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Abstract

We consider the problem faced by players in a two—-person bargaining game
who have different opinions about what is the appropriate solution concept to
use. A procedure is proposed to resolve such a conflict and it is shown that
the Nash bargaining solution constitutes the unique equilibrium of the game
induced by the procedure. As a by-product we obtain that in the axiomatic
characterization of the Nash solution, the controversial "independence of
irrelevant alternatives™ axiom can be replaced by a much weaker recursivity
axiom, which amounts to requiring independence of alternatives that cannot be

obtained as an outcome of a risk sensitive solution.



THE NASH BARGAINING SOLUTION IS OPTIMAL
by
Eric van Damme

1. Introduction

This paper considers two-person bargaining problems with fixed threats of
the type originally studied in Nash [1950b]. For such games, besides Nash's
solution, many other solutions have been proposed, e.g., Kalai [1977b], Kalai
and Smorodinsky [1975], Myerson [1977], Perles and Maschler [1981], Rosenthal
[1976], and Yu [1973]. For a survey see Kalai [1983], Roth [1979] or Schmitz
[1977]. Most of these solutions can be characterized by a set of axioms. The
Nash solution, for example, is the unique bargaining solution with the

following properties:

(1.1) feasibility,

(1.2) individual rationality,

(1.3) Pareto optimality,

(1.4) scale invariance

(1.5) symmetry, and

(1.6) independence of irrelevant alternatives

(For formal definitions of these properties, see section 2.) The properties
(1.1)~(1.5) are not controversial,1 but a rather large group of people does
not consider (l.6) as being reasonable.2 The fact that people can differ in
their opinions about what should be considered as being reasonable, can
explain the variety of solution concepts that exist. For example, the Kalai/
Smorodinsky solution is the unique one satisfying (1.1)-(1.5) together with
some monotonicity property, while in the Perles/Maschler solution (1.65 is

replaced by a continuity and a superadditivity axiom.



However, the state of the art is unsatisfactory. In particular, the
possibility is an uncomfortable one that players supporting different
bargaining solutions may fail to reach an agreement because each of them
insists that his favored solution concept is the appropriate one to use in the
situation at hand. This paper, therefore, proposes and analyzes a (dynamic)

3

procedure which can be used to resolve the conflict in such a situation.

The procedure is based upon two principles.

Postulate 1. If a player advocates one particular solution concept in some
bargaining situation, then he should adhere to this solution concept in any

other bargaining situation.

Postulate 2. If the demands of the players are not compatible, the players
should continue bargaining over the set of payoffs not exceeding their

previous demands.

Postulate 1, is most easily motivated by taking a normative point of
view, i.e., by thinking of bargaining solutions as "fair" division schemes.
In this case, the postulate expresses that a player's notion of fairness
should be objectively given and should not depend upon the actual situation at
hand. Actually, the results are still valid if this postualte is not imposed
and players are allowed to switch from one bargaining solution to another
during the game. Hence, it is not necessary to impose Postulate 1, but doing
so makes the notation and presentation simpler.

The second postulate is more important and 1is in fact crucial for
obtaining the results. It is based on the idea that payoffs larger than a
player's demand should be considered as being irrelevant as a consequence of
the fact that a rational player will always demand as much as he considers to

be attainable (if some payoff larger than his demand could be attainable, he



should ask for this amount). Hence, when a player asks for a certain amount,
then he is acknowledging that he should not get more than this, so it is
natural to view payoffs exceeding his demand as being irrelevant. (For
another justification of Postulate 2, see the discussion on the recursivity
axiom in section 5.)

Suppose a bargaining game is given and suppose the players have agreed to
use Postulates 1 and 2 to resolve conflicts. Then the questions arise of what
is the optimal solution concept to propose and what is the payoff the players
will finally agree upon. The main result of this paper is that, if players
are restricted to propose risk sensitive solutions, then all optimal choices
lead to an eventual agreement on the payoffs as proposed by the Nash
solution. Furthermore, in case the players do not know yet which bargaining
game(s) they will have to play, there is only one bargaining solution which is
optimal to propose viz. the Nash solution. Hence, like Zeuthen's process
(Zeuthen [1930], Harsanyi [1956, 1977], the procedure here can be viewed as a
dynamic model of negotiation which justifies the Nash solution. Actually,
these results provide a partial justification for the assumption underlying
Zeuthen's process, in the sense one obtains that (in equilibrium) the player
proposing the outcome with the smallest Nash product always has to yield.,

This work is also related to recent contributions of Binmore [1980] and
Rubinstein [1982] in which a different noncooperative implementation of the
Nash solution is derived.

The present work also leads to a characterization of the Nash solution
which avoids Nash's independence of irrelevant alternatives axiom, This
characterization involves a recursivity axiom which requires that the solution
of a game should not depend on alternatives that are considered to be not fair

by both players. To be more precise, alternatives that cannot be obtained as



outcomes of any risk sensitive solution.

The paper is organized as follows. Section 2 introduces the notation and
contains some preliminary material on bargaining solutions. The procedure
which is proposed is formally introduced in section 3 and its properties are
studied in section 4., In section 5 some possible extensions are discussed and

some open problems are mentioned.

2. Bargaining Games and Bargaining Solutions

4

A two-person bargaining game~ is a nonempty, compact, convex and

comprehensive subset S of Bﬁi. We think of S as representing the set of
payoff vectors which the players can obtain by cooperating. In case the
players do not cooperate both receive payoff zero. Assuming that S is convex
amounts to allowing randomization between different payoff vectors.
Comprehensiveness follows from an assumption of free disposal of utility.

The set of all bargaining games will be denoted by . For S € %, we

write P(S) for the (strong) Pareto optimal boundary of S:
P(S) ={x€Sif ye S and y > x, then y = x}.

There exists, u(S), the utopia point associated with S, and non-increasing

concave functions Pé and Pé such that

ul(S) = max{xl; sz such that (xl,xz) € S}

u2(S) = max{xz; Hxl such that (xl,xz) € S}

g = {x € Bﬁi; x) < ul(S), x, < Pg(xl)}



2 1
= {x € Ry; X, < uz(S), X < PS(XZ)}'

In a bargaining game S, the problem is which outcome in S should be
chosen. To resolve this problem, the players can invoke a bargaining
solution, i.e., a mapping £: T -» r2 such that for every S € ¥ the following

are satisfied:

Axiom PO (Pareto Optimality). £(S) € P(S).

Axiom SI (Scale Invariance). if aj,ap >0 and if A is the transformation of

r®? given by A(xl,xz) = (ayx1,asxy), the £(AS) = Af(S).

Axiom SY (Symmetry). If n is the transformation given by m(xy,%x3) = (x,,%1),

then £(xS) = =f(S).

These axioms have been discussed extensively in the literature (e.g.,
Roth [1979]) and they are accepted by the majority of workers in the field.
However, there exist infinitely many solutions satisfying these axioms (cf.
Kalai and Smordinsky [1975]) and, even worse, there exist many counter-
intuitive solutions satisfying them (see, e.g., Thomson and Myerson [1980]).
By a counterintuitive solution we mean one which favors a player when the
bargaining situation is changed to this player's disadvantage. To exclude
such perverse solutions, one needs an additional (monotonicity) axiom. The
monotonicity axiom that we will consider in this paper is the so-called "risk
sensitivity” property (cf. Roth [1979], Kihlstrom, Roth and Schmeidler
[1981]). A bargaining solution is said to be risk sensitive if the payoff
assigned to a player does not decrease when his opponent becomes more risk

averse. Formally:5

Axiom RS (Risk Sensitivity). For any bargaining game S and any nondecreasing




concave function k: IR » IR with k(0) = 0 we have fi(kj(s)) > fi(S) where

i# 3je {1,2} and k; and ky are given by

(2'1) kl(xl ,xz) = (k(xl),xz), kz(xlaxz) = (xl,k(xz))

This paper will be restricted to the set F of all bargaining solutions
that satisfy PO, SI, SY and RS. Hence, we assume that the players have agreed
that any reasonable bargaining solution should satisfy at least these
axioms. One particular bargaining solution that is reasonable in this sense

is the Nash bargaining solution (Nash [1950b, 1953]). The Nash solution £N

prescribes

(2.2) fN(S) = argmax X
x€P(8)

X
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as the solution of the game S. Nash's solution is characterized by the basic
axioms PO, SI and SY together with the independence of irrelevant alternatives

axiom:

Axiom IIA (Independence of Irrelevant Alternatives). If S,T € ¥, S c T and

f(T) € S, then f(S) = £(T).

It follows from Kihlstrom et al. [1981] that, besides the Nash solution,
also the Kalai/Smorodinsky solution and the Perles/Maschler solution belong to
F. From this result together with the following proposition it follows that F

has in fact infinitely many elements.

Proposition l. For any bargaining game S the set {f(S);f € F} is closed and

connected.

Proof. First, it is shown that the set is closed. Ilet {fn}n be a sequence of



elements in F. For S € %, let L(S) be the set of all those points in P(S)
that are limit points of {fn(S)}n. Let 2(S) = u(L(S)) be the utopia point of
L(S) and let £(S) be the intersection of P(S) with the line through 0 and
2(S8). Note that the intersection indeed exists, so that f(S) is well
defined. It will be proved that f satisfies PO, SI, SY and RS. This will
establish closedness since £(S) = lim £°(S) for every S for which the limit
exists. T

It is easily seen that f satisfies the basic axioms PO, SI and SY, so the

concentration will be on RS, Let k be a nondecreasing, concave function with

k(0) = 0, let S € T and write T = ky(S). First of all, notice that for all n
£1(8) < £](T) and Kk(£5(8)) > £,(T)

since every f satisfies PO and RS. Consequently,

(2.3) ll(S) < ll(T) and k(lz(S)) > lz(T)

Let us write s = £;(5) and t = £,(T). It has to be shown that s < t. By

definition of £, one has

Pls)  2,(8)  PR(t)  2,(D)
s (8 T 2T

(2.4)

(If any of the denominators is zero, the result is immediate.) Since

2 2

PT = kPS this is equivalent to

2,(8) 2,
(2-5) s = WPS(S), t = mkps(t)-



To prove s < t, it is sufficient to show that

2
(2.6) S £ mkPS(S).
9 {

Substituting the expression for Pg(s) found in (2.4) into (2.6), shows that it

suffices to show

2,1 2,(8)
A MOl N

)

Now, s < 2;(8) and since k is concave with k(0) = 0, it suffices to show that

XI(T) s
s < 2—2771'_7 IT(—ST k(lz(s))9

but this follows immediately from (2.3). Hence, f satisfies RS which proves
the first assertion of the proposition.

The second assertion can be proved by the same methods. lLet fl,f2 €EF
and, for S € g, define L(S) = {fl(S),fz(S)}. If we construct £(S) from L(S)
as above, then similarly as above it is seen that £ € F, If fl(S) # fl(S),
then £(S) will be between £l(S) and £2(S), hence, using that {£(S);f € F} is
closed, one sees that the complete Pareto boundary between fl(S) and fz(S) can
be obtained by repeating this procedure. This shows that the set

[£(S), £ € F} is connected. [I.

3. A Meta Bargaining Game

In this section we formally define the procedure by means of which we
propose to resolve conflicts arising from different players supporting
different bargaining solutions.

Let S be a bargaining game and let ¢ = (fl,fz) be a pair of bargaining



solutions. For t € IN, define SY(y), the tth stage bargaining game by

(3.1) sl(p) = s

(3.2) s (e) = [x € %) x; < £1G55(00), x, < £55 (o0}

St+1(¢) consists of all those payoff vectors for which the ith

coordinate does
not exceed the demand of player i in stage t.

The procedure requires that in case of conflict (i.e., incompatible
demands) the players continue bargaining over the set of payoffs not exceeding
their previous demands. The underlying idea is that, when agent i is
proposing fi(S), then he is acknowledging that he should not get more than
f%(S). Hence, if the players propose ¢ = (fl,fz), then they should be willing
to replace Sl(¢) with Sz(¢), etc.

Figure 1 illustrates the sequence of games arising when player 1 proposes
the Kalai/Smordinsky solution fX (i.e., that point on the Pareto boundary that
is on the line through 0 and the utopia point), player 2 proposes the Nash
solution £N and S is the conmvex comprehensive hull of (1,1) and (2,0). Note
that in this case £3(St(4)) = £Y(S) = (1,1) for all t, because of IIA and that

ultimately the players reach an agreement on (1,1).
[INSERT FIGURE 1 HERE]

Assume that the underlying bargaining game is S and that the players have
agreed to use the algorithm (3.1)-(3.2) to resolve possible conflicts. Then,
if ¢ = (fl,fz) is the proposed pair of solutions, the conflict will be

resolved only if fl(St(¢)) and fZ(St(¢)) have the same limit., TIf the limits
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do not coincide we have an everlasting conflict, in which case a player cannot

expect more than the disagreement outcome zero. Hence, if we define

1im £1(sY (o)) if 1im £1¢s5 (o)) = 1im £2(s% (o)),
teo t >0 torw

U(4;8) =
0 otherwise.

Then U(4$;S) is the payoff vector which will result from applying the
procedure.

The first question to be answered is whether everlasting conflict can
indeed occur. In the next section we will show that such everlasting conflict
cannot occur if the players restrict themselves to bargaining solutions in F
(i.e., if they agree that any reasonable solution should satisfy at least PO,
SI, SY and RS). Furthermore, it will be seen that if both players choose
their bargaining solution optimally, then they will eventually agree on the
payoffs as proposed by the Nash solution. To be more precise, once the
players have agreed to resolve possible conflicts in S by using the algorithm
(3.1)-(3.2), the situation can be described by the noncooperative game

T(S) = (F,F,Ul(-;S), U2(-;S)) and the question of which bargaining solution

to propose amounts to asking what are the Nash equilibria of T'(S) (Nash

[1950a]), i.e., which pairs (fl,fz) satisfy

2.5y for all £! € F,

v, ELE%8) » Ul(fl,f

Uz(fl,fz;s) > UZ(El,fz;s) for all £2 € F

It will be shown that both players proposing the Nash solution is an

equilibrium in I'(S) and that every equilibrium of T(S) results in the payoff
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£N(S). Hence, I'(S) has the structure of a zero-sum game and it can be said
that £N(S) is the value of I'(S). For some bargaining games there may exist
many equilibria (e.g., if S is symmetric, then every pair of bargaining
solutions is an equilibrium). But, as will be seen, only (FN,fN) is an
equilibrium for every bargaining game. Hence, if it is not known yet which
bargaining games one must play in the future, and if it has already been
agreed to resolve possible conflicts by this procedure (3.1)-(3.2), then only
proposing the Nash solution is optimal. Thus, the title of this paper is
indeed justified.

To conclude this section, it will be shown that conflicts will not always
be resolved by our procedure if "perverse” solutions are allowed that do not
satisfy RS (see, however, Proposition 6 in section 5).

Let 5! be the set of all bargaining games with utopia point (1,1).

Notice that every nondegenerate bargaining game (one in which both players can
possibly profit) is equivalent to exactly one game in 2l via Axiom SI. Define

the bargaining solution f on sl by

1,e2an  if Bs) > £(s),
£(s) =\ £¢s) if fIiI(S) - fg(s),
(Pé(l),l) otherwise.

and extend f to £ by SI (if S is degenerate, £(S) is determined by PO). Then
f satisfies PO, SI and SY but not RS as one can see by taking S to be the

triangle with corners (0,0), (1,0) and (0,1) and T = ko(S) where k is given by

- 2¢ if £ < 0,
k(g) = Zg—gz if 0<g<1,

1 if ¢ » 1.
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Then player 2 is more risk averse in T, but player 1 would rather play S if f
is the solution, since £;(T) = 0 < 1/2 = £,(5).

If player 1 proposes f and player 2 proposes the Nash solution, then a
conflict will arise for every bargaining game in 51 for which the Nash
solution is not symmetric. Consequently, our basic Proposition 2 is not
correct and also our other results break down. For example, if RS is not
imposed, then everlasting conflict can occur even in equilibrium. Namely, for

S e vl let g(S) be given by

1 . N N
(Pg(1),1) if £(s) > FN(S),
g(s) = { £1(s) if F)(s) = £)(s),
(l,Pg(l)) otherwise.

and extend g to T by SI. Then for every S € sl with (1,0), (0,1) € P(S) and
fT(S) # fg(s), the pair (f,g) is an equilibrium resulting in everlasting

conflict.

4, Analysis of the Meta Bargaining Game

It will be shown first that in case of conflict a player has to yield
considerably until he offers the other player at the least the Nash payoff or
at least as much as this player asks for in case this is less than the Nash
payoff. Our main results then follow easily from this one together with the

fact that a player proposing the Nash solution never has to yield.

Proposition 2. Let S € ¥ and assume fl,f2 € F are such that f%(S) > f%(S).

Dafine T € ¢ by
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(4.1) T={xes,x <£(8), x, < £28)}

1
i £(s) > £4(s), then

£2(r) > 1/2 min {£](8),E1(8)} + 1/2 £5(5).
Proof. Write f2(S) = (a,B) and fl(S) = (y,8). We have y > a > 0, hence
B > & » 0. Therefore, (Axiom 5), we may assume § = y = 1. We will first

consider the case in which f%(S) < f?(s).

From (2.2) it follows that
2 2. N
Ps(g) + g(PS) () > 0 for 0< £ < fl(S).
Hence, gPé(g) is increasing on [O,F?(S)] and consequently
2 L}
(4.2) a <8 and -(PS) (1) < 8.
Let R be the triangle with corner points (0,0), (l,«¢) and (a,l). Since a < &,
we have (l,q) € T and R < T. Consider the function k: [a,1] + [8,1] defined
by

k(g) = Pé(—g +1+q)

which is chosen such that k,(P(R)) = P(T), where k, is as in (2.1). The

situation is illustrated in figure 2 in which k, is indicated by the arrows.



- 14 -
[INSERT FIGURE 2 HERE]

Note that k is concave, being the composition of an affine and a concave

mapping and that k is nondecreasing. It suffices to show that k can be

extended to a concave nondecreasing function on R with k(0) = 0, for in this

case PO, SY and RS yield

£ > £/(R) = 1/2 (1 +a) = 1/2 £1(5) + 1/2 £2(s),

It will be shown next that k can be extended as desired. First, define

k() = 1 for all ¢ > 1. Next, note that from (4.2) it follows that

k' (a) = ~(P2) (1) < 6 <

R|o

and so, if one defines k(§) = 2& for £ < a, then k satisfies all our

requirements. This completes the proof in the case fi(S) < f?(S).
Next, consider the case in which f%(S) > F?(S). Let T* be the set

(4.3) T = {x e x; < £08), x, < £2(9)}

1
Then T* results from T by making player 1 more risk averse, namely,
™ = k;(T), where k is given by
N
£ for £ < fl(s)’
k(g) =

f?(s) otherwise.

Because of the special structure of k, one can conclude from f, satisfying RS

and PO that
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%
(hod) £2(r) > £2@™;
but from the first part of the proof we know that
%
£2@™) > 172 £)5) + 1/2 £2(s)

which completes the proof. []

Notice that proposition 2 shows that the player proposing the outcome
with the smallest Nash product has to make a concession in the next round. In
the case in which the Nash solution is inbetween the outcomes proposed, both
players have to yield. Hence, Proposition 2 provides a partial justification
for the behavioral assumption underlying Zeuthen's process (Zeuthen [1930],
Harsanyi {1956, 1977]).

Our first main result is that our procedure resolves every possible
conflict, i.e., in every bargaining game the players will eventually reach an

agreement no matter which bargaining solutions they propose.

Proposition 3. For any bargaining game S and for any pair of bargaining

solutions fl and f£2 satisfying PO, SI, SY and RS

(4.5) 1im fl(st(¢)) = 1lim fz(st(¢)).
t>o t>o

Proof. In view of PO it suffices to consider the case in which

(4.6) £1(5(p)) > £2(s%(p)) for all t.



_16_
If it is the case that
£15(0)) > £1(8) > £55%(p)) for all ¢

then it follows from Proposition 2 (and its analogue with the players

interchanged) that for i # j € {1,2} and t € IN
N j +
56 > 216w > @ - a2HeEe)
so that both limits in (4.5) are equal to fN(S). In the same way it is seen

that the limits of (4.5) coincide in case a player sometimes asks for less

than his Nash payoff. []

Let S be a bargaining game, let f € F and write ¢ = (fN,f). Since the

Nash solution satisfies IIA, we have
£(5(9)) = £](3) for all t.
Hence, from Proposition 3 we see that
(4.7) U (£",£38) = £(S) for all S € T and £ € F.

Similarly we have

(4.8) U (£,£Y38) = £3(S) for all Se€ £ and £ € F.
2 2

Hence, each player can guarantee the Nash payoff against any other bargaining

solution in F. From this observation and the fact that the Nash solution is
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Pareto optimal, we immediately deduce

Corollary l. ILet S be a bargaining game and let T(S) be as in section 3.
Then
(1) (N, £N) is an equilibrium of T'(S),

(ii) if (£1,£2) is an equilibrium of T'(S), then U(fl,£2;3) = £N(s).

Because of the second property in this corollary £¥(S) can be called the
value of the game T'(S). Proposition 3 in fact shows that £N is not only an

equilibrium strategy in I'(S) but is also a maximin strategy, i.e., choosing £N

guarantees the value of the game no matter which bargaining solution the other
player proposes. As for zero-sum games, we have that‘every maximin strategy
is an equilibrium strategy, but the author does not know whether the converse
is also true. Also, the related question of whether all equilibria are

interchangeable is still open. Nevertheless, we have

Corollary 2. For every bargaining game S
(i) Every maximin strategy of I'(S) is an equilibrium strategy of I'(S);

(ii) £f¥ is a maximin strategy in T(S).

In has been already remarked in section 3 that for some bargaining games
there may exist more equilibria than just (fN,fN). For example, in the game
of figure 1, also (fX,fY) is an equilibrium; in fact, £fX (the Kalai/
Smorodinsky solution) is even a maximin strategy in this game. Note, however,
that it is not at all difficult to construct a bargaining game in which £X is
not an equilibrium strategy (just take the symmetric image of the game in
figure 1). Hence, if a player has to announce his strategy (bargaining
solution) before he actually knows which bargaining game will be played, then

it is not optimal to propose the Kalai/Smorodinsky solution. A model of this
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situation is the game I' consisting of the following stages:
Stage 1: The players choose bargaining solutions £l and £2 in F.
Stage 2: Chance chooses a bargaining game S € %.

Stage 3: Player i receives the payoff Ui(fl,fz;s).

The appropriate solution concept in such a dynamic game is the subgame
perfect equilibrium6 (Selten [1965, 1975]). A pair (£1,£2) is a subgame

perfect equilibrium of I' if it is an equilibrium in T'(S) for every S € ¥. We

have

Proposition 4. (fN,fN) is the unique subgame perfect equilibrium of T.

Proof. Corollary 1 shows that (fN,fN) is a subgame perfect equilibrium in T.
Assume (fl,fz) is a subgame perfect equilibrium in I’ First, it is shown that
£l = £2, Obviously,

f}(S) > ff(s) for all S € g,

since otherwise player 1 could improve by proposing f2 in some game. On the

other hand, if the inequality would be strict for s* ¢ %, then
1, % 2, %
£,(n8) < £](n87)

* P * . P .
where S 1is the symmmetric image of S and this is impossible. Hence,

f1 = f2 and so
uel,£2;8) = £1(s) = £2(s) for all S € 7

but this implies £l = £2 = £N ip view of Corollary 1. I
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To conclude this section it will now be shown that the results so far
lead to a characterization of the Nash solution that does not involve Nash's
independence of irrelevant alternatives axiom, but rather a recursivity
principle7 which amounts to asking for independence of alternatives that
cannot be obtained as outcomes of risk sensitive solutions.

Assume a two—person bargaining game S is given and assume that the
players have agreed that any reasonable bargaining solution should satisfy PO,
SI, SY and RS. Then the players agree that the outcome should be an element

of the set

Sp = {£(s); £ € F}

of all those points that can be obtained as the result of some bargaining
solution in F (i.e., as the outcome of some "fair division scheme™). Hence,
disagreement is limited to Sp, bargaining will continue over this set (or
rather, over its comprehensive hull S§ which is in ¥ by Proposition 1) and it

is natural to require that points outside S; should have no influence on the

outcome. This leads to

Axiom R (Recursivity). £(S) = f(S§) for all S € 3.

It is clear that the Nash solution satisfies this recursivity axiom,
since it satsifies IIA. On the other hand, if f € F satisfies R, then one
must have £(St) = £(S) for all t, where St is defined by SO = s,

st*l - (St)§. However, from Proposition 2 it follows that for i = 1,2

%, - £1(8)|< (1/2)°E(5) for all x € B(s%)
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which shows that only £N satisfies the recursivity axiom. We have proved

Proposition 5. A bargaining solution satisfies PO, SI, SY, RS and R if and

only if it is the Nash solution.

Hence, in the axiomatic characterization of the Nash solution, Nash's
independence of irrelevant alternatives axiom can be replaced by a weaker
axiom which requires that the solution should not depend on outcomes which
cannot be obtained as the result of any risk sensitive solution.

Obviously, if the players agree that a bargaining solution should satsify
even more stringent requirements than PO, SI, Sy and RS—i.e., 1if they agree
on a subset G of F, then, as long as £N belongs to G, it is the unique element

of g which satisfies recursivity with respect to G.

5. Extensions and a Related Result

It is interesting to see whether (and how far) the present assumptions
can be relaxed without changing the results. The assumptions fall into three
clasess: (i) assumptions about the feasible bargaining games, (ii)
restrictions on the bargaining solutions that are allowed, and (iii)

assumptions about the procedure. These topics will be discussed separately.

(i) The Bargaining Domain. The assumptions of S being nonempty, compact

and convex are innocuous and are made in any theory of bargaining. The
comprehensiveness assumption has been made only to facilitate the notation——
all the results remain correct if this assumption is dropped and only some
minor modifications are needed in the proofs. We can drop the requirement of
S containing only individually rational outcomes by imposing that every
bargaining solution should be individually rational. In fact, in this case we

can extend our results to the class of bargaining games in which the
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individually rational Pareto optimal outcomes all result from lotteries among
individually rational pure outcomes (see Roth and Rothblum [1982]).

The restriction to two—-person games is obviously a significant one. The
problem of whether the results can be generalized to n~-person games is still
outstanding, but it seems safe to conjecture that with a suitable
generalization of Axiom RS (or Axiom SL (see below)) the results will still be

true.

(ii) The Axioms. Our basic axioms PO, SI, and SY are standard in the
theory of bargaining and, in fact, all can be weakened to some extent without
affecting the results.

For instance, if instead of PO the requirement would be only for weak
Pareto optimality (i.e., that the solution not be strongly dominated), then
Proposition 4 and Corollaries 1 and 2 would still be correct. In fact, to
establish these results we only need that the solution is (weakly) Pareto
optimal for every symmetric set. To prove the other results, we have used
(4.4) and the author does not know whether this formula remains correct in
case of weak Pareto optimality. Note, however, that if Axiom RS is
strengthened a little anmd f;(k;(S)) < k(fi(S)) is required for every S € ¥ and
any nondecreasing concave function k with k(0) = 0, then weak Pareto
optimality would also be sufficient to establish these results.

If Pareto optimality is dropped completely, then the results are no
longer valid. For example, consider Corollary 1l: if Pareto optimality is not
required, then both players proposing the disagreement outcome is an
equilibrium.

The symmetry axiom SY used thus far is called anonomity by some
authors. They call a solution symmetric if it prescribes a symmetric solution

in every symmetric game. Under this weaker symmetry requirement all the
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results thus far, except Proposition 4, remain valid. To see that this
proposition is not correct in this case, consider the bargaining solution f

defined by

L~ £5(8) if fll((S) > flf(s),

f(8) = {
£N¢s)

Then f satisfies PO, SI, RS and the weak version of the symmetry axiom, while

otherwise.

(f,fN) is an equilibrium of T.

If the symmetry axiom is dropped completely, then for every S € % every
element of P(S) can be obtained as an equilibrium payoff in I'(S). Namely, for
A € [0,1], let the nonsymmetric Nash solution £M be given by

fx(S) = argmax x A

A
x€P(S) 1

X1
2
(see Harsanyi and Selten [1972], Kalai [1977a]). Then £M satisfies PO, SI and
IIA and therefore (see DeKoster et al. [1982]) also satisfies RS. Since fM
satisfies IIA, it is clear that (fx,fx) is an equilibrium of T'(S) if
nonsymmetric solutions are allowed.

Of the basic set of axioms, the scale invariance property SI is the most
controversial one. The axiom arises naturally, since von Neumann-Morgenstern
utility scales are determined only up to a positive affine transformation.
However, the axiom precludes interpersonal utility comparisons. In fact (and
this may surprise some readers), this axiom can be dispensed with
completely. The reason is that PO and RS together imply SI (see Kihlstrom et
al. [1981]). This shows that the risk sensitivity axiom is stronger than one
a priori might expect, which leads to the question of whether this axiom can

be weakened without affecting the results. It will now be indicated that this



- 23 -

is indeed the case., However, rather than considering a weaker version of RS,
it will be proven that for a related axiom (not implying SI) the main results
are still true although the rate of convergence is somewhat different. The
axiom to be considered is the so—called slice property axiom of Tijs and
Peters [1983], which is a weaker version of the cutting axiom of Thomson and
Myerson [1980]. A solution f is said to have the slice property when it
favors player j in case a piece of the bargaining set S which is favored by

player 1 to fi(S) is cut off, the utopia point remaining the same. Formally:

Axiom SL (Slice Property). For all i,j € {1,2} and for all S,T € L with T c S

and u(T) = u(S)
if S\T ¢ {x; x; > fi(S)}, then fJ.(T) > fj(S).

The axioms RS and SL are closely related, but neither implies the
other. Namely, the Perles/Maschler solution satisfies RS but not SL (See Tijs

and Peters [1983]) and the solution f defined by8

£(S) = argmax (x1 + ul(S))(x2 + u2(S))
x€P(S)

satisfies SL, but does not satisfy RS. That f satisfies SL is most easily
seen if one realizes that f prescribes the Nash solution of S corresponding to
the threat point -(ul(S),uz(S)). That f does not satisfy RS can be seen by
taking S to be the triangle with corners (0,0), (1,0) and (0,1) and
T = {x € S; X < 3/4}. Then player 1 is more risk averse in T, but player 2
would rather play S (£,(S) = 1/2, £,(T) = 3/8).

We have the following analogue to Proposition 2, showing that the player

proposing the outcome with the smallest Nash product has to yield
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Proposition 6, Let S € © and assume fl,f2 satisfying PO, SI, SY and SL are

such that £2(S) < £}(S). let T be as in (4.1). If

fi(S)f;(S) > ff(S)fg(s)

then
f (S)fZ(S) 2
(5.1) f (T) > ——y——— > f (S)
f (S)

Proof. We only have to prove the first inequality. Notice that the
denominator is positive by PO. As in the proof of Proposition 2 we may assume

£2(S) = (a,1) and £1(S) = (1,5) with @ < 6 < 1. Notice that
(5.2) P2(5) > &, since § < 1 and (5,?5(5)) e P(S)

(if the inequality would not be satisfied, (6,P§(6)) would be Pareto dominated

by (1,8)). Furthermore, we have

P;(g) < Pé(g) for Pé(é) < £ <l

since Pé and Pé are nonincreasing and since

1,.2 )
Po(P5(5)) = & = Po(l).

Define the map p: [0,1] » [0,1] by

Pg(x) for 0 < x < §,
2, . 2
p(x) = x + 6§ + Ps(é) for 8§ < x € Ps(é),

Pé(x) for Pé(é) < x < 1.
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Then p is continuous and nonincreasing with pp(x) = x for all x and p(x) <

P%(x) for all x. Since P% is concave we have

p2) < P26) + D) () - 5)

hence

from which it follows that p is concave. Therefore, if R € T is the game with
Pareto boundary defined by p (i.e., Pé = p), then R is a symmetric bargaining
game contained in T, Graphically, the situation is illustrated in figure 3

[INSERT FIGURE 3 HERE]

Now assume (5.1) is not true, i.e., f%(T) < 5. Then SL would apply to the

pair R,T and we would have
2 2 2
£,(R) > £5,(T) > Pg(8),
but since R is symmetric we have
2 2
£,(R) = 1/2 (5 + P4(8)),

and therefore (5.2) yields a contradiction. []
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let S € £ and let fl,fz satisfying PO, SI, SY and SL be given and
consider the procedure (3.1)-(3.2). Proposition 6, together with its analogue
with the players interchanged, shows that a player proposing the outcome with
the smallest Nash product has to yield in the next round and that both players
have to yield in case they propose outcomes with the same Nash products.
Hence, again the behaviorial assumption underlying Zeuthen's process is
obtained. If in some stage t player 1 asks for not more than player 2 offers

(fi(St(¢)) < f%(St(¢)), the players will reach an agreement at time t + 1 by
PO. So it suffices to analyze the situation in which there is conflict in any
stage—i.e., fi(St(¢)) > ff(St(¢)) for all t. In this case, Proposition 6
implies that in the limit the players will propose outcomes with the same Nash
product, i.e.,

2 1.t 2 t

(5.3) n lim £,(57(¢)) = = 1lim (S7(4)).

i=l tso i=]l too
Now, if a player proposes the Nash solution, then he never has to yield and
(5.3) shows that in this case the players will finally reach an agreement on
the Nash payoffs. Hence, the formulas (4.7) and (4.8) and, consequently, the
Corollaries 1 and 2 and Proposition 4 remain correct if the players are
allowed to propose solutions satisfying the slice property SL. Hence, in
equilibrium, everlasting conflict cannot occur: the players will rather reach
an agreement on the Nash payoffs.

It is unknown whether the procedure actually resolves the conflict
between anytwo solutions satisfying SL. However, this will be the case if we
restrict ourselves to solutions satisfying some weak continuity requirement
(upper semi-continutiy as in van Damme [1983] will do). If £l apg £2 satisfy

this continuity condition then for the limit set S
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$* =[x € 85 x; < lim £;(s"(¢)) for 1 = 1,2}
toro T

we will have

£(s®) = lim £7(55(¢)) for i = 1,2
tro
Hence,
i, o .
fi(S ) = ui(S ) for 1 = 1,2

while in view of (5.3)

but this implies that fl(Sm) = fZ(S“) by Proposition 6. Hence, if players are
restricted to proposing upper semi-continuous solutions satisfying SL, then
every conflict will be resolved by this procedure. Consequently, also, the

analogue of Proposition 5 would remain valid in this case.

(iii) The Procedure. It can be easily seen that all the results remain

correct if the stationarity assumption of Postulate 1 is not imposed, i.e., if
players are allowed to switch from one bargaining solution to another during
the process. Another requirement of the procedure of minor importance is that
the players should stop bargaining as soon as their demands are feasible, even
though the outcome may be Pareto inferior. One could modify the procedure to
allow players to continue bargaining in such a case until a Pareto optimal

outcome 1s achieved and it is easily seen that this does not affect the
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results. In fact, the results are very robust with respect to what is
prescribed in case of anticonflict, since for any reasonable rule anticonflict
will never arise in equilibrium.

The results, however, do depend crucially on Postulate 2, i.e., on how to
proceed in case of conflict. The reader might have the opinion that by
imposing this postulate we implicitly put axiom IIA into the model. Indeed,
in motivating this postulate we argued that payoffs exceeding a player's
demand should be considered as being irrelevant and the closely related
recursivity axiom was motivated by saying that non—-solution alternatives are
irrelevant. Nevertheless, a priori it is not clear at all that Corollary 1
and Proposition 5 should hold, since one could imagine that some bargaining
solution when confronted with the Nash solution would give rise to an
everlasting conflict, Anyhow, even readers disagreeing with the paper's title
will probably agree that the results obtained elucidate Nash's independence of

the irrelevant alternatives axiom.

Finally, let us briefly consider different procedures that could be used
for resolving the type of conflict as analyzed in this paper. The basic
assumption underlying its procedures is that when player i proposes fi(S) then
he is acknowledging that he should not get more than f%(S). However, one
could also interpret the proposal fi(S) as a signal of player i that in his
opinion player j should not get more than f}(S). In this case, the sequence

of games arising from S and ¢ = (fl,fz) is
(5.4) sl(p) = s

(5.5) s o) = x € %(o)s = < £5(o)), x, < £3T ()],
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In this case, a player cannot guarantee the Nash payoff by proposing the Nash
solution, but rather he can guarantee that the other cannot obtain more than
the Nash payoff. Consequently, both players proposing the Nash solution is an
equilibrium, but there are other equilibria and other equilibrium payoffs as
well. For instance, in the game 5 of figure 1, the pair (fK,fN) is an
equilibrium with payoffs (fT(S),f§(S)).

Alternatively, one might interpret the proposal fi(S) as a signal that
agent i is willing to give at least f%(s) to player j. In this case, the
(t + 1)-st stage bargaining game is given by (3.2), but the threat point is

a0y = €75 0)),556" ()

rather than zero. The reader can easily verify that, in general, both players
proposing the Nash solution will not be an equilibrium of this game. It is
also easily seen that any of the other well-known bargaining solutions, such
as the ones of Kalai/Smorodinsky and Perles/Maschler, in general, are not
equilibrium strategies and the problem of what are the equilibria of this game
(if any) is still open.

0f course, one could think of many more procedures that could be used and
this leads naturally to a "bargaining on procedures” stage; This stage of the
game has not yet been analyzed and so it is not known whether there are
reasons to prefer our procedure (3.1)-(3.2) above the others; hence, it is not

known whether this procedure is an equilibrium outcome of the larger game.
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Notes

1However, there is some discussion about (l.4) and (1.5). The motivation
for (1.4) is the implicit assumption that players have von Neumann-Morgenstern
utility functions, which are determined only up to a positive affine
transformation. This property rules out interpersonal utility comparison and
there are some solutions in which such comparisons are allowed (e.g., Kalai
[1977b], Myerson [1977]; also see Shapley [1969]).

Property (1.5) expresses that the solution should depend only on
information contained in the model. Loosely speaking, this axiom (which is
dropped in Kalai [1977b]) assumes equal bargaining ability.

2Property (1.6) is extensively discussed in Luce and Raiffa [1957] and
Roth [1979]. For an informal discussion, see Aumann [1983].

3For an alternative approach in the special case of a conflict between
the Nash and Kalai/Smorodinsky solutions, see Richter [1981].

7 subset S of E%_is comprehensive if y € S for all y E?Ri with y < x
for some x € S, We confine ourselves to bargaining games with threat point
zero which is no restriction as long as we consider only translation invariant
solutions. By defining S to be a subset of nﬁi, we implicitly impose that a
bargaining solution should be individually rational. By imposing individual
rationality as an axiom (i.e., every player should get at least his threat
payoff), we can extend our results to the class of all bargaining games in
which all individually rational Pareto optimal outcomes result from lotteries
among individually rational pure outcomes (see Roth and Rothblum [1982]).

5The requirement that k(0) = 0 arises from the fact that we consider
bargaining games with threat point zero. This definition is taken from Tijs
and Peters [1983] and it is stronger than the definition in Kihlstrom et al.,
[1982]. 1In the latter paper, k is required to be increasing, but all results
from that paper remain valid for this broader definition. It can also be
shown that for upper semi-continuous solutions (see van Damme [1983]), the two
definitions of risk sensitivity are equivalent.

The notion of risk aversion comparisons is based on the works of Arrow
[1965], Pratt [1964], Yaari [1969], and Kihlstrom and Mirman [1974].

6Ordinary Nash equilibria are not appropriate, since they may prescribe
irrational behavior at bargaining games that are reached with zero
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probability. In this case, the subgame perfectness concept is only slightly
stronger than the Nash concept, since a Nash equilibrium can only be imperfect
at a set that occurs with probability zero.

7A similar recursivity principle is advocated by Green [1983] in a
slightly different context.

8This example was provided by William Thomson, who pointed out the
possibility of generalizing the results by allowing solutions satisfying the
slice property. He also gave the first proof that Corollary 1l remains correct
if the players are allowed to propose upper semi—continuous solutions
satisfying the slice property. Note that Proposition 6 implies that the
corollary remains valid even without this continuity requirement.
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Figure 1, If S is the convex comprehensive hull of (1,1) and (2,0) and
$ = (fK,fN), then St(¢) is the convex comprehensive hull of (1,1) and
(Ags> 2 = Ap) where A, is given by Apqp = 20 (1 + Ay ) and ) = 4/3.

Key: T = £X5G6(4)) = O, 2 - 2, & = £Y(8) = (1,1).
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?(S) =l 1)

P(T)

PIR) ffisr=(18)

(1)

Figure 2: The sets R and T of the proof of Proposition 2.
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Figure 3. The sets R and T of the proof of Proposition 6. A = (6,P§(6)),
B = (P3(5),8). |
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