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Abstract

We consider the shortest paths between all pairs of nodes in a directed
or undirected complete graph with edge lengths which are uniformly and
independently distributed in [0,1]. We show that the longest of these paths
is bounded by ¢ log n/n almost surely, where ¢ is a constant and n is the
number of nodes. Our bound is the best possible up to a constant. We apply
this result to some well known problems and obtain several algorithmic
improvements over existing results. Our results hold with obvious
modifications to random (as opposed to complete) graphs and to any
distribution of weights whose density is positive and bounded from below at a
neighborhood of zero. As a corollary of our proof we get a new result

concerning the diameter of random graphs.

Keywords: random graphs, probabilistic algorithms, shortest path.



1. Introduction

There has been a growing interest in recent years in probabilistic
analysis of optimization problems and algorithms. These include both "easy”
problems, for whicﬁ polynomial algorithms are available (e.g., Bloniarz
(1983); Rarp (1980); Rohlf (1978); Spira (1973); Walkup (1979); Weide (1980))
and "hard"” ones, for which such an algorithm is unlikely to exist (e.g.;
Cornuejols et. al., (1980); Fisher and Hochbaum (1980); Hochbaum (1979); Karp
(1977, 1979); Lueker (1981); Marchetti-Spaccamela et, al. (1982);
Papadimitriou (1981); Zemel (1982)).

In this paper, we analyze the problem of finding the shortest paths
between pairs of nodes in a directed or undiracted complete graph whose edge
lengths are uniformly and independently distributed in [0,1]. Our main
theorem states that there exists a constant ¢ such that the distance between
each pair of nodes is bounded by ¢ log n/n almost surely. We also show that
the order of magnitude of this bound cannot be improved. The result is then
applied to a varlety of situations to yield some improvements in the
algorithmic performance. These include shortest path problems, minimum ratio
problems, location problems, etc.

We devote the next section to the statement and proof of our main

theorem. Subsequent sections consider some cf the applicatioms.

2. Main Theorem

Consider a complete graph G, = (V,E) with node set V = {vl,...,vn} and
edge lengths d(vi,vj) = dij' We consider here the undirected case dij =
dji' However, all our results apply without any modification for the directed
case as well. Let Dij denote the length of the shortest path between a given

pair of nodes Vi and Vj. We are interested in the size of D the maximum,

mx?

over all pairs, of Dij when the individual edge lengths, dij’ are uniformly



and independently distributed in the interval [0,1]. Our main result is the

following:

Theorem: There exists a constant c¢ such that D < ¢ log n/n almost surely.
The technical meaning of the statement "almost surely” (a.s.) is the
following. For each graph size, n, let p, denote the probability that a
certain assertion (such as the one expressed in the theorem) dogs not hold.
We say that the assertion holds almost surely if, E 1 { =, Obviously, this

n=1
condition is stronger than the requirement that p, tends to zero for large

n. When only the latter condition holds, we say that the assertion holds in
probability. On the difference between the two concepts and the relevance of
the stronger one to optimization problems, see R;nyi (1970) and Steele (1981).
We 1include in this section also a proof that the order of magnitude
claimed by our theorem cannot be improved, i.e., we exhibit a constant ¢ such

that Pr[Dmx > ¢, log n/n] is considerable. As will be apparent to the reader,

1
we do not derive the sharpest possible values for c¢ and ¢y, and thus there 1is
a considerable gap between them. This gap, however, does not affect the
applications we discuss here.

For every two functions f(n), g(n), we use the standard asymptotic
notation g(n) = o(£f(n)) if 1lim g(n)/f(n) = 0, g(n) = Q(£f(n)) 1f £(n) = o(g(n))

n->wo

and g(n) = 0(£(n)) if 1lim g(n)/£f(n) = c for some constant c.

Proof of the Theorem: The general thrust of the proof is as follows. Let

b > 0 be a constant to be specified later. For each node vy € V, we construct
a set By < V such that almost surely IHiI > (n log n)l/z, and Dyj < b log n/n
for each vy € Hy. Clearly, if H; n Hy # ¢, then Dyj < 2b log n/n. Otherwise,
we show that there almost surely exists an edge (k,%) such that vy € Hy,

vy € Hj and



for a constant ¢ which is essentially equal to 2b.
We first examine the construction of Hye Our construction is sequential;

that 1s, we generate a nested sequence of subsets Hg E.Hi

2 r _
S H S ... H =H

and demonstrate that Hy = Hg has the required properties.
We open with a useful approximation to the Binomial distribution., It is

based on Bernstein's inequality, and its proof can be found in Renyi (1970),

(p. 210).

Lemma 1: Let 0 < p < 1, gq=1-p, x <1/2 ‘}-E—a- . Then,

y G <2 exp(~x2/4)
|r-np| > x/npq

Let o be a given constant, q = (a-1)2/4a. Define

0
i

that 1 = Pr [|Hg| < log n] < 2n 3, For q > 2, which can be achieved by

H, = {vj € V|dij < « log n/n}. Then it follows from lemma 1

@ > 10, we get p, = o(if). Thus we have shown:
n

Lemma 2: For a > 10, the n inequalities
0 =
IHi »logn, i=1, «.o, n

hold simultaneously almost surely.

Pick a particular vertex vy € V and let Hg be the set of lemma 2. We now

show how B¥*! can be constructed from H% for £ = 0,...,r-1 until we obtain the

2+1 2 +1

set Hy = H{ with the desired properties. Specifically, let Hi = Hi U Fi



where Fi+l n Hi = . TFor convenience we define Fg = Hg.

Let 8 be a constant to be specified later, and let

r, = alogn/n + (X - 1)/, 2=1,...,r

with
1'050-

We assume that for m = 0,...,4%, F? is such that for each v € F?, a

particular path exists from v4 to vy of length DE which satisfies

k
Tp < Df < Tpyy

This assumption clearly holds for m = 0 since by construction, for each

vk € Hg 0 < dik < alogn/n = T and thus we can take D% = dyr. To see how

this property can be extended to m = 2 + 1, let, for each % € H%

1 _ x ok
Beg = (Tgqg = Dy Tpyp — Dyl

Now let

+1 _ 2 i 2
Pl - {vj ¢ Hi|dkj € A, for some v, € Hi}'
In words, F§+1 consists of those nodes vy currently not in H{ but which can be
2 i
reached from some node v € Hy by an edge whose lgngth dkj € Agy. This makes

for a path from vy to vy (via vy) of total length Di = D} + dkj which



satisfies the required condition:
ror1 < D] € oy
The reader may recall that, as per Lemma 2, the size of Hg is at least log n

almost surely, Similarly, Lemma 3 below indicates that F%+1 (and hence H§+1)

canot be "too small™ in relation to H%:

Lemma 3: Let y be positive constant such that y < B. Set

t = I8 -y - h(p*+2)/2n1%/4g and b = |u}

. If h < (n log n)l/z, then
Pr ['F%+1| < yh] < 2n~t
Proof: First note that h = lH{' > lﬂgl ? log n. Next, for each pair

h
conditioned on vy € H%, 4 ¢ Hi. Clearly, these events are mutually

vy € H%, v, £ Hi let pyy denote the probability of the event "dkj € Aix"

independent for the various choices of j and k. Also, for each such pair, we

have Pk > B/n. This is due to the fact that Aix has length B/n and

i

that Akl

is disjoigt from any of the intervals Aim’ m < 2, which may have been
examined before. Thus, the number of elements of Ff+1 is a binomial random
variable with probability of “success™ at least 1 - (1 - B/n)h and the number

of trials is n-h = n(1l -'%). The expected value of the number of elements in
Fi+1 is at least

@-wi-a-5HMsa0 -8 a-28, ma - Ernb.

and the required result now follows directly from Lemma 1.



Note that for large values of n, t is essentially equal to (B—Y)Z/AB.
Call an iteration, %, a "success” if |H1+1| > (1 + Y)lH1| or if
Bt 5 (a log n)1/2. Clearly, after at most log n/(2 log (l+y)) =
successes, H%+1 achieves the desired size of (n log n)1/2. By Lemma 3, the

probability of success at each iteration is at least 1 - 2n"t., et § be a

positive constant to be specified later and let

rg = (1+§)log n/(2 log(l+y)), s = [6 = 2(1 + 8)1%/8(1 + &)log(1 + y):
' n

—anl
Lemma 4: Let r be an integer, r > ry, then p = Pr[|H§| < (nlog n)1/2] < 2n~ S0

Proof: p is bounded from above by the probability that r independent trials
with probability of success 1 - 2n"t each yield less than * successes. The
desired result follows directly from Lemma 1 by substitution.

Wethave thus shown that the n inequalities
IHilEIHEI > (n log n)1/2, i=1,...,n
hold simultaneously almost surely. By our construction method
Dyp < DE < a log n/n + rB/n = b log n/n
for every vi € Hy. We now show that if H; n Hj = ¢, we can find a
sufficiently short edge connecting H; and Hj which makes for a path from v; to

V3 of length ¢ log n/n.

For each pair v € Hy, vp € Hj, let

Cem = {Di ’ j}



Clearly oy, < b log n/n. Let

-

Ay = (b log n/n - e ? b log n/n - O F p/n]
where p > 0 is a constant to be specified later. Note that the length of

Akm is u/n. Also Akm is disjoint from any of the intervals

Ail’ A;x, L =0,...,r, examined throughout the construction of H; and Hj
since the largest number contained in any of these intervals is

b log n/n - Om® Thus, Fhe events dkm € Akm’ conditioned on vy € Hy, v, € Hj,
Hy n Hj = ¢, are mutually independent and each has a probability of occurance
at least p/n. There are n log n events of this type (one for each edge
connecting H; and Hj) so that the probability that none of these actually

occurs is at most n"#. For p > 3, this implies that for all pairs VisVys such

that H; n Hj = ¢ simultaneously, an appropriate edge can be found almost

surely. Thus, the n(n-1)/2 inequalities
Dy < (2b + pu/log n) log n/n

hold simultaneously almost surely. This proves the theorem since for large
values of n, 2b + u/log n is essentially equal to 2b and in any case can be
bounded by a constant c.

The constant c¢ of our theorem is rather large. For instance, by choosing
a=10, B=2, y=1/2, 5 =1, we get that b is roughly equal to 13.33 so
that ¢ can be taken as 27. A sharper analysis can reduce this constant
dramatically, perhaps by a factor of 10. Nevertheless, the order of magnitude

cannot be improved:



Lemma 6:

Pr[D,, > log a/n] 3 el

Proof: A random graph with probability of each edge p = log n/n is not
connected with probability el (see Erdos and Spencer (1974), Chapter 16).
In the following sections, we proceed to examine some of the algorithmic

implications of our theorem.

3. Shortest Paths and Spanning Tree Problems

Here and in the following sections we consider a complete (directed or
undirected) graph G = (E,V) with n nodes and a function d which assigns a
length 0 < dij < 1 to every edge (vi,vj) € E, The values of dij are assumed
to be independent uniform random variables. The main idea is that since all
distances Dij are a.,s. bounded by c log n/n, then in many problems edges which
are larger than k log n/n for some constant k, will almost surely not be used
in an optimal solution. Thus, in O(nz) preprocessing time, these edges can be
deleted and be excluded from further consideration. This operation leaves us

with a random graph &=(V,ﬁ) such that for every (vi,vj) € E, Pr[(vi,v ) € E] =

3
k log n/n, and |i‘ = 0(n log n) almost surely. Then a standard algorithm can
be applied to & to find an optimal algorithm in reduced effort.

We note that by examining the solution obtained on &, it should be
possible to check whether the exclusion of the "long™ edges was, in fact,
justified. If not, the procedure failed, and the standard method must be
applied to G in order to obtain the correct optimal solution. Thus, the worst
case bound is identical with that of the standard method, but the algorithm's
worst case (or average) performance time is almost surely very close to its

~
worst case (or average) performance time on G.

Since 0(n2) is required just to scan the edges of G to obtain G, there is



no point in applying this method to problems which already have an 0(n2)
algorithm such as finding the shortest path between a given pair of nodes or
the minimum length spanning tree. However, the method can be used to expedite
algorithms whose running time is longer.

A case in point are shortest paths problems when more than one origin is
involved. Note that our method requires O(nz) processing time after which all
the shortest paths from a given node vy to the other vertices of G can be
computed in O(n logzn) almost surely. An alternative procedure which can be
used here is Bloniarz (1983), which is based on Spira's (1973) method and
which can find all shortest paths leaving vg in O(n log n log* n)1 expected
time (0(n2) worst case time), after a preprocessing phase which requires
O(nzlog n). If the number of origins comnsidered is less than 0(n/log n), the
order of running time of our algorithm almost surely is better than Bloniarz's
order of expected time. Note, however, that the latter method is valid under
less restrictive probabilistic assumptions than ours.

Suppose next that we are interested in finding a shortest vy - v., path

s
for some given vg,v, €V, containing at most P edges. The problem can be
solved in O(mP) time for a graph with m edges using dynamic programming.
Since the restriction on the number of edges makes the shortest allowed path
larger, it is not always possible to restrict our search to &. However,

examination of the proof in Section 2 shows that for any pair Vi»Vj € V the

number of edges required to comstruct the vy - vy path is almost surely less

(1 +38)log n
log(l + y)

the shortest v, - v, path containing no more than P edges, for P > 4log n can

than + 3 which can be very generously bounded by 4log n. Thus,‘

be found almost surely in 0(Pn log n + n2) as opposed to O(nzP) which is the

1 log* n = min{i'logi n < 1} and 1ogi denotes the i-th iterate of the
logarithm function.
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regular bound.

As we have already mentioned, application of our theorem to the minimum
spanning tree problgm does not improve the complexity bound since this problem
already has O(nz) algorithms. However, our method may be usefﬁl when a
sequence of minimum spanning trees is to be computed. One example is a
generalization of the minimum spanning tree problem, called the Steiner
network problem. Another will be given in Section 5. Let the number of nodes
of the graph be n, and suppose that a specified set of n - s nodes is to be
spanned by a tree of minimum weight. While this problem is known to be NP
complete, Lawler (1976) presents an algorithm which for a fixed value of s is
polynomial in n. The algorithm requires first the solution of all-pair
shortest paths and then computes 0(2%) solutions of minimum spanning trees on
subgraphs with no more than 2(n-s—-1) nodes. Thus, its worst case complexity
is 0((n-s)225+n3).

By our theorem, almost surely all distanceé between nodes in the graph
are shorter than ¢ log n/n. In O(n2) preprocessing, all edges larger than
this value can be deleted and the algorithm can be restricted to the resulting
graph which almost surely has 0(n log n) edges. Using any O(m log log n)
algorithm for the minimum spanning tree (e.g., Yao (1975), Cheriton and Tarjan
(1976)), we obtain a bound of O(n log n log log(n-s)2S + nzlog n log* n)

almost surely.

4, Absolute P-Center -

For a set of points X on G and v; € V, let D(i,X) min{Dixlx € X}, The

problem is to find the "weighted absolute p-center”, X = {xl,.,.,xp} and the

"p-radius” r, for which T, = min {max wiD(i,X)}, where wy are given weights.
le=p viGV

By our theorem, r_ < ¢ log n/n almost surely. Thus, if dij > 2 c log

|3
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n/n, then edge (Vi’vj) almost surely contains no points in the optimal set
X. This reduces the set of candidate edges to the 0(n log n) edges which are
shorter than 2c¢ log n/n.

KRariv and ﬁakimi (1979) showed that the p—center problem on a general
network is NP-hard. However, for p = 1, they give an algorithm which requires
O(n3log n) time on complete graphs (and O(n3) time if w; = 1 for all
vy € V). The algorithm computes in O(n log n) time the best point on a given

2 times. This dominates the O(n3) time

edge and this step 1s repeated n

required by the algoritim to compute all-pair shortest distances in the graph.
It follows from our theorem that only 0(n log n) best points need to be

found, and thus the overall time of this step is O(nzlog2 n). The same amount

of time is required to compute the all-pair shortest distances. Thus, for

graphs with random edge lengths, the weighted one-center problem can be solved

in just 0(n2log? n) time, almost surely.

5. Minimum Ratio Problems

For any glven feasible set D c R" comsider :

Problem A: minimize Z

Zg ©13%13

s.t. x (xij: (vi,vj) € E) € D.
Problem B: minimize R = (Ig aijxij)/(ZE bijxij)

s.t. "X € D.

Suppose that a function g(n) is known such that when cy4 are uniform
independent r.v.'s on the unit interval, then an optimal solution to A almost
surely does not use edges with iy > g(n). Suppose also that ajj and bij
(Vi’vj) €E are.all independent uniform random variables on the unit

interval. Let R* denote the optimal value of R.
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Lemma: For every £ > 0, 0 < R* < a+ e)zg(n) almost surely. In particular

R* < 4 g(n) almost surely.

Proof: We generate a solution x ¢ D as follows: Let é be the graph obtained
from G after deleting all edges with either a > (1 + g)g(n) or

b < (1 +¢e)l. Then the probability that a given (Vi’vj) € E is in G is
g(n). By our assumption, this probability a.s. guarantees the existence of a
feasible solution. Such a solution has however

R« L2020 (4 o)2%(0).

Iéli: z)standard trick to solve ratio problems such as Problem B by
solving a parametric series of problems of type A with costs ciy =
ajy - tbij. The search terminates when Z = 0O, in which case t = R*.
Obviously, if a bound on R is known, the values of t can be restricted to
obey this bound. Clearly, when costs Ciy = 334 ~ t bij are considered a
better solution is found than if cij = 2i4e Thus, edges with aij—t bij > g(n)
can be deleted. 1In particular, edges with a5 > 5 g(n) can be deleted since
asj-t bij > ajy-t 3 aij—4 g(n) > g(n). Thus, a.s. only O(n log n) edges must
be considered. For example, consider the minimum ratio spanning tree problem
which can be solved in O(m logzn log log n) time for a graph with m edges
(Megiddo (1981)) and in O(m log(nd)log log n) where d is the maximal edge
length, expressed as integer (Zemel (1981)). It follows from Theorem 1 that
g(n) = cn logn also for the MST Problem. If we replace m by 0(n log n) we

obtain 0(n log3n log log n) which is dominated by the O(nz) preprocessing

time. Thus the resulting algorithm requires O(nz) time almost surely.

6. Concluding Remarks

Throughout the paper, we assumed that the edge weights are uniformly

distributed. However, examination of our proof in Section 2 shows that the
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only important property of this distribution is that its density is positive
and bounded from below at a neighborhood of zero. Thus, it is possible to
extend our main theorem to other probability distributions as well.

Consider next a random graph Gr = (Er,V) such that for each e € E,
Prfe € Er] = Ppo and these events are independent. Then a proof parallel to
that of Section 2 shows that D < c log n/npn almost surely. The
applications of Sections 3-5 apply also in this case where edges larger than c
log n/np, can be excluded. Since 'Er’ = O(nzpn) it follows that the resulting
graphs have almost surely O(n log n) edges. The complexity of the proposed
algorithm is thus unchanged except that the preprocessing effort is bounded by
0(m) = 0(n2pn), almost surely.

For example, the problem of finding a minimum spanning tree can be solved
in O(m log log n) time (see Yao (1975)). After removing the "long"” edges from
G., we have m=0(n log n) edges and the problem can be solved on the resulting

- Q(log n lgg log n

graph in O(n log n log log n) time. If p, ) then

m = Q(n log n log log n) almost surely, and the preprocessing time is
dominating, so that we obtain an O(m) algorithm.

Another example concerns finding a shortest vg — v, path. This can be

s
done in O(m log n) time. After removing long edges we can thus solve the
problem in O(n logzn). If p, = Q(logzn/n), then m = Q(n logzn) a.s., and the
preprocessing, which requires 0(m) time, dominates the overall complexity of
the algorithm. We note that for graphs with m = Q(n1+€) there already exist
0(m) algorithms for both the minimum spanning tree and shortest path (with
non-negative weights) problems (see Johnson (1975,1977), Cheriton and Tarjan
(1976)).

A final result concerns the diameter of random graphs. Its proof follows

easily from the proof of our theorem. Let b and r be as in Section 2.
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Corollary: let 6 = (E,V) be a random graph with p, = Pr[(vi,vj) € E] > b log n/n,
then the diameter of & is almost surely less than or equal to 2r + 3.

Note that 2r < 4 log n so that p, > b log n/n suffices to
guarantee dim(a) = 0(log n). Very strong theorems concerning the diameter of
random graphs appear in Bollob4s (1980). However, they apply to different

domains of p, and dim(a).
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