unit
of the commodity, and he knows whether it is good quality (type "la") or bad
quality (type "1b"). 1If it is good quality then it is worth $40 per unit to
the seller and $50 per unit to the buyer. If it is bad quality then it is
worth $20 per unit to the seller and $30 per unit to the buyer. The buyer
thinks that the probability of good quality is 0.2. We assume that the buyer
cannot verifiably audit the seller's information, and the seller cannot offer
any enforceable warranties. They must simply negotiate a price and quantity
to be traded, possibly depending on what the seller claims about his
information.

To describe a trading mechanism that the players might use, let x, and q,

a
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denote, respectively, the amount of money that the buyer will pay to the
seller and the quantity of the commodity that the seller will give to the
buyer if the seller claims that the quality is good; and let %y and qy denote
corresponding quantities 1f the seller claims that the quality is bad. If the

seller is honest in such a trading mechanism then his expected payoff is

U1, x, — 40q, if the commodity is good, and

Ujp = Xy = 20q,  1f the commodity is bad.

The buyer, who does not know the quality, gets the expected payoff
U2 = (.2)(50qa - xa) + (.8)(30qb - xb).

To be feasible, a trading mechanism must satisfy the following two

informational incentive constraints

Ula > Xb - 40qb, Ulb z Xa - 20qa,

so that the seller cannot gain by lying about his information. Also, since
each player has the option to not trade at all (which gives him a payoff of
zero) a feasible trading mechanism must also satisfy the following three

minimum~payoff contraints (often called individual-rationality constraints)

In addition, we must have 0 < q; <1 and O < q < 1, since there is only
one unit to trade.

Notice that the commodity is always worth $10 more to the buyer than to
the seller. However, there is no feasible trading mechanism in which the
buyer always gets all of the seller's supply. Such a mechanism would have

q; = qp = 1; but then the incentive constraints would imply that =X, = Xy,
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so that either Uy, <0 or Uy <O. Thus, by the revelation principle (see
Section 5), in any equilibrium of any bargaining process applied to this ganme,
there must be some positive probability that the seller will end up owning
some of the commodity, even though it should be worth more to the buyer. The
problem is that the good-type seller (la) cannot convincingly demonstrate that
he really needs and deserves a price above $40, unless he implements a threat
to withhold some of his supply. Without such a demonstration, the buyer would
be unwilling to pay more than 534 = (.8)(30) + (.2)(50).

There are many trading mechanisms that do satisfy all of the feasibility
constraints, however. Analysis of these constraints shows that, for any
numbers q, and q, such that 0 < q, < (4/7)qb and qy < 1, there exist some
X, and Xp that make a feasible trading mechanism. (See Proposition 3 in
Myerson [1985b].) In general, the good—type seller always sells strictly less
than the bad type, but at a higher price per unit.

To determine which trading mechanisms are efficient, we must characterize
the set of all allocations of expected utility (Ula’Ulb’UZ) to the two types
of seller and the buyer that can be achieved using a feasible trading
mechanism. It can be shown, by mathematical analysis of the feasibility
constraints, that an allocation (Ula’Ulb’UZ) can be achieved if and only if it

satisfies the following five inequalities:

.3U1a + .7U1b + U

A

o
-

[ws}

1a <Y U120 Upy

Thus, any feasible meachism that satisfies

.3U1a + .7U1b + U2 =8

must be efficient, in the sense that there is no other feasible trading
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mechanism that would be surely preferred by the seller (in either type) and by
the buyer.

The best feasible mechanism for the buyer is
D) q. =0, x =0, 9 = 1, x, = 20
which gives expected payoffs

Ula = 0, Ulb = 0, Uz = 8,

This mechanism is implemented by letting the buyer make a nonnegotiable first-
and-final offer to buy the seller's unit of supply for $20, accepting the 207%
chance that the seller might refuse to trade because he is a good type. To
increase q, above zero, it would be necessary to offer a higher price to the
bad-type seller, which would reduce the buyer's expected payoff.

The best feasible mechanism for the seller depends on his type. TFor the

good type (la) the best feasible mechanism is

) q, = 0, x5, =8, qp = 1, xp, =28
which gives
Ui, = 8, Uip = 8, Uy, = 0.

This mechanism differs from the buyer's best (4) in that the buyer first has
to pay a nonrefundable fee of $8, to buy the right to then make a final offer
of $20 for the commodity. The good-type seller would take the $8 fee and then
refuse to sell for $20. 1In expected value, the buyer is compensated for his
potential losses to the good type by his $2 gains from the more likely bad

type. On the other hand, the best feasible mechanism for the bad type (lb) is

4 6
(6) q, = 7> X = 227,

3
a =1, X, = 317,

9y b
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which gives

3
U, =0, Uy =113 U, =0.

In this mechanism, the buyer buys 4/7 units from the good type at a price per
unit of xa/qa = 40. So his gains from the good type compensate, in expected
value, for his losses when he pays a price above $30 to the bad type.

Under the assumption that the buyer and seller have equal bargaining

ability, the neutral bargaining solution selects the trading mechanism

a q, = 1/6, X = 50/6, 9y = 1, X = 25
which gives

v, =13, v, =5 U -4

la 3? 1b ’ 2

(Notice that .3(10/6) + .7(5) + 4 =8, so this is efficient.) 1In this
mechanism, the seller can either sell his entire supply for $25, or he can
sell 1/6 of his supply for a price per unit of $50 = x,/q,; the bad type
chooses the former and the good type chooses the latter. The price of $25
seems clearly equitable for the bad type of seller (averaging the seller's
valuation of $20 and the buyer's valuation of $30), but the $50 price for the
good type fully exploits the buyer. However, it can be shown (see Myerson
[1985a]) that if the costs of the incentive constraints were internalized
using the hypothetical construction of virtual utility, the good-type seller's
virtual valuation would become $50 instead of $40, so the $50 price satisfies
the property of "virtual equity” for the good type. The intuitive idea behind
the virtual~utility hypothesis is that the good type of seller 1s jeopardized
by the bad type (that is, type la needs to prove to the buyer that he is not

type 1b), so that the good type might tend to distort his effective
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preferences and act as if the commodity was worth $50 to him rather than $40,
to exaggerate his difference from the bad type. These exaggerated virtual
preferences could also justify the outcome that only a fraction of the good
seller's supply is sold, since his virtual valuation equals the buyer's
valuation for the commodity.

To understand the rationale behind the neutral bargaining solution more
rigorously, it is necesssary to face the issue of inscrutable compromise
between two types of the seller. The buyer's expected payoff Uy =4 seems
equitable, in that it is halfway between the best (U2 = 8) and worst
(Uy =0) that he could expect in any feasible trading mechanism. There are
many possible allocations for the different types of seller (from
(U1a5U1y) = (4,4) to (Uy,,Usp) = (0,5;)) that are all achievable with
feasible trading mechanisms in which the buyer's expected payoff is 4, but
only if both types of seller are expected to use the same mechanism (so that
the choice of mechanism does not alter the buyer's beliefs). What is special
about the allocation (Ula,Ulb) = (1%,5) that makes it the most reasonable or
inscrutable compromise between the conflicting interests of the two types of
seller (so that the buyer should not infer anything about the seller's type
from the fact that he is willing to settle for a mechanism that gives this
allocation)?

Consider first the simpler case in which the seller has all of the
bargaining ability (or the seller is a principal in the sense discussed at the
end of Section 3). 1In this case, the seller does not need to compromise with
the buyer, who will presumably accept any trading mechanism that gives him a
nonnegative expected payoff. However, the seller must still make some
compromise between his actual type and the other possible type, to avoid

conveying information to the buyer by the mechanism selection itself. That
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is, the seller cannot simply demand the feasible mechanism that he likes best
given his actual type, because the buyer would reject mechanism (5) when he
realizes that only the good type would want to implement it, and the buyer
would reject (6) when he realizes that only the bad type would implement it.
(The buyer would expect to lose $8 to the good type in (5) and lose $1; to the
bad type in (6).) The most inscrutable compromise for the informed seller

would be
(8) q; = 1/3, X, = 50/3, ap = 1, Xp = 30.

In this feasible mechanism, the bad type sells his entire supply for $30 and
the good type se11371/3 of his supply for $50 per unit. The buyer's payoff is
zero with either type of seller, so the buyer would be willing to participate
in this mechanism no matter what he inferred about the seller's type from the
fact that the seller proposed it. Furthermore, this mechanism is efficient
and gives Uy = 0, so there is no feasible mechanism that makes both types of

the seller better off. These properties make mechanism (8) a strong optimum

for the seller, in the sense of Myerson [1983]. It can be shown that, for any
alternative feasible mechanism that is better for one type of the seller, the
buyer would expect negative payoff in this alternative mechanism if he
inferred that the seller's type is the one that prefers it. So any other
proposal by the seller would be rejected by the buyer, on the bhasis of the
information revealed by the proposal itself.

The expected payoffs from the seller's optimum (8) are

1
Ula = 3‘3‘, Ulb = 10, Uz = 0.

The averages of these payoffs with those of the buyer's optimum (4) are

exactly equal to the expected payoffs of the neutral bargaining solution
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(7). That is, the neutral bargaining solution is equivalent to a
randomization between the buyer's optimum (4) and the seller's optimum (8), in

which each mechanism gets equal probability. This random—dictatorship

property is in fact one of the two axioms (the other being an analogue of

Nash's axiom of independence of irrelevant alternatives) from which the

neutral bargaining solution was first derived by Myerson [1984a].

It can also be instructive to analyze this game by the noncooperative
approach to bargaining, characterizing the equilibria of a specific bargaining
process. Similar games have been analyzed in this way by many authors,
including Fudenberg and Tirole [1983], Cramton [1983], Sobel and Takahashi
[1983], Rubinstein [1983], and Chatterjee and Samuelson [1983]. By the
revelation principle, any equilibrium of any such bargaining process will be
equivalent to some feasible mechanism as described above. Unfortunately, many
natural bargaining processes turn out to have multiple equilibria.

For example, consider the bargaining process in which the seller first
sets a price per unit, and then the buyer decides what quantity to purchase.
There are infinitely many sequential equilibria of this game. For any price y
between 40 and 50, there is a sequential equilibrium in which the good type of
the seller sets a price of y. The bad type randomizes between setting a price
of 30, with probability (5y - 170)/(4y - 120), and a price of y, with
probability (50 - y)/(4y - 120). When the bad type randomizes in this way,
the buyer would rationally believe, after getting a price of y, that the

commodity should be worth $y per unit to him, because

_ (30)(-8)(50 - y)/(4y = 120) + (50)(.2)
y (-8)(50 = y) /{4y - 120) + .2 .

So the buyer's demand can be rationally set at 10/(y - 30) units of the
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commodity after getting a price of y, and at one unit after getting a price of
30. For any price above 30 other than y, we may suppose that the buyer would
demand no units of the commodity, because he might infer that the unexpected
price quote came from the bad type of seller. Notice that the bad type of
seller is indifferent between setting the price at 30 or at y, as is necessary
to induce him to randomize.

All of these equilibria correspond to efficient trading mechanims, and
all give the same expected payoff to the bad type of seller. The difference
is that the buyer prefers the equilibria with lower y and the good type of
seller prefers the equilibria with higher y. (There are other, inefficient
equilibria of this game which are worse for both the buyer and the good type
of seller than equilibria described above.) Thus, if we add the assumption
that the seller not only sets the price but also has the persuasive power of a
principal to determine the equilibrium (that is, he can explain which
sequential equilibrium he is implementing when he sets his price, and the
buyer will accept his explanation), then we should expect that the sequential
equilibrium with y = 50 will be implemented. This equilibrium is equivalent
to the seller's neutral optimum (trading mechanism (7)) which we discussed

above.
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