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Abstract

Conjectural Variations Strategies in Dynamic Cournot Games

with Fast Reactions

by

Ehud Kalai and William Stanford

A family of constant conjectural variations strategies is intro-
duced for infinitely repeated Cournot duopoly games with discounting.
With time taken explicitly into consideration it is shown that any pair
of linear reactions in the family gives rise to a unique pair of quan-
tities in stationmary equilibrium. As the conjectures and discount
parameter vary, the sum of the stationary quantities will vary anywhere
between the competitive and the monopoly outputs. At every time period
of the supergame, these strategies yield actions which are continuous
in the history of play, and exhibit a strong stability property. They
also have a credibility property, on and off the equilibrium path (a
variant of Selten's subgame perfection) provided that firms can react

quickly enough to each other's actions.






1. Introduction

Repeated oligopoly games have recently received much attention in
the literature. 1In particular, infinite horizon, discrete time models
with discounting have been studied. These models are attractive
because they realistically reflect the economic facts of life. Firms
meet in competition on an ongoing basis. With time explicitly taken
into account, it is sensible for firms to evaluate infinite streams of
profit by discounting them to their present values.

Two questions justifiably receive attention in the majority of this
work. The first concerns the possibility of departing from outcomes
which reflect noncooperative equilibrium in the stage game. Specific-
ally, the ability of firms to base future actions on the history of
play may allow them to enforce cooperation by threatening to punish
undesirable behavior or reward cooperation.

The second question concerns the degree of credibility inherent in
the threat-reward strategies adopted by the firms. A relevant notion
of credibility is Selten's (1975) definition of subgame perfect
equilibrium. Such an equilibrium is credible since under this con-
dition, empty threats are never made; it is always in the best
interests of the participants to carry out their threats if called upon
to do so. An equilibrium which is not subgame perfect admits the
possibility that a firm, by a well chosen deviation, might convince its
rival to desert its strategy, and might improve its payoff by doing so.

Broadly, strategies may be grouped according to their continuity
characteristics. Continuous strategies specify only small retaliation

or reward for small deviations from prescribed behavior. On the other



hand, discontinuous strategies usually embody the threat of severe
punishment for any deviation, however small.

Friedman (1971) has demonstrated the existence of subgame perfect
equilibria which exhibit cooperation beyond that predicted in
equilibria of the associated stage game. These equilibrium outcomes
are enforced by discontinuous strategies which consist of the commit-
ment by a player to cooperate in face of continued cooperation by the
other players, and reversion to a threat point in all subsequent
periods as a response to any deviation from cooperation.

Others have considered variations of these discontinuous strategies
under discounting or the limit of the means evaluation relation, in
infinite or finite horizon models. Some references are Radner (1980),
Porter (1980), and in a model more general than the oligopoly case,
Rubinstein (1977).

Strategies continuous in the history of play have also been
studied. Among the early examples of work in this area is Friedman
(1976). While he does not explicitly consider subgame perfection, his
notion of approximate best reply equilibrium apparently addresses the
same credibility issues.

Other approaches to the oligopoly problem have also been taken in
the context of dynamic models. See, for example, Smithies and Savage

(1940) and Maskin and Tirole (1982).



1.1 Conjectural Variations in Cournot Supergames

Beginning with Bowley (1924), and until recent times, the study of
the oligopoly problem has been restricted to formally static, single
period models, and largely concerned with the idea of reaction func-
tions and their derivatives. The firm's profit maximizing output level
depends upon the output level chosen by its rival. It can be shown
that reaction functions, so defined, exist under quite reasonable
assumptions on demand; see Friedman (1977). The rival's reaction func-
tion is not known to the firm but the firm may have conjectures about
it. Frisch (1933), working with such a model, named the slope of a

firm's conjectured reaction function the conjectural variation.

Introducing reaction functions in this way incorporates a dynamic
element in the single period game analysis. However, there are obvious
disadvantages to this approach. First, there is the logical incon-
sistency of a firm attributing reactions to its rival in the context of
a single period, simultaneous move game. Further, such models and
their conclusions may be difficult to evaluate since a static model is
used to describe a truly dynamic process. Though the same criticism
can be made of any model which employs simplifying assumptions, inter-
temporal considerations seem so close to the heart of the oligopoly
problem that their explicit treatment should be given a high priority.

In this paper, we consider a family of strategies which are con-
tinuous in the history of play, in the context of a fairly broad class
of infinitely repeated Cournot games. In particular, the strategy we

associate with each firm will be a linear function of its rival's prior



period output. These strategies may be viewed as conjectured reaction
functions, reflecting each firm's belief about its rival's responses to
changes in the firm's output. Thus we will borrow the terminology of
the substantial one-shot game conjectural variations literature and
refer to our strategies as Constant Conjectural Variations (CCV)
strategies.

There is a further correspondence in some respects between the
single period reaction function literature and the repeated games
approach. It lies in the relationship of "consistent” conjectures in
single period models with subgame perfection in repeated games. Both
are credibility notions used to distinguish certain of the multiple
equilibria parameterized by the beliefs of the firms. Consistent con-
jectures about a rival are characterized by agreement, at least in a
neighborhood of the equilibrium, with the rival's actual profit maxi-
mizing response to changes in the firm's output.

For purposes of comparison with the conclusions of this paper, we
consider some results from the single period, conjectural variations
literature. 1In this setting, Fama and Laffer (1972) and Anderson
(1977) show that in equilibrium, for any given number of firms, aggre-
gate industry output can lie anywhere between the perfectly collusive
(monopoly) and the perfectly competitive, depending on the conjectures
of the participating firms. On the other hand, Kamien and Schwartz
(1983) and Bresnahan (1981) show that for symmetric duopolistic firms
facing linear demand, the only consistent constant conjectures are

dqi/dqj = dqj/dqi = -1, giving rise to the competitive outcome.



The strategies we consider, for some values of the parameters, will
yield equilibrium outcomes which Pareto dominate the stage game
equilibrium outcomes. The extent of this possible dominance will
depend critically on the value of the discount parameter, with large
values of the discount parameter giving rise to a wide range of
possible stationary equilibrium outcomes.

In addressing the subgame perfection issue, we will introduce the
idea of accelerated versions of the supergame. Thus, in a framework
which approximates continuous time, we will show that our strategies
exhibit strong credibility properties. Specifically, we have in mind a
kind of limit theorem which states that short reaction times ensure the
approach to subgame perfection can be as close as we desire. In
contrast to the results of Kamien and Schwartz (1983) and Bresnahan
(1981), we find that the whole range of outcomes between the perfectly
competitive and the perfectly collusive can be supported in quite cre-
dible equilibrium, depending on the conjectures of the firms, if reac-

tion times are short.

2. The Supergame Model

The term "supergame” seems first to have appeared in Luce and
Raiffa (1957) in a discussion of the repeated prisoner's dilemma. In
this work, the term will refer to a situation where two firms undertake
playing a countably infinite sequence of identical Cournot duopoly
games. The formal model is similar to that of Rubinstein (1977),
except that firms use discounting instead of the limit of the means

evaluation relation to rank alternative streams of profit. 1Imn this



model, both firms have complete information. Moves are made simulta-
neously, and binding agreements are not permitted. At the end of each
period, each firm is informed of the quantity chosen by the other in
that period. Thus the information on which a firm bases its output
decision in each period consists of the outputs of both firms in all

prior periods.

2.1. Constant Conjectural Variations and Linear Demand

In this section, we consider the supergame consisting of countably
many repetitions of the linear demand duopoly game. Our model follows
the work of Courmot (1960), in that it is characterized by a homo-
geneous product and pure competition on the buyers' side of the market.
We assume constant and identical marginal costs for the two firms. The
object of each firm is to maximize the sum of discounted profits by
choosing at each stage its own output level of the product. Thus, for

example, the profit function for firm 1 at each stage is
n1(q,r) = q(A-B(q+r)),

where A,B > 0 and (q,r) is an output vector corresponding to firms 1

and 2 respectively. So firm 1 is taken to maximize the sum

at_lqt(A_B(Qt'l'rt)) »
1

T~ 8

t

where o € [0,1) is a discount parameter (the same as for firm 2).

Similarly for firm 2.



It is easy to show that in the stage game, the usual Cournot
equilibrium output for each firm is A/3B, and the monopoly output in
this situation is A/2B. Thus if the firms act identically in concert
to produce the monopoly output, each would produce A/4B.

It is convenient to take the strategy sets for the stage game to be
the same for both firms, and to restrict outputs to nonnegative quan-—
tities bounded above by a multiple of the point of zero demand. The
nonnegativity constraint is reasonable, and the upper bound constraint
may be viewed as a capacity constraint on production. Thus at each
stage, the firms are allowed to choose quantities in [0,2A/B]. We
will denote the interval [0, gA/B] by I. 1In this section, the value of
2 may be taken as one, but particularly in section 2.2, we will need
the generality of allowing 2 > 1.

A supergame strategy is a choice of output at every stage, where
each choice is possibly dependent on the choices made in the preceding
stages and where both firms know all the choices made by each in the
past. Thus, for example, a strategy for firm 1 in the supergame is a

set of functions:

{Qt}:;l, where Q; e I and for t > 2, Qt:(IxI)t‘l > I.

A strategy for firm 2 will be represented by {Rt};;l.
A Nash equilibrium in the supergame is a strategy pair with the
best response property: neither firm can strictly increase its profits

by deviating from its strategy in face of its rival's strategy.



The family of strategies which concerns us is comprised of trun-
cated linear reaction functions, which depend on past history only
through rival's output in the prior period. They are stationary in the
sense that for t > 2, the rule which determines each firm's output is

the same in each period.

Definition 1: For a fixed linear price schedule and g > 1, let the

truncation function g:R > I be defined by
o if x < 0
g(x) =€ X if x ¢ 1

é_zA/B otherwise.

For c¢; € [-1,1], i = 1,2 and a ¢ [0,1), let

- _ A(l+ac)) - _ A(1+ocy)
17 B[(2¥ac)(Zracy)-1T  * © 7 B[2¥ac))(2+acy)-1] °

A pair of constant conjectural variations (CCV) strategies, for

reaction rates c; and cy, is then defined by

(1) Qq=qel. Ry =T 1
Qt+1(ht) = g(a"'cl(rt—;)), Rt+1(ht) = g(1?+c2(qt"a)),

where hy = (q],71,99,T9,v04,q¢,T¢) € (IXI)Y is a vector describing the
history of production quantities for both firms from period 1 to period

t.

The truncation function serves to ensure feasibility. Thus the

sets of functions described are supergame strategy pairs.

10



The formulas for q and r in Definition 1 also appear in Boyer
(1981), with o = 1. The framework of his analysis is formally a single
period game, sharing with all such conjectural variations models a
reliance on an implied but unstated dynamic structure for its
interpretation.

Some properties of CCV strategy pairs are:

1. Played one against the other, the output vector (a,;) results
in each period. Thus CCV strategies exhibit two types of stationarity:
stationary rules and stationary outcomes. The stationary rules
described by these strategies capture the idea of constant conjectural
variations. If a firm, say firm 1, considers deviating from its sta-
tionary qﬁantity a at a stage t by a quantity qt-a then it should
assume that its rival, firm 2, would deviate from its stationary output
T by the quantity cz(qt—a) (subject to a feasibility constraint). As
we will see (Theorem 1 below) these strategy pairs constitute Nash
equilibria in the duopoly supergame.

2. 1If cy=cy=c, then q =T = A/B(3+ac). Thus for positive c, out-
puts are restricted below Cournot levels, and profits are correspon-
dingly higher at each stage, given that the firms play these strate-
gies., As the product oc increases toward one, the combined output is
reduced toward the monopoly level. Similarly for negative c, as ac
decreases toward -1, combined output increases toward the competitive
industry output. Other comparative statics are given in Proposition 1

below.

11
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Anderson (1977) discusses the conditions under which we might
reasonably expect firms to adopt either positive or negative conjec-
tures. He notes that behavior of a firm consistent with positive con-
jectures on the part of its rivals can be viewed as a potentially
costly enforcement mechanism for the restriction of industry output.
With large numbers of firms, the benefits of aggregate output restric-—
tion are viewed by the individual firm as being attributable mainly to
the enforcement efforts of others, and only negligibly to its own
enforcement efforts. Thus in the many firms case we are led to a free
rider problem, and the conjecture that rivals will individually maxi-
mize their profits without regard to industry welfare considerations.
This corresponds to the "adaptive” behavior of negative conjectures,
and the attendant expansion of industry output. In the small numbers
case, the perceived benefits of enforcing industry discipline are
correspondingly more dependent on the individual firm's action, and we
might reasonably expect to find positive conjectures under this con-
dition.

3. As we will see in section 2.3, when c¢j,cy € (-1,1), the strate-
gies exhibit dynamic stability. If at some stage, quantities other
than (g,r) are produced, convergence over time to the vector (q,r)
results from playing the induced strategies in the following subgame.

The main result of this section is contained in Theorem 1. This
Nash equilibrium result is central to our continued interest in CCV
strategies. The question of credibility and subgame perfection is

taken up in section 2.3.
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Theorem 1 Under the assumption of linear demand, any pair of CCV
strategies defined as in (1) is a Nash equilibrium in the duopoly
supergame., Moreover, the vector (a,;) is unique in the sense that
given cj,cy and o, no other vector (a,?) supports (1) as an equilibrium
in the supergame. That is, (1) with (§,F) substituted for (q,r) is not

an equilibrium in the supergame.

Before proving Theorem 1, we will need the following lemma which
shows that, for our purposes, the effects of the truncation function g

are immaterial.

lemma 1: Let T = (Tl,Tz,"',Tt,"’) e I®. Then there exists ; =
(;1,;2,"',;t,"') g 1% such that
® — — — — —
Tl(A_B( T1+r)) + I (1~1Tt(A‘B( Tt+r+c2(‘rt_1—q)))
t=2
® — —
> 1)(A-B(1+1)) + I o 1o (A-B(rrglr+ey (e -0 1))
t=2
Proof:
Both infinite sums clearly exist for such t1,7. The proof proceeds
by cases and an induction argument in each case.

Case 1: ¢ < 0. The result will be true if for all N » 2



7

1
a1 (A-B(tp+rHes (1))
2

11(A-B(1y+T)) +
t

™

+

N1 A-B( gt T+e o (e ;=)

N
11 (A-B(1y+T)) + 22 ot (A-B( 1 + glrtey (- 1)),
t=

Vv

for some 1 ¢ I%.

_ } Te-1 if r+ C2( Tt_l‘a) > 0
Given 1, let T~y =4 _ _ _
éthe solution to r + cz(rt_l—q) = 0 otherwise.

This definition is motivated by the fact that, for cy < O,

E + Cz( Tt"l_a) < ,Q,A/B for Tt_l c I.

Let t* be the first t for which r + Cz(Tt_l‘a) < 0, and suppose
t* = 2. Then we claim

T1(A-B(1+1)) + atp(A-B(1ytr+ey(19-9)))

> 11(A-B(13#1))) + atp(A-B(1otglr+ey(11-q) 1))
or: T11(A-B(1;#1))) > 17(A-B(T1y+1)).
We have 17 > }1 = a—f/cz. Since x° = A/2B-r/2 maximizes the
quadratic x(A-B(x+r)), we will be done if ;1 > x*. This follows from
elementary manipulations. When t* > 2, an analogous claim can be
proved. Thus for fixed N, a finite induction argument gives the
result.

The case cp > O is proved similarly and uses the fact that

r + Cz(Tt_l—a) > 0 for 1y e I

khkkhhhhk
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Proof of Theorem 1:

Given firm 2's strategy, firm 1 faces a mechanical optimization
problem. Firm 1's strategy prescribes the output a at each stage in
face of firm 2's strategy., Thus firm 1 will be employing a best
response strategy if the vector Q = (q,q,ee«,Q,+e+) is a solution to
the optimization problem. The argument is completely symmetric when we
consider firm 2's optimization problem.,

By lemma 1, we can substitute the nontruncated version of firm
2's strategy into firm 1's optimization problem. Thus we consider the
problem
(2)

max  1j(A-B(1y+T) + ; =1 (A-BCrp+r+ey (1 =a))) -
Tel® t=2
For any vector of outputs 1 € I%, let

oL (A-BCrtT+ey(temg—a))).
2

Fy( 1) = 19(A-B(1y+r)) +
t

U

Also, define FN(T) = Fy(D - aNBC2aTN, Q = (4,Qy+e2G,+..) and

Fo(T) = lim Fy( 7).

N+

We will show that F_(Q) » F (1) for all 1 ¢ I®. So suppose for
some fixed T, we have F (1) > F(Q). Let § > 0 have the property that
F(Q) + & = F(1). By continuity, there exists a real number m such

that' Tt(A—B(Tt+f+c2(Tt_1-a)))[ < m for all (Tt_l, Tt) € 12. Choose

15



o0
N; such that v > Ny implies m % at'l < 6/8 and Ny such that v > N,
t=v
implies a“BczaTv < §/8 for any Ty € I. Let N = max {Nl,Nz}. Then for

v > N, we have

| FulQ-F (@] < 8/8 , | Fo(D-F (1) < 6/8

| FW@-F @) < /8 , | F(D-Fy(1) < o/8.

By repeated application of the Triangle Inequality, and the fact
that F(Q) = F (1)-8§, we have| Fv(a)—Fv(T)+6’ < 8/2. An immediate

contradiction results if we can show Fv(a) > ?v(T) for all such v.

With Fv as the objective, first order conditions are given by

-2B1] + A-Br - oBcyp1y = O
(3) -2B1¢ + A-Br - oBCo Tet] ~ Bcz(rt_l—a) =0 t=2,¢0.,v1
-2BT1, + A-BT - aBcpq - Bey(T,1-q) =0

AL+ 01[12)
B[(2+ac) (2+acy)-1]

Given that r = it can be seen by elementary
A(1+ aCl)

B[ (2+acy) (2+oegy. 1]

-

2l

manipulations that 11 = 7p = «.0 = T, =

solves the system (3).

It remains to check second order conditions for a maximum, For
this it will be sufficient to show that the associated Hessian matrix H
is negative definite.

The first row of H is given by

(-2B)(-oBcy) 0 0 *++ 0
(v-2) zeros

The tth row of H is given by

16
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00 *** 0 (—at—chz)(-at”IZB)(—aFBcz) 00 ***0

(t-2) zeros v(t+1) zeros
The WP row of H is

00 *** 0 (~aVlBey)(—aVl2p).

(v-2) zeros

Let di be the determipnant obtained by considering the first t rows

and t columns of H. It is well known that H is negative definite if
and only if d; has the sign of (-1)t for t = 1, ..., v. By standard

theorems on determinants,

2 C2 0

(ICZ 2 0
dy = (_l)tBtat(t—l)/Z

0 aCZ C2

(!Cz 2 C2

0 ac 2 2

for t =1,...,v.

Let Et be the above determinant. If Ht > 0 for all t, we will be
done. We have al = 2, 52 = 4—ac% > 51. For t » 3, it is easy to see
that at = ZEt_l - ac%at_z. Supppose for t > 3, we have at_l > at_z >
0. Then d = 2d,_; - ac3dy_p > 2dy_] - dp—p > dy_y. By induction,
since Hl > 0, the first part of the theorem is proved.

For uniqueness, we note that the 2x2 system of linear equations

determined by
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e argmax q(A-B(g+r)) + I ot lq(A-B(q+g[T+cy(g-3)1))
qel t=2

0>

and
e argmax r(A-B(r+3)) + I ot lr(A-B(r+g[q+c;(r-1)]1))
rel t=2

=Y

has the unique solution (q,r) with q,r given as in Definition 1.

This completes the proof of Theorem 1.

khdekkkokk
We summarize some comparative statics on the vector (q,r) in a

proposition,

Proposition 1:

1. For all a; cy,cp € [-1,1], q increases in c; and decreases in cy.
2. For all o; c¢j,cp e [-1,1], if ¢; > c,, then q > T.
3. For ¢j,cp e [-1,1], q/(g+r) increases in c;, decreases in ¢y, and
increases in « if and only if cy > ¢g.
4, TFor cj,cp e [-1,1], firm 1's stage game payoff q(A-B(q+r))
increases in cj.
5. For all a; cj,cy € [0,1], A/2B < q + T < 2A/3B.
6. For cy,cp e [0,1], q + r decreases in a.
All proofs are immediate or imvolve only the relevant differentia-
tion.
Kk kkkdkk
Result 3 makes an intuitive statement about the firms' market

shares. Result 4 demonstrates that a firm benefits from large positive



conjectures on the part of its rival. Result 5 shows that the combined
equilibrium output is always between the monopoly output and the com-
bined Cournot output in the case of positive conjectures. Result 6
shows that combined production decreases from combined Cournot output
toward monopoly output with increasing values of the discount para-

meter, again when conjectures are positive,

2.2 Constant Conjectural Variations and Nonlinmear Demand

In this section, we extend the analysis of section 2.1 to a
fairly broad class of nonlinear demand curves, including the family of
differentiable concave curves. Throughout, marginal costs are assumed
to be zero.

The formal conditions on inverse demand are:

Al. The demand function P(x) is defined and continuous for all x » 0.

There is X* such that P(x*) = 0 and P(x) > 0 for x < x*.

P(0) < », P is differentiable, P'(x) < 0 and P'(x) is continuous.
A2. Demand elasticity E(x) = -P(x)/xP'(x) is strictly decreasing for

0<x<x .

Thus for a given demand curve in this family, demand elasticity
decreases from +« to zero over the interval [O,x*], and there will
exist a unique x corresponding to any given positive elasticity. We
denote the point of unit elasticity by xl*.

A3. For x ¢ [xl*,ab, P(x) is concave. For X ¢ [O,Xl*],
P(x) < Li(x) = xP'(x;%) - x1*P (x1%) + P(x%).
Ll(x) describes the straight line through P(Xl*) with slope

P'(xl*). Taken together, assumptions 2 and 3 guarantee that P does not

19
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depart much from being a concave function: to the left of xl* mild con-
vexities are allowed, while to the right of xl*, P(x) must in fact be
concave.

Returning for the moment to the linear demand game of section
2.1, it is easy to calculate demand elasticity at the aggregate CCV
equilibrium output E(g+r) = (l+acy)(l+acy)/(2+ac;tocy). We note that
E(a+;) is independent of the parameters of demand (A and B) and that
1 > E(q+q) > O for cj>¢y e [-1,1] and a e [0,1). The main idea of
this section hinges on these facts. Given a demand curve satisfying
Al-A3 and constants cj,cy and a as above, we will substitute an appro-
priate linear curve and then use Theorem 1 to derive our equilibrium
results.

The supergame corresponding to P(x) as above will be defined when
we specify the stage game strategy sets. For this consider the point
XO* for which Ll(XO*) = 0. Thus XO* = xl* - P(xl*)/P'(xl*). It will
be convenient to take as stage game strategy sets the interval [O,xo*]
for each firm.

Definition 2: Consider a demand curve satisfying Al-A3 and constants

c1,¢p € [-1,1]1, a e [0,1). Let x.* satisfy E(x.") = (1+ac))(l+acy)/
(2+qcl+aC2), and consider the straight line through P(xe*) with slope
P'(xc*). This straight line has equation Le(X) = xP'(x.*) -
xe*P'(xe*) + P(xe*). Let A = P(xe*)—xe*P'(xe*), B=-P'(x"). Define

the truncation function
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0 if x< 0

ot

g(x) =4{x if 0 <x <xp°,
\50* otherwise.

Let
- A(1+ acq) A(1+oc))

() Q= 9= Frme a1l

Rl = ; =
B[ (2+acy) (2+acy) 1]

Qe+1(he) = glate (r=1)),  Regq(hy) = glr+ey(qe-a)),
where h; is a vector describing the history of production quantities

for both firms from period 1 to period t. We will continue to refer to

strategies of the form (4) as constant conjectural variations (CCV)

strategies.

since Lo(xo™) = P(x.¥) and Lo'(%.%) = P'(x.*) we know that the
demand elasticity of L, at Xe* is the same as demand elasticity of P at
Xe*. By a previous remark, demand elasticity of L, at a + r is also
(I+oacy) (1+acy) /(2+0cq+acy). Thus q + T = x.¥, since elasticity

strictly decreases for linear demand curves.

Theorem 2 Consider a demand curve satisfying Al-A3. Any pair of CCV
strategies defined as in (4) is a Nash equilibrium in the duopoly
supergame., Moreover, the vector (a,;) is unique in the semnse that
given a,cy,Cy, no other vector (a,?) supports (4) as an equilibrium

in the supergame. That is, (4) with (a,?) substituted for (q,r) is not

an equilibrium in the supergame,
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Given a,cy,cp, and firm 2's strategy, firm 1 faces a mechanical
optimization problem. Firm 1's strategy prescribes the output a at
each stage in face of firm 2's strategy. Thus firm 1 will be employing
a best response strategy if the vector (a,a,...,a...) is a solution
to the optimization problem. The argument is completely symmetric when
we consider firm 2's optimization problem.

By A3, we know Lg(x) > P(x) for all x ¢ R", with equality for x =
Xo = a + r. This is the salient observation in the proof. It means

that for all 1 ¢ [O,XO*]m, we have

(5) T (A-B(T+E)) + 1 ot Lo (A-B(rtglTrey(temy=) 1))
t=2

> qP(t+r) + 1 ol PCrptglrtes(tem - D),

where g, A and B are as in Definition 2. Here, & = on*/A > 1. From
the proof of Theorem 1, the left hand side of (5) attains its maximum
over T € [O,XO*]“ for T = (q,qseee,qsee.), and we have equality
across (5) for this t. This shows that T = (q,Qyeee,q,...) also
maximizes the right hand side of (5), which expresses the objective of
firm 1's optimization problem. Thus CCV strategy pairs are equilibrium
strategy pairs.,

For the proof of uniqueness, note that the 2 x 2 system of

(nonlinear) equations determined by

ra)

q ¢ argmax qP(q+T) + I cf_qu(q+g[?+c2(Q‘a)])
qel t=2

and
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[+ ]
T e argmax rP(r#E) + T at'er(r+g[a+c1(r—f)])
rel t=2

simplifies to:

N
@]

(6) qP'(q+F)(l+acy) + P(§+D)

l
o
)

TP (G+0) (1+acy) + P(GHT) =

This implies a/? = (l+acy)/(1+ocy), which in turn gives

’~ A -
(7) q = sq, r = sr for some s > O.

Also from (6), we have E(G+r) = (1/2)[1 + (acla+acz?)/(a+?)]-
Using (7) this is (1/2)[1 + (acp(l+acy)+oc;(1+acy))/(2+acitacy)] =
(1+acy) (1+acy) /(2+ocytacy) = E(qtr). Thus q+f = g+r. Together
with (7), this gives s = 1.

Fdkhhhk%k

The comparative statics results of Proposition 1, with the excep-
tion of Result 4, apply without change to the present nonlinear demand
case, The analogue of result 4 can easily be expressed in terms of
elasticities, however, Tt is simple to check that joint Cournot output
is characterized by demand elasticity of 1/2. Since
1 > (l+acp)(1+acy)/(2+acjtacy) > 1/2, for all o € [0,1) and
c1,¢y € [0,1]1, we know that (joint Cournot output) > (q+r) > (monopoly
output), for these values of the parameters.

In the statement of Theorem 2, we consider a fixed demand curve

and a whole family of equilibria corresponding to a e [0,1) and
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cj € [-1,1] for i = 1,2. This generality of the parameters is what
prompts the concavity assumption for P(x) in A3. On the other hand, if

we first fix a, c] and ¢y, we can replace A3 with a weaker assumption.

A3a. For fixed a, cy and cy, let xe* solve E(xe*) = (l+qcl)(1+ac2)/
(2+acy*ocy) . Then P(x) < Lo(x) = xP'(%.)-x"P'(%.%) + P(x.)

for all x e RY.

We can then prove the analogue of Theorem 2, including the uniqueness

result, for this case.

2.3 Short Reaction Times and ¢ Subgame Perfection

A subgame beginning at time t+1 is characterized by a history of
play hy e (IxI)t. At t+l, the firms know the history h and begin at
t+l to play a new supergame. A strategy pair ({Qt],{Rt}) and a
history give rise to a strategy pair in any subgame in the natural way.
This new strategy pair is just the continuation of the old strategy
pair given hy. If in any subgame, the induced strategies are Nash
equilibrium strategies, then the original strategies are called a sub-
game perfect strategy pair; see Selten (1965, 1975). Note that in
checking the Nash condition in a subgame beginning at t+l, the payoff
to a firm at t+]l is not discounted, the payoff at t+2 is discounted by
o, and so on. This acquires force when we consider epsilon subgame

perfect equilibria below.

Proposition 2: Except when c; = ¢y = 0, none of the CCV strategy pairs

of sections 2.1 or 2.2 are subgame perfect.
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Proof:
Suppose at time t, firm 1 produces a and firm 2 produces r # .
Then in the subgame beginning at time t + 1, the following outputs are

realized by the induced strategies.

Period Firm 1 Firm 2
t+1 q + cy(r-1) T
t+2 q r + cpey(r-1)

Rl

t+3 a + ClCZCl(r-;)

Since 2A/B > q > 0 and 2A/B > r > 0, we may assure these outputs are
feasible for both firms by taking r near r.

In the case of linear demand, if we write down firm 1's discounted
payoff from this output stream we see that it is a quadratic in r
which, from Theorem 1, has its maximum at r = r. Thus firm 1's induced
strategy cannot be a best response to 2's induced strategy.

In the case of nonlinear demand, firm 1's payoff is dominated by a
quadratic in r with equality of the quadratic and the payoff when
r = r. But from Theorem 2, the quadratic has maximum when r = r. So
again, firm 1's induced strategy cannot be a best response to 2's

induced strategy.

hhhhhihk

When ¢; = ¢y = 0, we have q =71 = A/3B, which is the non-

cooperative equilibrium outcome in the stage game. Repeated production



of (A/3B, A/3B) can also be seen to be an equilibrium for the
supergame, Since the production level of either firm is independent of
past production levels, we also have equilibrium behavior in any sub-
game, and hence subgame perfection.

This lack of subgame perfection on the part of CCV strategies is
problematic., On one hand we find CCV strategies to be quite appealing.
They are simple. They comprise equilibrium strategy pairs. The com—
parative statics of equilibrium are intuitive. For cj,cy € (0,1], they
possess a kind of fractiomal strength Tit for Tat character which
corresponds well with the authors' intuition about what should be effi-
cacious strategies. See, for example, Kreps, et al. (1982). On the
other hand, the result of Proposition 2 cannot be ignored. Robson
(1982) has shown that this lack of subgame perfection is necessary for
strategies such as CCV strategies in oligopoly supergames. In fact he
proves this result for general analytic strategies which are stationary
(in both senses), and which depend only on rival's prior period produc~
tion.

We are led to the suspicion that there is an ingredient missing in
our formulation of the problem. The ingredient we now add consists of
including the period length as a parameter of the supergame. As we
consider shorter period lengths, retaliation for a deviation becomes
swift. It also becomes less costly to the retaliator, since in shorter
length periods, we will be dealing with smaller production quantities.

This is the intuition behind our continued interest in CCV stragegies.

26



Consider a framework in which we accelerate the play of the
supergame. The original supergame was formulated to reflect, nominally
at least, annual demand, production capacity, and interest rate. If
the firms were to meet in competition T times per year, then the
appropriate discount parameter is given by o = al/T, where o = 1/(1+1)
and 1 is the annual interest rate. Under these circumstances, it is
reasonable to distribute annual demand over T periods, each of length
1/T. Then the price schedule for any such period is Pq(q+r) =
P(T(qg+r)), where P(x) reflects annual demand. Thus in a period of
length 1/T, if aggregate output is a Tth part of some annual output,
the realized price will be the same in both cases. Thus, in the case
of linear demand, Pp(qt+r) = A-TB(gq+r). Finally, given the capacity
constraint interpretation of bounded stage game strategy sets, it is
reasonable to restrict outputs, at least in the linear demand game, to
the interval [0, fA/TB] in each period of the accelerated game, where
%2 » 1 is fixed in the original supergame. In the nonlinear demand
case, stage game strategy sets can be taken as the interval [O, xo*/T],
where XO* is as in section 2.2.

This motivates defining the T-duopoly supergame with discount
parameter and price schedule as above and strategies defined as before
with A/TB substituted for A/B. We also define T - Constant Conjectural
Variations (T-CCV) strategies in the obvious way. For example in the
linear demand case, our truncation function is now gp:R » [0, 2A/TB],

and distinguished quantities are now
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- A(l+opcy) - A(1+apeg)

9T 7 TB[(2Fopcy) (2tope)=11 * T~ TB[(2+¥apc;) (2t agcy)-1]

Our short reaction time theorems use the notion of ¢ subgame per-
fection. Given ¢ > 0, a supergame strategy pair has this property if
in any subgame, the payoff to each firm associated with playing its
induced strategy against the other firm's induced strategy is within
e of the best response payoff to that induced strategy. The statement
of Theorem 3 is meant to include both the linear and nonlinear super-
games. In the proof, we concentrate on the case of linear demand,
indicating the changes which must be made to accommodate the nonlinear

case,

Theorem 3 For any T, any pair of T-CCV strategies is a Nash
equilibrium in the T-duopoly supergame. Moreover, given ¢ > 0,

c1,¢p € (-1,1) and a € [0,1), there exists Ty such that for T > T, the
corresponding T-CCV strategy pair is an e subgame perfect strategy pair

in the T-duopoly supergame.
Before proving Theorem 3, we will need the following lemmas.

lemma 2: Let S be a set, G and H real valued bounded functions on S.
If for all s ¢ S and some ¢ > O,l G(s) - H(sﬂ < g, then

l sup G(s) - sup H(sﬂ < €.
seS seS
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Proof:

By contradiction. Suppose] sup G(s)-sup H(sﬂ = e+ k, k> 0.
s €S s€S

WLOG, sup G(s) = sup H(s) + ¢ + k. Chose s; such that
s €S seS
l sup G(s) - G(slﬂ < k/2. Sincel G(sl)—H(slﬂ < €, we have

seS

' sup G(s)—H(slﬂ < g + k/2, which gives
s €S

, sup H(s) + € + k —H(slﬂ = sup H(s) + e + k -~ H(sy) < e + k/2.
s €S seS

Thus sup H(s) + k/2 < H(s)), a clear impossibility.
s eS

Skdeokkkhhk
The next lemma shows that the truncation function g does not inter-

fere with the convergence properties of CCV strategies.

lemma 3: Let cj,c9 e (-1,1), qp,r; € [0,24/B], where g > 1. Let
a,f be as in Definitions 1 and 2, and g the usual truncation function,
g:R > I = [0,%/B]. Then the vector sequence (qj,rj),...,(q¢ =
g[a+c1(rt_l—f)], rt=g[f+c2(qt_1—a)]), ... converges to (g,r).

The proof is by cases. We will show only the case ¢} > 0, ¢y < 0,
since its proof uses all of the ideas necessary to prove the cases

cjs¢p 2> 0, ¢y,¢9 < 0, etc.



We have q + cl(r—f) > 0 for r ¢ I, which depends only on cj > O.
Also, T + cz(q—a) < %24/B for all g ¢ I, which depends only on ¢, < 0.
r = 0 minimizes q + ¢j(r~r) for r ¢ I, and 2A/B > q + cy(-1) > 0.

So the maximum value of T + cz(g[i+c1(r~f)]—a) is Tt + czcl(—f) for

r ¢ I. Since independent of c¢j,cy, we have LA/B > q+r >0, it must
be true that fA/B > T + czcl(—f) > 0. Let T = (l/cl)(lA/B—a) +r.
Then T is the smallest r for which g[a+c1(r-;)] = gA/B. Also,

T+ czcl(—f) < T. Thus, for some small ty, we have

Qe+1 = g[§+c1(rt—f)] = a+c1(rt—f) for t > tj.

If ry » 0 for all such t, we are done. So suppose for some t > tg,

rt = 0,

Claim: If m is odd, m > 1, then

= g + o@D/ 2¢,(m=1)/2(_Ty, (wt1) /2., (m+1)/2(_5)

9t+m Tidm+] = r + co
The indicated values for qi4p and Try,;,; are read from the recur-

sion formulas. Thus we will have the indicated equalities if

0 < + cl(m+1)/2c2(m“1)/2(—f) < gA/B and

fal|

2l

0<r+ cz(m+1)/2c1(m+1)/2(-;) < 2A/B for odd m.

But these conclusions can be read off if we use three facts:

l. 0< g+ 1< g4/B for cj,cp € (-1,1)
2. 0< q< 24/B, 0 < r < g4/B

3. q>

Hi

for ¢y > Co.

We may repeat this argument if ri 4 = O for some odd k.

hhkhhikiks
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Proof of Theorem 3:

Consider the linear demand case. The proof that T-CCV strategies
are equilibrium strategies follows from Theorem 1 with B replaced by TB
and o by or.

Fix ¢ > 0. Since CCV strategies depend only on rival's prior
period output, the second part is implied by the condition that
¢ equilibrium behavior be prescribed for large T, given any feasible
pair of initial outputs (a,?) £ [O,QA/TB]Z. Thus we consider the stra-
tegy pair
8 =9 , Ry =T

Qe+1(hy) = gplapre  (r-tp) ], Reg(hy) = gplrptey(q-apl,

and show that the payoff to each firm associated with playing its stra-
tegy against the other's strategy is within e of the best response
payoff to that strategy, if T is large enough. (Note that in (8) each
function Q¢ or R, might properly be indexed by T also. 1In fact, in the
remainder of the proof, all quantities, vectors, and functions should
be so indexed. We refrain from doing so to avoid notational clutter.)
Consider firm 1 and an output stream 7 ¢ [O,,Q,A/TB]°° associated
with the firm. Let G(71) be the payoff to firm 1 when it adopts
T under the assumption that firm 2 produces ;T in the initial period

and produces in accordance with

(9) Rt+1(Tt> = gT[;T + CZ(Tt—aT)} for t >1.
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Let H(t) be the payoff to firm 1 when it adopts t under the
assumption that firm 2 produces r in the initial period and then in
accordance with (9) for t > 1.

Thus | G(1) - H( v) = | 1 TB(d~qp) | , which is bounded by some
multiple of 1/T. So| G(T)—H(T)I can be made uniformly small by taking
T large.

Let H be the payoff to firm 1 when the firms adopt the strategies
shown in (8). If we can show that | H ~ sup H(r)l can be made
arbitrarily small by taking T large then g& symmetry, the proof will be
complete. We have:

H - sup H(T)’ <l H - sup G(Tﬂ +| sup G(T1) - sup H(T)l .
T T T T
By lemma 2 and the fact that| G(T)—H(T)I can be made arbitrarily and
uniformly small,, sup G( 1) - sup H(T)' can be made arbitrarily small

T T
with large T.

We know that sup G(1) = ; aF_laT(A-TB(aT + ;T)).
T t=1
Let ¢ = max{i cll ,, cz{ }. By lemma 3 and making the subtraction
directly, we see thatl H - sup G(T)l can be bounded by some multiple
of (1/T) ? (apc)tl, which c;n be made arbitrarily small by taking T

t=1
large. (Note that this is not a banal result: by L'Hospital's Rule

32

(1/T) ¢ a§_l has limit -1/log(a) > 1/i > 0. Thus we seem to need the sort

t=1
of convergence exhibited by CCV strategies.) This completes the proof

for linear demand.
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For the case of nonlinear demand, we again proceed as above.
However, direct subtraction cannot be used to see that, ﬁP~sup GP(T)I
can be bounded by some multiple of (1/T) ; (aTE)t-l, where tge
subscript P indicates the nonlinear casef_lCorresponding to any given
c1s C9, and a, we consider the obvious derived linear game with demand
curve L, as in section 2.2, and the sequence of T-games for this
linear curve, Using the concavity of P for elasticities less than 1 we
see that | Hp — sup GP(T)I can be bounded above by a multiple of the
infinite sum of ;bsolute differences corresponding to the derived
linear T-game. Direct subtraction gives the result.

Thkhkhs

The clear interpretation is that if firms can react quickly enough
to changes in rival's rate of output, then the adoption of CCV strate-
gies has strong credibility properties. Note that independent of the
interest rate, or is close to 1 for large T. Thus in the linear demand
case for large positive ¢y = ¢y = c, we have aT = ;T = A/TB(3+apc), and
equilibrium outputs can be arbitrarily close to A/4TB. Hence, in
equilibrium, price can be arbitrarily close to A/Z, the monopoly price,
in any period. Conversely for ¢y = ¢y = ¢ near -1, equilibrium outputs
can be arbitrarily close to A/2TB and price can closely approximate the
competitive price in any period. Obviously, comparative statics can
also be derived in the case where the cj have intermediate values. In

the nonlinear demand case, we use elasticities as before to derive the

corresponding results and comparative statics,
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Radner (1980) has addressed the question of why a firm might be
satisfied with less than optimal response to the strategies of other
firms. He suggests that it may be costly for firms to discover and use
optimal strategies, and that ¢ reflects a judgment by the firm that the
benefits from improving its strategy would be less than the cost of
doing so. It seems well within the spirit of a short reaction time
model to adopt the same answer. It should be emphasized that T-CCV
strategy pairs are equilibrium strategy pairs, thus each is a best
response to the other. The near-optimality question is encountered
only away from the equilibrium path.

Anderson (1983) has also studied short reaction time equilibria in
games with positive adjustment costs. When we consider the case of
large positive cj's, his results appear to parallel those of Theorem 3

rather closely.,

3. Concluding Comments

This paper has been devoted to the modeling of constant conjec-
tural variations strategies in duopoly situations under discounting.
The supergame model offers a natural framework in which to investigate
the idea of conjectural variations. The equilibrium results and proof
of Theorem 1 form the basis for all that follows. This Theorem
demonstrates that in the infinitely repeated duopoly game, a large
family of conjectural variations Nash equilibria exists, and that per-
formance in many of these equilibria corresponds well with economic
intuition, particularly in the case of positive conjectures; see

Anderson (1977).
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An important part of the development is the introduction of the
short reaction time idea. It is this idea which allows the establish-
ment of credibility for the intuitive notion of conjectural variations,
It also bears heavily on the possible range of stationary outcomes
through the increasing discount parameter op.

We have seen that joint output can lie anywhere between the output
a monopolist would choose and the output of a perfectly competitive
industry, depending on the conjectures of the firms. This will be true
independent of the interest rate when reaction time is included as a
parameter of the model. However, this is not the same as saying that
anything can happen, for CCV equilibria will not support extremely
unbalanced production allocations. For example, even for large values
of the discount parameter (or alternatively for short reaction times),
easy computations show that we cannot support an allocation in CCV
equilibrium where one firm is producing near the monopoly level and the
other near zero. For further discussions on this point, see Stanford
(1983).

Kalai and Stanford (1982) have proved the analogue of Theorem 1 for
a class of nonlinear reaction functions, which give rise to nonconstant
conjectural variations strategies. For this class, the equilibrium
outputs depend on the reaction functions only through their slopes at
the zero deviation, a property shared by CCV stationary outputs. It
should be possible to prove the appropriate version of the short reac~
tion time Theorem (Theorem 3) for a restricted subclass of nonconstant

conjectural variations strategies, but it seems clear that, as in the



fixed reaction time case, we should expect no qualitative difference

from the T-CCV case in the equilibrium outcomes.
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