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AN O(nlogn) RANDOMIZING ALGORITHM FOR
THE WEIGHTED EUCLIDEAN I-CENTER PROBLEM*

NIMROD MEGIDDOY and EITAN ZEMELY

A randomizing algorithm for the weighted Fuclidean 1-center problem is presented. The algonthm is shown
to run on any problem in O{n log n) time with high probability.
1. Introduction.

The weighted Luclidean [-center problem is defined as follows. Let n points, p, = (z,,¥,), (I =
1,-+-,n) be given together with positive weights, w, (2 = 1,---,n). For any point p = (z,y), let

d(p, p:) = \ﬂrl —z)* + (v —v)?

and

Hp) = H(z,y) = max w,d(p,p,

(7) (z,9)  pax (p, P4)

The weighted Euclidean 1-center problem is to find a point p* = (z*,y*) so as 10 minimize H
over R2. The special case where all the w,’s equal 1 (that is. the unweighted 1-center problem)
was proposed in 1857 by Sylvester and amounts to finding the smallest circle containing all the
given points. Algorithms for the unweighted casc were given in [CR]. [CC), [EH], [M1], [NC], [RT],
[SH] and [Sm]. Mecgiddo's algerithm [M1] runs in linear time. The Elzinga-Hearn algorithm [EH]
is claimed to be very practical [HV].

The more general weighted case was introduced in [F]. It can be solved in O(n®) time (by
enumerating all riples of points) under a model in which square roots are computed in constant-
time (sce [CT] for a treatment of the squarc roots issues in gencral).  Megiddo [M3] gave an
O(n(log n)*(loglogn)?) algorithm for the weighted problem, and later an improvement based on
the methods in [M2] was found. which runs in O(n(logn)?). The obscrvation of [CT] eliminates the
need to compute square roots in thesc algorithms. In another paper. Chandrasckaran [C] pointed
out that the weighted center problem in gencral dimension can be solved in polynomial time, with
the aid of an “ellipsoid™ method. The unweighted problem can be solved in lincar ime whenever
the dimension is fixed [M35]. We note that, rclative to the ;- and the [ -metrics, even the weighted
problem can also be solved in linear time whenever the dimension is fixed [MS].

In this paper we develop a randomizing algorithm for the weighted problem, whose running time
can be made O(nlogn) with any prespecified probability of success (less than 1). The algorithm
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relies on the parametric method developed by Megiddo [M1. M2). The present paper builds upon
ideas developed by the present authors in [M3, M4, 71, Z2].

In order to simplify the presentation, we assume all weights arc distinct and, in gencral, we
assume clements to be distinct whenever we need to sclect or rank in a set of numbers, This
assumption is made only for the convenience of presentation. Similarly, whenever we deal with a
number of the form an, where n is an integer and 0 < « < 1, wc regard an as integer (cthink,
for example, of [an)).

The organization of the paper is as follows. In section 2 we present an O(n) algorithin for a one-
dimensional version of the problem with a constraint. [n Scction 3 we bricfly discuss a randomizing
version of the algorithm developed in Scction 2. In Section 4 we present a parameterized version of
the algorithm developed in Section 3. We show in Section 5 that this parameterized version solves
the problem in O(nlogn) time with high probability.

2. A one dimensional search.

Consider a vertical line L defined by the equation z = z/, for some fixed z/. Suppose we
add to the weighted 1-center problem a constraint that the center must lic on L. We now have a
onc-dimensional problem, namely, to find a value 3’ = y/(z’) which minimizes the expression

h(y) = dl(z’
()  pax (', y), p.)

Note that h(y) is convex. Let the valuc of y be fixed. and let 7 be a maximizer of the weighted
distance, that is,
h’(y) = wld((I/) y)) pz)

It is easy to verify that the maximum distance can be reduced only if y gcts closer 1o y,, that is,
y'(z’) > y if and only if y, > y. Also note that. given y, a maximizer ¢ can be found in O(n)
time. This implies that we can answer a query like “Is y < ¢ 77 in O(n) time for any y. We call
such (vertical) queries (ests.

The procedure for solving the one-dimensional constrained problem is essentially the same as the
wwo-variable linear programming algorithm [M4]. Instcad of minimizing the maximum of a sct of
linear functions (in the linear programming problem), herc we have to minimize the maximum of
a set of convex parabolas. The reader may like at this point to verify that a linear-time algorithm
for the latter can be developed along the lines of [M4]. We, however, describe here an algorithm
using the terminology of the weighted center problem. This will help us later in describing the
two-dimensional algorithm. Consider the equation

w[(z. — 2)* + (v, — v)*] = w?[(z, — 2)° + (v, — v)*]

This equation describes a circle C,; such that p = {z,y) is closer (in the weighted sense) to p,
than to p, if and only if p is inside the circle. Our strategy in computing ¥’ is to identify either
one or two points at which the weighted distance to the center (z/, y') is maximized. To that end,
we eliminate points which are “dominated™ in the following sense: A point p; is dominated by
p, if the distance can be maximized at p, only if it is also maximized at p,;. More specifically, if
p' is inside the circle C,, then p, can be eliminated, and if p’ is outside of C,, then p, can be
climinated. In either case the set of points is reduced. However, we need to find a way to acquire
information about domination relations by performing a small number of tests.
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Consider the intersection of the circle C,, with the line L. This intersection is cither empty or
equal to an interval ¥y, = {y;, g;] possibly with y = = y; Now, let E denote the sct of pairs
of points whosc circles do not intersect the line, and let ° denote the sct of all other pairs. Let
e = 1E| and f = |F|. Obviously, onc member of each pair in £ can be climinated without any
further work, namecly, the one with the smaller weight. Also. for a pair (7, ) € F we can climinate
p. if y is not inside C,; and p; otherwise. The query “Is y inside Cy; 77 can be answered by
two tests. namely. at y,, and y; Morc cfficiently, let ¥y denote the median of the Y., s Note
that if y’ < y— then for each (k, () such that yi; > y ™ we have ¥’ < yg; and hence ' is not
inside Ci;. so that one member from cach such pair can be climinated; note that there are k/2
such pairs. If y* > y—, then consider the sct /7 of pairs £,{ in F with v}, > y—. Since y™
is the median, we also have |F,| = f/2. Now, let y™ be the median of the y},'s in Fy. A test
at y™ identifies a subset 7y of cardinality [F;]/2 = f/4 so that onc clement can be climinated
from cach pair in this set. All in all, we have identified at most two medians ¥y~ and y™, and
performed no more than two tests. The overall effort so far is O(n). In return, we eliminate at
least e/2 + f/8 > n/16 points. In fact, it is casy to achieve a larger fraction, n/12. of climinated
points. By repeating this step untl the set is exhausted. we establish a linear time algorithm.

Recall that an optimal solution for the unconstrained problem is denoted by (z*,y*). Once vy’
has been identified. we can casily decide whether or not * > z’. Specifically. let p, be such that

/ /
w,d{p’, ;) = max w, d(p, py)
1<5<n
Then. z* > z’ if and only z, > z/. We call the query “Is z > z* 7" a (horizontal) test at z.
Note that a horizontal test vields information as to the location of the unconstrained minimum p*,
whereas a vertical test dcals with the constrained minimum p'.

3. The henefit from randomization.

The procedure for the constrained probtem runs in lincar time so there is no room for improvement
by order of magnitude. Nevertheless. we will now present a randomizing version which runs in
linear time with high probability. It is this randomizing algorithm which will be parameterized
later. improving the solution of the unconstrained problem by order of magnitude.

The randomization enters the algorithm via the choice of y— and y ™. Rather than picking y—
as the median of the set of y;;’s, we simply pick ¥y to be any element with the same probability.
This means that the number of points eliminated in each iteration is a random variate. We note that
the situation in our algorithm looks like an extension of the FIND algorithm [Ho], where the k-th
element a* of an ordered (but not sorted) set {ay,---,a,} is selected by repeating the following
step: Pick a random element a, of the currently remaining set and climinate all thosc clements
which are separated by a; from the k-th element of the original set. In this algorithm the k-th
element is unknown throughout but it can easily be decided whether or not a, < a*, so that we
can climinate all those elements a, such that a, is between a, and a*. The expected number of
comparisons that algorithm FIND makes was analyzed by Knuth [K] for anv combination of n and
k. Our problem seems much more complicated for such an anlysis, since it cannot be characterized
by an ordered set (of fixed cardinality) of numbers. In particular, in our algorithm after points
have been eliminated, new pairs are formed which add new values to the domain we are scarching.
Thus, we will evaluate upper-bounds on the expected time. In Section 5 we show that the expected
time for running the one-dimensional scarch this way is lincar and in fact for any positive € there is
a constant C (independent of n) such that the running time is less than Cn with probability greater
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than 1 — e. Of course, this result is not so significant for the one-dimensional problem alone. The
significance is that it improves the runnung time of the algorithm for the weighted center problem.

4. The two-dimensional search.

As we have said before, the weighted 1-center problem can be viewed as a problem of scarching
for an optimal point p* = (z*,y*). Now, if z* is known then we can find y* in additional O(n)
time, using the onc-dimensional scarch procedurc of Section 2. The general idea of Megiddo's
paramctric method {M1, M2] is to perform the one-dimensional scarch with * being indeterminate.
The parametric algorithm frequently pauses and requests information which helps reducce the interval
of indcterminacy. to cnable proceeding with the cxccution. The reader is advised to gain better
idea of this method from the previous papers. When the parametric search ¢ends, the algorithm has
produced an interval which contains z* along with sufficicnt information for computing both z*
and y* in cssentially onc step. We will explain in detail how this is carried out.

We will first review the basic steps of a single iteration of the one-dimensional scarch. later, we
will specify how these steps can be carricd out with z* being indeterminate. While reading the
following description, the reader is advised to consider z* as an indetrminate, which is known (o
belong to a certain interval.

Algorithm . One-dimensional search
1. [Pairing.] Form disjoint pairs of points (4, j) and compute the equations of the circles C,,.

2. [Classifi- pairs.] Identify the sct E of pairs (7, j) whose circles C,; do not intersect the line
z = z*. Denote by F the set of the remaining pairs. For cach pair in E, eliminate the point
with the smaller weight.

3. [First Sample-and-Test.] Pick a random pair (¢,7) € F and perform a vertical test at
Yy~ =y,, . The test amounts to finding a point p, at which the weighted distance is maximized.
that is

‘fd‘fy *v - = d ] *) -
w, d(p,, (¥, y7))  pax (pe, (z*, 7))

4. [First Elimination.] 1If y, < y— then for each pair (k,[) € F such that y5; > y .
eliminate the point with the smaller weight and terminate the current iteration.

3. [Second Sample-and-Test] If y, > y— then pick a random pair (¢, 5) from the set Fy of
pairs (1, 7) such that Y,, <y~ and perform a vertical test at yt = Yoo

6. [Second Elimination} 1f y, > y™ then for cach pair (k,{) € F, (that is, ylj < y71),
climinate the point with the smaller weight; otherwisc, for cach pair not in F climinate the
point with the larger weight.

We now examine the role of z* in each of the steps. Obviously, Step 1 does not depend on z*.
Also, Steps S and 6 are analogous to 3 and 4, respectively, and do not require a separate treatment.

Consider Step 2. Here, the scts £ and F' do depend on z*. For each circle C,,. let {a,;, by,]
denote the projection of C,, on the z-axis. Obviously. (z, 7) € F if and only if z* € [a,,, b;,]. Let
X be the set of all endpoints a.;, b,,. We can locate z* within X by log|X | horizontal tests. Each
test takes O(n) time and hence this step takes O(nlog n) time. At the end of Step 2 we know the
sets E and F. even though the value of z* is yet unknown.
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Consider Step 3. Here, we first pick a random pair {z,7) € F (clearly, an opcration which is-
independent of z* after the sct /' has been determined). but then the value y;7 is a function of z*.
The graph of this function coincides with the lower half of the circle C,,. Denote this half-circle
by D,,. Next, we nced to find a point p, at which the weighted distance from the {yet unknown)
point {z*,y,7) Is maximized.

We now describe a procedure for finding a point p, at which the weighted distance from the
point {z*,y.) is maximized. The stcps that we define in the present paragraph are of course
“local” and should not be confused with the progress of the main algorithm. The present procedure
is quite similar to the main one. We first form disjoint pairs {£,{) and look at their respective
critical circles Ck;. For each circle, there are at most two intersection points with the half-circle
D.,;. Thus, there are at most n such points. Let X denote the set of the z-components of this
points. We can obviously locate z* within X by O(log n) horizontal tests. Thus. this search takes
O(nlogn) time. As a result, we know for each pair (k, I) whether the point (z*, y;) lics inside or
outside the circle Cy;. So. we can eliminate (just for the sake of the present step) one member of
the pair (k, [). Reiterating this idea cventually leads to one point p, at which the distance from the
point (I*,y;) is maximized. The entire procedure in this paragraph stll takes O(nlogn) time.

Consider Step 4. We first need to decide whether y, < Y., - but the exact value of y 7 Is yet
unknown since it is a function of z*. However. like in the previous cases. we can carry the step
out without knowing z* precisely. Consider the horizontal line y = y,. This line intersects the
half-circle D, at no more than two points. (ay, ¥, ). (a2, ¥-). Thus, it takes at most two horizontal
tests (at ay and ap) to tell whether at z* the line y = y, lics above or beneath the arc D.,,. This
takes O(n) time. Suppose y, < y,, (otherwise we go to Step 5). We now need to climinate the
point of the smaller weight from cach pair (k, {) such that y; < Y,, . where both y. 7 and y; are
functions of z*. Once again. this can be carried out even though we do not know the exact value
of 7. We consider the half-circles Dy;. There are at most n intersection points of such arcs with
the half-circle D,,. By Oflog n) horizontal tests we can locate z* within the sct of z-values of these
intersection points, and thus we can climinate one point per pair for (&, !) such that y; < Yos -

We have shown that cach of the steps of the onc-dimensional search can be carried out in
O(nlogn) tme even if z* is not known. since we can always find the nccessary information
about z* by performing O(logn) horizontal tests. at the cost of O(n) per test. Note that a single
iteration of this parametric algorithm takes no more than Cn'logn’ time. where n’ is the number
of remaining points at the start of the iteration. and € is a constant independent of the random
elements. The choice of the random eclements affects only the number of iterations and not the cost
of a single one, given the number n'.

5. The probabilistic estimates.

We now obtain an upper bound on the expccted time required by the algorithm. Notice that we
arc interested in the expected time for the worsi-case instance and the expectation is only relative
1o the internal randomization of the algorithm,

We first find an upper-bound on the expected number of points eliminated during a single
iteration. At any instant of time during the execution of the algorithm the input points can be
classified as active or inactive. At the beginning all are active and during the exccution each
becomes inactive at some stage. Let us consider a single iteration of the algorithm and denote by
n’ the current number of active points. For convenience, let us rename the active points to be py,
(z =1,---,n"). At the end of the current iteration certain active points become inactive. Let us
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denote by S the cardinality of the subsct of these points. Note that S is a random variate whose
distribution depends on the past history of the cxccution of the algorithm. However, it is possible
to bound the expectation of S {as a function of n’) from below in a uscful way, regardless of that
past history.

Lemma . For any problem instance, regardless of the past history of the algorithin, the expected
number of points eliminated during any iteration is at least n’ [ 20.

» Proof: Obviously, one point from each pair {7,7) € £ is always climinated, so it suffices to
consider the sct F'. For simplicity, let us index the pairs of points in F with « € {1,---, f},
where f = |F|. Thus, quantitics like ¥~ arc well-defined whenever z is fixed. For the purpose
of the discussion let us fix z = z*, cven though z* is of course not known at the current stage.
Without loss of generality, assume that 1 < o < 3 < fimplies y, < yg . Now, let k denote
the rank of the number y* in the set {y; 1o =1,---, f} thatis. yi < y* < yg,;. Note
that k is completely deternmined by the past history of the execution. cven though it is not known
at the current stage, since y* is not known. At this point the algorithm picks a random pair from
F'. The rank of the corresponding y — valuc in the set {y;,- -, yf‘}, which we denote by K, s
a random variate which is uniformly distributed over {1,---, f}. Recall that if K > k then, for
cvery pair whose rank is greater than or equal to X, we climinate one point. Thus, f — K 41
points are eliminated in this case. Otherwise, when K < &, we proceed to the next step with the
corresponding K pairs, that is. those with o < K. Once again. for convenience, let us rename
these K pairs and index them so as to conform with the = values, thatis, 1 < o € § < K

implies y; < yg— Let 7 denote the rank of y* in the set {yl_,-~-,yK+}. As was the case
with k, the rank r is determined at the current stage. vet unknown to the algorithm. Now
the algorithm picks a random pair whose rank £ is uniformly distributed over {1,---,K}. If

R < r then R points are climinated. Otherwise, K — R points arc climinated.

Consider the casc where K < k. Given the value of K. the expected number of points
eliminated during the sccond step is at least K /4. This follows from the fact that even if
an adversary could change the valuc of y* after R had been picked, then the most he could
achieve would be that the smaller of the two sets detcrmined by F be climinated. The expected
cardinality of the smaller sct determined by a uniformly disuibuted R is cqual to onc quarter
of the cardinality of the grand sct. On the other hand. if X > & then f — K + 1 points are
eliminated. It follows that the expected number of points eliminated altogether is

1(§;K+ i‘ (f—K+1)) > l(ékz— k+1f2)
f 4 ARG &

K=1 K

Even if an adversary could frecly change the value of k. then the cxpected number of points
eliminated would be at least the minimum of the quadratic function of & we have just calculated.
The minimum is attained at £k = 4f/5 and is equal to f/10. Since f < n’/2, it follows that
we eliminate an expected number of at least n’/20 points during each itcration. «

Corollary . The expected running time of the one-dimensional search algorithm is linear.

» Proof: The linear upper bound is cstablished by considering the performance of the algorithm
against an adversary who is able to change the value of k& between iterations. Let N, denote
the number of active points after the z-th itcration. In particular. Ny = n. Consider the
ratios Y, = N,/N,_{, 1 = 1,2,---. If the algorithm is run against the said adversary then
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the random variates Yy, Ys, -+ are independent and cach has expectation of at most 19/20.
The effort in performing an iteration starting with 2V, points is bounded by C'N, where €7
is a certain constant. Thus, the cxpected cffort in performing the z-th iteration is bounded by
C'néY1Yy - Y,—1] (where £ stands for expectation). which equals C'n(19/20)* 1. It follows
that the expected total effort is bounded from above by 20C'n. «

As a matter of fact, it follows from the analysis here that for every € > 0 there exists a constant
C* = C*(e) such that for every n and every problem of n points, the probability that the running
time will be greater than C*n is less than e,

Finally, the expected time required for solving the weighted center problem is O{nlogn) by an
analogous argument. The effort of performing an iteration starting with »n’ points is bounded from
above by C”’'nlogn and hence the total effort has an expected value less than 20C " "nlogn. Again,
for every positive € there exists C* such that the probability that the running time will be greater
than C*nlogn is less than e,
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