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SOLUTIONS TO THE BARGAINING PROBLEM

by
Ehud Kalai

I. Motivation and Definition of the Problem

The bargaining problem has received considerable attention over the last
several years. New axiomatic solutions have emerged and new conditions,
testing the performance of these solutions, have been suggested and studied.
The problem is one of a choice of a unique feasible alternative by a group of
people with possibly conflicting preferences in a cooperative environment. It
may be viewed as a theory of concensus, since when it is applied it is often
assumed that a final choice can be made 1if and only if every member of the
group supports this choice.

Because this theory deals with the aggregation of peoples' preferences
over a set of feasible alternatives it bears close similarities to theories of
social choice and the design of social welfare functions. However, there are
two fundamental differences that enable us to reach a rich variety of positive
results.

An important assumption made in bargaining theory which distinguishes it
from other social choice theories is that there is a threat, or a
disagreement, outcome. This is the outcome that would result if the
bargainers fail to reach agreement. The existence of such an outcome makes
the analysis of such situations easier since it enables us to start with a
reference point from which comparisons of utility gains may be considered.

In bargaining theory, as in much of cooperative game theory, the physical
outcomes involved in the bargaining process are ignored and only the resulting
cardinal utility combinations of the players are considered. 1In others words,

the theory assumes that any two bargaining situations are the same if they
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yield the same set of feasible utility combinations.

A large portion of the literature dealing with this theory concentrates
on the case in which the group of players consists of only two members. For
groups larger than two, this theory is irrelevant in many instances, since
partial consensus, reached by intermediary coalitions (proper subsets of the
entire group), may substantially effect the outcome chosen by the group as a
whole. Bargaining theory deals with environments in which these partial gains
are irrelevant or do not exist. However, the case of two individuals and the
cases involving no profitable intermediary coalitions are important cases to
solve and to gain intuition from before addressing the very general problem of
solving general cooperative games. These games do allow and consider
intermediary coalitions.

In this chapter we survey some of the axiomatic solutions that have been
suggested in this theory and some of their properties. No attempt is made
here for this survey to be complete, and some major contributions have been
left out. We also made no attempt to give the strongest mathematical versions
of the theorems that are presented. Our goal is to keep the presentation
simple and unified, emphasizing more the later contributions. For more
comprehensive coverage of this and related literature, the reader is refered
to Luce-Raiffa [1957], Owen [1968], Schelling [1960], Harsanyi [1977], Binmore
[1980], and Schmitz [1977]. A very comprehensive coverage of the literature
can be found in Roth [1979]. For some references and results about
experimental studies in bargaining we refer the reader to Rapoport-Perner
[1974], Haggatt, et al. [1978], Nydegger-Owen [1975]}, O'Neill [1976], and
Heckathorn [1978]}. Comprehensive coverage of the experimental literature may
be found in Roth-Malouf [1979] and Roth [1983].

Formally we describe a 2-person bargaining game by a pair (d,S) where
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d e E@ (the 2~dimensional Euclidean space) and S E_Eg. We assume that the

pair (d,S) satisfies the following conditions.

1. desS.
2. S is compact and convex.

3. There is at least one weS with u > d (ui > di for i=1,2.)

We let B be the set of all bargaining games satisfying these three conditions.
The intuitive interpretation of such a pair (d,S) is the following. The

elements of S, the feasible set, are the utility pairs that the players can

receive under cooperation if they reach a unanimous agreement. The

disagreement point d (sometimes refered to as threat point or status quo

point) is the utility pair that the players have for the state of
"negotiations failed, proceed without attempting to reach unanimity."”

A second interpretation is that S consists of all the compromises that an
arbitrator deciding the case may choose where d stands for the utilities
outcome of the situation if the arbitrator was not involved.

More precise interpretations of S and of d depend on the particular
situation that is being modeled. For example, when the two bargainers
represent a seller and a buyer of a certain item we may let d stand for the
utilities of no exchange. S then represents all the feasible utilities that
arise from all the possible exchanges between them.

Often the bargaining game is used to convert a noncooperative two-person
strategic form game into a cooperative one. We then let S be the convex hull
of all the utility pairs that may be obtained by correlating strategies in the
noncooperative game where each of the two players commits to play his specific

part of the correlated strategy. The disagreement point then is the pair of
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utilities resulting from noncooperative (without commitment) private plav, for
example, a prespecified Nash equilibrium of the game.

A third type of application is for making social choices. Here we
consider an organization which has to choose one state out of many feasible
states. For example, S may represent the utilities arising from different
agendas for running the organization, or S may represent utilities of
different choices of public goods, or S may represent the individual utilities
from different choices of a president, etc. A certain state is the current
one, and we let d represent the utilities of the participants for being in
this state. In this case we may think of d as being a status quo point. S
then represents the convex hull of the utility combinations resulting from all
feasible choices.

The assumption that S is convex 1s reasonable in many applications and
certainly when the players' utilities are of the von Neumann Morgenstern (V-M)
type. Convexity follows if we assume that randomizing among feasible
alternatives is also a feasible choice since the V-M utilities are linear in
probabilities.

There are two underlying questions motivating the study of solutions to
the bargaining problem. The first type of a solution is a predictive one and
attempts to answer the question of which feasible outcome would rational
players arrive at on their own if commitments and signing contracts were
possible. A second type of a solution is one which attempts to answer the
question of which outcome should an arbitrator arbitrating the situation
choose.

Qur proposed solutions will be arrived at through axioms stating
properties that a solution should satisfy. Thus, the relevancy of the various

solutions to the question of predicting outcomes and to the question of
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arbitration may be tested by the reader through testing the underlying axioms
against his intuition.

This axiomatic approach proves to be very useful, since it succeeds in
choosing a unique solution through a small number of simple conditions. It
saves us the need to get involved in the complicated process of bargaining
that the players may be going through. Whatever this process is, the players
will end up at our solution if our axioms are correct for their behavior. 1In
the case of arbitration the proposed axioms give the arbitrator a rationale on
which he is basing his decision.

Given a bargaining pair (d,S) and a point u € R? we say that u is

individually rational if u > d (ui 2 di for 1 = 1,2). u is strongly

individually rational if u > 4. We say that u is Pareto optimal if u e S and

for every we S if w > u then w = u. We say that u is weakly Pareto optimal

if for every weS if w > u than w = u.

A solution is a function f:B » R? such that for every (d,S)eB, f(d4,S)eS.

II. Scale-Independent Solutions

The first type of solutions we discuss are ones which do not depend on
the scales of the utility functions that the players use to represent their
preferences. The motivation for studying scale-independent solutions stems
from an implicit assumption that the utilities under consideration are of the
von Neumann—-Morgenstern type. Since V-M utilities are determined only up to a
choice of an affine scale if our solutions were scale dependent, then they may
vary arbitrarily by the arbitrary choices of scales made to represent the
problem by the individuals. 1In later sections we will bring forth criticism
of this condition.

An affine transformation of player 1 utility is a function le RZ -+ E@
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such that for some a > o and b e R Tl(ul’uZ) = (au1 + b, UZ)' We similarly
define affine transformations of player 2 utility.

Given a bargaining pair (d,S5)EB and an affine transformation of player
I's utility Tl we define Tl(d,S) = (Tl(d), Tl(S)) where Tl(S) = {Tl(ul,uz):
for some (ul,uz)eS}. Similarly we define Tz(d,S) for an affine
transformation of 2's utility. Thus Tl(d,S) is a new bargaining pair which
may be viewed as the old bargaining pair (d,S) but represented by a different
utility scale of player i.

We say that a solution to the bargaining problem is invariant under

affine transformations of utility scale if for every player i, for every

bargaining pair (d,S) and for every affine transformation of utility scale Ty
we have

T;(£(d,8)) = £(T;(d,s)).

If in the definition above we consider only T;'s for which a = 1 then we

say that the solution is invariant under additive transformations in utility

scales. If we consider only T;'s for which b = 0 then we say that the

solution is invariant under multiplicative transformations in utility

scales. Clearly a solution is invariant under affine transformations of
utility scales if and only if it is invariant under both additive and
multiplicative transformations.

A second condition that we may want to impose on a solution is that it
always chooses a Pareto optimal outcome. We say that a solution f is (weakly)

Pareto optimal if for every (d,S)eB, £f(d,S) is (respectively weakly) Pareto

optimal. A solution f is (strongly) individually rational if for every

(d,S)eB, ©(d,S) is (respectively strongly) individually rational in S relative
to d.

The next condition is one of symmetry. This condition guarantees that
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the outcome does not depend on the labeling of the players. Consider a
bargaining pair (d,S) and its solution £(d,S). Suppose we now change our
modeling of the bargaining situation by calling player 1 player 2 and calling
player 2 player 1. Since it is basically the same problem, we expect that the
players with their new labeling receive the same utility as they did with
their old labeling.

Formally let w: RZ » R? T(x,y) = (y,x). A solution f is called
symmetricl if for every (d,S)B 7(£f(d4,S8)) = f(n(d),n(S))
where n(S) = {n(u): uES}.

Another implication of the symmetry condition which we will discuss later
is that all the relevant characteristics of the two players are described by d
and S and that only information which is described by this pair (d,S) may
cause us to discriminate between them. In particular if (d,S) is a symmetric
problem, i.e., dl = dy and for every (ul,uZ)ES we have (uz,ul)es, then fl(d,S)

must equal to f,(d,S).

ITI.1 The Nash Solution

The Nash solution is the function n: B + IR which selects the

individually rational utility pair with a maximal Nash product,

(uy-d;)(uy=dy). Formally for every bargaining pair (d,S), n(d,S) is the
individually rational utility pair with the property that for every

individually rational feasible utility pair (w ,w,)eS

[nl(d,s) - dl][nz(d’s) - dz] 2 (Wl - dl)(wz - dz)v

Thus the objective of the Nash solution is to maximize the product of the

utility gains of the players. This maximization takes place over the
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individually rational outcomes. Since the Nash product and its square root
attain their maximum at the same point we can also view the objective of the
Nash solution as maximizing the geometric average of the utility gains of the
bargainers.

It is easy to check that the maximum of the Nash product is attained at a
unique point since the feasible set is convex. Thus n(d,S) is a unique
feasible point for every bargaining pair (d,S)eB.

Our next objective is to bring forth a rationale underlying the Nash

solution. We say that a solution is independent of irrelevant alternatives

(ITA) if for every two bargaining pairs (d,S) and (d,T) with S& T if £(d,T)eS
then £(d,S) = £(d,T).

There are two ways to view the IIA condition. Starting with the pair
(d,T) and its solution f(d,T), imagine that the feasible set was reduced in
size to S yet the solution f(d,T) is still feasible. Then we require that it
remains the solution in the smaller set. Thus if f(d,T) was the "best choice™
among the alternatives in T, then it is still the best choice among any subset
of alternatives containing it.

A mathematically analagous way of viewing the ITIA condition is the
following. Starting with a feasible set of alternatives S and its solutions
£(d,S) and assuming that some new additional alternatives become available, we
require that the choice in the new set be either £(d,S5), the old choice, or
one of the new alternatives. In other words, we do not choose a different
alternative among the old ones because of the availability of additional
alternatives.

We can now state Nash [1950] Theorem.

Theorem 1. A solution is Pareto optimal, symmetric, independent of irrelevant
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alternatives, and independent of affine transformations in utility scales if
and only if it is the Nash solution.

It is easy to see that the Nash solution satisfies these four
properties. It is suprising that it is the only solution which satisfies
them., Thus if we accept that a solution should satisfy these conditions we
must adopt the Nash solution and only it as our choice.

The axiomatization presented above is the main rationalization of the
Nash solution. We now present a second rational underlying the Nash
solution. Here we consider only one bargaining problem at a time and we do
not apply any considerations relating the solution of one bargaining pair to
another as is done by the ITA condition in Nash's axiomatization. Thus with
this approach we could have defined the solution to one problem without
considering a solution as a function of all bargaining pairs.

When the players attempt to compromise on an alternative (ul,uz) as the
final outcome, two considerations may arise. They may want to maximize the
total combined utility gains due to their cooperation and thus maximize the

sun of (ul— dl) + (uz— d,). They may also argue for equality and desire to

2
have u; - d1 =u, - d2. Immediately two problems come to mind. The first
difficulty is that these two different objectives may not lead to the same
choice of (ul,uz). The second difficulty is that as we have written these
objectives they depend on the scale of the utility functions used to represent
the players' preferences. The Nash solution turns out to be the unique way to
resolve these difficulties. Let (d,S) be any bargaining pair. Can we
normalize the players utilities in such a way that in the normalized utilities
we are both maximizing the sum of the utility gains and preserving equality of

gains? Formally consider the following problem.

Find (ul,uz)ES such that for some positive real numbers Al and AZ we have
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1. Xl(u

2. Xl(u

1 dl) = Xz(uz— dZ)’ and

1 dl) + )\Z(u2 - d2) p )\l(w1 - dl) + )\z(w2 - d2) for

every (wl,w7)€S.

2 [1969] answers our question.

The following theorem of Shapley
Theorem 2. (uj, up) solves the above problem if and only if (u;, up) is the
Nash solution of (d4,S).

Because of the IIA condition the Nash solution depends on the feasible
set through a neighborhood of the solution only. Formally we say that two
problems (d,S) and (d,T) agree in a neighborhood of a point x € E@ if there
is a neighborhood 0 of x such that for every ue0O, ueS if and only if ueT. We
say that a solution f is local if for every (4,S)€B and for every (d,T)eB
which agrees with (d,S) in a neighborhood of f(d,S), f(d4d,T) = £(d,S). It is
easy to check that the Nash solution is local. Conversely, it can be shown
that Theorem 1 is true with the condition that a solution be continuous and
local replacing the IIA condition.

The next two solutions successively weaken the dependency of the solution
on the neighborhood of only one point. The Kalai-Smorodinsky solution depends
crucially on three points in the feasible set and the Maschler-Perles solution

depends on the entire Pareto frontier of the individually rational portion of

the feasible set.

IT.2. The Kalai-Smorodinsky Solution

For every bargaining pair (d,S) €B we define the ideal point I of the

pair by

I} = Max {ul: for some u,eR (u,u,) is an individually rational

feasible point in (d,S)}.
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We define I, similarly. The ideal utility levels have the interpretation that
they are the most that the players can hope for assuming feasibility and
individual rationality of their opponents.

The Kalai-Smorodinsky (KS) solution3 is the function p that chooses for
every bargaining pair (d,S) the unique Pareto optimal point (ul, usy)
with (u; - dl)/(Il -d)) = (u2 - d2)/(I2 - d,). Thus the players choose the
best outcome subject to getting the same proportions of their ideal gains.,

We can supply an axiomatic rationale for the XS solution as we did for
the Nash solution. Here we would not accept the independence of irrelevant
alternatives condition., We adopt instead a condition of individual
monotonicity. This condition requires that if the feasible set is changed in
favor of one of the players then this player should not end up loosing because

of it. For every bargaining pair (d,T) we say that u, is a rational demand

for player 2 if there is a pair (uj, u,) which is feasible and individually
rational in (d,S).

We say that the bargaining pair (4,W) is better for player 1 than the

bargaining pair (d,S) if the rational demands of player 2 are the same in both
pairs, and for every such rational demand u, we have

sup{u (ul,uz)ew} > sup{ul: (ul,uz)ES}

1:
In other words with every rational demand of his opponent, player 1 can
get more in W than in S.

We say that a solution f is individually monotonic for player 1 if

whenever (d,W) is better for him than (d4,S), then fl(d,W) > fl(d,S). f is

individually monotonic if the same property holds for both players.
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A rationale behind the individual monotonicity condition is the
following. Imagine the players facing a bargaining situation (d,S). Suppose
that some additional resources are made available to player 1 as a function of
his agreements with 2. Thus a new bargaining pair (d,W ) is obtained in which
player 1's feasible utility levels are increased. Player 1's outcome should
not be made worse off than it was in the old situation,

The Nash solution does not satisfy this individual nonotonicity

condition., This is an immediate consequence of (see Kalai-Smorodinsky

[1975]):

Theorem 3. A solution is symmetric, Pareto optimal, invarient under affine
transformations of utility scale, and individually monotonic if and only if it

is the Kalai-Smorodinsky solution.

I1.3 The Maschler-Perles Solution

In this section we restrict our attention to a subset Bo ELB of
bargaining pairs (d,S) € B that satisfyv the following additional properties.
l. For every x€ §, x > d, 1i.e., S consists only of individually

rational outcomes.

2. Free disposal of utility, if xe S and d <y < x then yeES.

3. Existence of small utility transfers, if d < (ul,u2)SS then there is a

pair (vl, V2>ES with v, > o and there is a pair (wl, W2X;S with w, > u_.

2 2

Conditions 1 and 2 are self-explanatory. Condition 3 requires that for

1

every feasible utility allocation that assigns both players positive gains,
each one of the players can be made better off by some small amount (possibly
at the expense of his opponent). This could be accomplished for example by
any small transfer of money from one player to the other. This condition is

also equivalent to the strong Pareto boundary being the same as the weak
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Pareto boundary of S. We denote this boundary by 98S.

Consider a bargaining pair (d,S)EBo and let p = p(d,S) = (dl’ Iz(d,S))
and q = q(d,S) = (1;(d,S), dy), where I is the ideal point defined in the
previous section.

)
A

35

A M4
c
H

Figure 1

The Maschler-Perles (MP) solution (see Perles-Maschler [1980]) is the unique

point ¢ that satisfies

¢ Zde du. = (Y /ITiG du
jp v duldu2 = f¢ v duldu2

Where these are the line integrals taken along the corresponding arcs of 38,

Perles and Maschler propose two intuitive procedures that yield their

solution.

Procedure 1. We imagine two points moving towards each other on

S starting from p and q respectively. Each point moves in such a way that
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the products of its velocities in the uy and u, directions is a constant, say
-1. ¢ 1is the point on the boundary where the two points meet. The above

integrals are the traveling time until the points meet.

Procedure 2., The players start from d on a continuous path that would
lead them to ¢. Each point on the path may be thought of as an intermediary
agreement. These intermediary agreements preserve the balance of power in the
following sense. 1If T is on the path and we consider the new bargaining

problem (7t,S), its outcome would also be ¢.

p 2

Figure 2

Consider a point T on this status quo path and the two points v and w

described by Figure 2. Ve let

u, - v
_ R S T
tl(v) = gsup {v ¢ e S and uy > vl}
2 2
u, - w
_ 2 2,
tz(w) = sup {wl ST : ueS and u, > wz}.

Notice that by the convexity of S it follows that the sup in the definition of
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t) is obtained as u + v. Thus t is the local rate of utility gain of player
1 per unit of utility loss of 2 at v. In other words t; may be thought of as
the local ratio of utility transfers at v. t, has the symmetric
interpretation. The status quo path turns out to have the property that at
every such T its slope is /E}?T;ﬁ Thus along the status quo path the players'
instantaneous ratio of utility gains equals the square root of the ratio of
their per unit instantaneous exchanges at w and v.

The main rationale behind the MP solution comes from its axiomatic

characterization. We say that a solution f is super additive if for every two

bargaining pairs (d,S), (d,T)eB, and for every X, 0 < X < 1,

f(d,AS + (1-A)T) 2 Af(d,S) + (1-A) £(d,T),
where

AS + (1-A)T ={ Au + (1x)v : uwes, veT}.

The necessity of the superadditivity stems from the following argument.
Suppose there is uncertainty about the bargaining problem to be played. For
example it may be the case that a lottery is about to be performed in a way
that with probability A (d,S) will be played, and with probability 1-x (d,T)
will be played. Before the lottery is performed the players can make
conditional agreement on what to choose in S and T under each of the two
outcomes, If the players are risk neutral in the utilities (as is the case of
Von Neuman—-Morgenstern) then their set of feasible utilities obtained by
conditional agreements is exactly AS + (l1-A)T, and the bargaining problem that
they face is (d,AS+(1-A)T).

On the other hand if they do not agree on conditional outcomes before the

lottery is performed, then with probability A, the outcome would be f(d,S) and
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with probability (1-)), it would be f(d,T). Thus their expected outcome
is Xf(4d,S)+(1-2)f(d,T).

It is a reasonable game theoretic assumption that if binding agreements
are possible then binding conditional agreements should also be possible in a
cooperative environment. Also agreeing not to agree until after the lottery
is performed is a feasible agreement. This may be thought of as the
disagreement state at the stage prior to the performance of the lottery. Thus
individual rationality would require that the outcome of the bargaining
process at this stage should assign each player a utility not smaller than his
expected utility outcome without an agreement at this stage. This is
precisely the requirment of superadditivity.

A solution is continuous in feasible sets if for every (d,S)eBO and every

sequence {(d,Sl)}:=l of bargaining problems in B, if si+s in the Hansdorff

metric then f£(d,sl) + £(d,s).

Theorem 4., A solution defined on B, is symmetric, Pareto optimal, invariant
under affine transformations of utility scales, superadditive, and continuous

if and only if it is the Maschler-Perles solution.

ITI. Scale-Dependent Solutions.

The scale independent condition used in the previous part is very
appealing, The argument there is that it overcomes the difficulty presented
by the indeterminacy of the scale in V-M utility. However while it
accomplishes this task it brings about some other difficulties that make us
question its validity as an undisputed axiom.

Consider for example the two bargainers 1 and 2 facing the following four
possible allocations of money: ($0,$0) ($10,%0), ($0,%10), and ($0,51000).

We assume that both bargainers are selfish (their utility for these
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allocations depend only on their own component) and that they have a
monotonically increasing utility for money. We also assume for simplicity
that their utility functions have been normalized so that for
i=1,2 u;($0) =0 and u,($10) = L

Now we will consider two bargaining pairs A and B. In both pairs the
disagreement outcome is the ($0,$0) allocation resulting in the utility
combination (0,0). In A the feasible set consists of all the lotteries among
the three outcomes ($0,80), ($10,80) and ($0,$10). In B the feasible set
consists of all the lotteries between the three outcomes ($0,$0), ($10,80) and
($0,81000). Thus the only difference between the two bargaining situations is
that in B the alternative which is most attractive for plaver 2 was made much

more attractive. Formally

g
1l

((0,0), Convex Hull ({(0,0), (1,0), (0,1)}).

o=}
]

(€0,0), Convex Hull ({(0,0), (1,0), (0,uy($1000))})).

We observe that the scale of player 2 utility can be changed by
representing his utility with the function w, = u2/u2($lOOO) and then B is

described by the bargaining pair

((0,0), Convex Hull ({(0,0), (1,0), (0,1)}))

Thus, with the new scale of player 2's utility, B becomes identical to A. It
follows from the axiom of invariance of utility scale that whatever lottery is
the solution for A it should also be the solation for B. So for example if in

A the players agree on an equal probability lottery between the
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two outcomes (0,$10) and ($10,0) then by the scale invariance axiom they must
also agree on an equal probability lottery between the two outcomes (0, $1000)
and ($10,0) in B.

It is not "axiomatically” obvious to us that these two situations are
identical and would or should yield the same outcome. While an equal
probability lottery is probably reasonable in A (especially if the players are
"similar"”) it seems that in B player 1 could extract better than .50
probability for his good outcome. Imagine starting the negotiations in B with
the equal probability proposal. Player 2 stands to lose significantly more
than player 1 if this proposal fails, and negotiations break off. Both
players are aware of this fact and it seems like a threat of player 1 to break
the negotiation would have significant credibility behind it. Player 2 would
have to compromise the equal probability position and suggest a new
probability division, one which would make player 1 happier.

The argument just presented suggests that in bargaining situations
interpersonal comparisons of utility may take place. For example, this can be
detected in the statement "player 2 stands to lose more than player 1."” Many
game theorists like to disregard theories which involve these type of
interpersonal comparisons on the ground that they cannot be done using
Von Neumann-Morgenstern utilities with their arbitrary scales. However if one
believes that interpersonal comparisons do take place in bargaining situations
then it would be a mistake to ignore them because they inconvenience us when
put together with individual utility theory.

In this part of the paper, we will not rule out interpersonal comparisons
by assuming invariance with respect to utility scale. We will discuss two
solution concepts of this type. We will show that conflicting axioms

described in the previous part stop contradicting each other (in the sense of



- 19 - March 29, 1983

leading to different solution concepts) when this scale invariance axiom is
removed. And also new appealing axioms can be satisfied.

While interpersonal comparison of utilities is not assumed in the
rationales leading to these solution concepts it does follow as a consequence
of more primitive axioms. We will discuss how these solution concepts can be
made useful despite their dependencies on the utility scales of the
individuals.

In this part of this chapter we implicity assume that every one of our

players is using the same utility function with the same scale as we vary the

bargaining pairs under consideration. More precisely consider two bargaining

pairs (d,S) and (d,W) in B. For ue S and we W if uj; > w; then our implicit
assumption implies that player 1 prefers the prize that gave rise to u over
the prize that gave rise to w. Notice that in our previous part this did not
have to be the case since the scales of the utilities that described (4,8)
might have been different from the scales describing (d,W). We feel that the
implications of axioms comparing different games (such that IIA and
monotonicity) are clearer with this assumption since they compare only what
they intended to compare and do not involve comparisons of things that are not
really comparable. Since we assume that the players' utility scales are fixed
and since their choice may be arbitrary it would make no sense to assume
symmetry of the solution. The issue of symmetry will be discussed later in

this part.

IITI.1 The Utilitarian Solution

The utilitarian solution has been discussed extensively in the social
welfare literature. It was axiomatized and argued for extensively by Harsanyi

[1975). Harsanyi's arguments can be easily used in the bargaining context as
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well, We therefore give only a very short description of the solution here.
A solution will be called utilitarian if there are weights

A= (A,A9) ajmi such that for every bargaining pair (d,S)
f(d,S) = T A -d + A ~d = A +\
(d,8) = arg max | 1(u1 l) 2(u2 2)] arg max | 1Y 2u2]

where the maximization takes place over the pairs (ul’u2) which are feasible
individually rational elements of S.

Notice that tge arg max in the above definition may not be unique.
However we can restrict our attention to bargaining pairs (d,S) in which the
Pareto surface of S is strictly concave and then uniqueness is guaranteed.

The interpretation of a given utilitarian solution (for a
fixed (Xl,kz)) is obvious. According to it, the right solution is the one

that maximizes the sum of the utility gains. However weights A ,A, should be

1°72

assigned to the utility scales of the two players, and then for every
bargaining pair we would be maximizing the weighted sum of the utilities with
the same (Xl,kz) as weights. The question of how to determine these weights
will be addressed later.

Notice that for a given utilitarian solution, with weights (xl,xz),
if the scales that the players use were changed by defining new utility
functions Gi = Xiul then the objective of the utilitarian solution is to
always choose the outcome that maximizes the symmetric sum of the gains in
units of u;.

1

II1.2 The Egalitarian Solution

In this section we restrict our discussion again to bargaining pairs

belonging to B, as described in section II.3.
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A solution f is called egalitarian4 if there are weights Xl,kz > 0 such

that for every (d,S8)eB, £(d,S) is Pareto optimal in S and satisfies

Al(fl(d,S) - dl) = Az(fz(d,s) - dz).

Thus an egalitarian solution is characterized by interpersonal weights A and
for every bargaining pair it chooses the highest level of utilities for the
players subject to the constraint that their A normalized gains are equal.
Every choice of A will uniquely determine an egalitarian solution and vice
versa, every egalitarian solution defines uniquely the weights that it uses.

Let f be an egalitarian solution with some fixed weights Xl and Xz. The
reader can easily check that it satisfies the IIA condition of Nash, the
individual monotonicity condition of Kalai-Smorodinsky, and the
superadditivity condition of Maschler-Perles. Thus while these conditions
where contradictory in the presence of the scale invariance condition they are
not contradictory when this condition is removed.

We next define two weak versions of the scale invariance condition that

the egalitarian solutions do satisfy. A solution f is invariant under

translations if for every a e R? and every (d,S)EB0

f(atd, at+S) = a + £(4,S).

A solution f is homogeneous if for every a > 0 and every (0,S) € Bo

£(0,a8) = af(0,S).
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The invariance under translations guarantees that if each of the players
receives a fixed prize regardless of reaching agreement and independently of
the bargaining process, the prize will not effect the outcome of the
bargaining.

The homogeneity condition guarantees that if the feasible set S is

3 (and disagreement payoff with

available but only with probability
probability 1-o) then the players would still agree on the same outcome in S
as they would in the case when S was available with certainty.

A major justification of the egalitarian solution follows from an axion
of monotonicity that it satisfies. f 1is called monotonic if for every two
bargaining pairs, (d4,8) and (d,T) , if T2 S then £(d,S) < f(d, T). This
condition is very appealing on normative grounds. If the opportunities of the
players become greater then none of them should be made worse off. However
aside from the normative issues this condition must be satisfied in many
bargaining situations by strategic considerations.

Let us recall our original interpretation of a bargaining pair (d4,T).

The elements of T are the utility combinations that may arise from prizes
provided that both players agree to support these prizes. If S & T and for
player i fi(d,S) > £;(d4,T) then player 1 can in effect block the alternatives
giving rise to the utilities in T-S and improve his outcome. Thus, viewing f
as the outcome selected by an arbitrator, the monotonicity condition
guarantees that none of the players will have an incentive to misrepresent his
resources or to destroy some of them before coming to the arbitrator. Viewing
f as a solution arrived at by the players, on their own, monotonicity follows
from a general principle of individual rationality (Nash equilibrium) in the
underlying noncooperative game that the players play in the process of

negotiation.
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Owen [1968] pointed out the incompatibility of the monotonicity condition
with the utility scale invariance. However it was shown in Kalai [1977] that

when scale invariance is not assumed we obtain:

Theorem 5. A solution satisfies Pareto optimality, strong individual
rationality, translation invariance, homogeneity, and monotonicity if and only
if it is egalitarian.

A second rationale for the egalitarian solution was proposed by Kalai
{1977]. This is a condition that requires that the bargaining can be done in
stages without effecting the final outcome. Mathematically, it is closely
related to the monotonicity condition and it is often observed in actual
processes of negotiations.

Suppose (d,S) and (d,T) are bargaining pairs with S & T. The players
bargaining could break the process into two stages. In the first stage they
would agree on an outcome in (d,S) and then use this outcome as a disagreement
point for a second stage of negotiations where they may agree on a new
alternative ian T-S. We would like the final outcome of this two-stage process
to be the same as the outcome resulting when the entire bargaining process is
done in one step. A solution satisfying this property would have the
appealing feature that the players would be willing to do the negotiations in
stages addressing one small problem at the time. (Clearly if & solution can
be decomposed into two stages as described here it can decompose into any
finite number of stages by induction.)

A second appealing consequence of such a negotiation-by-stages condition
is that it resolves many issues of uncertainties about future negotiations.

If the players are uncertain at one point of time about which bargaining
problems they may face in the future, they may hesitate in reaching agreement

presently, thinking that their long-run outcome may be effected negatively by
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their present agreement. The condition discussed above will eliminate this
tvpe of consideration.
Formally for every (d,S), (d,T)sB0 with S & T and for a solution f we

define R = (0, (T-£(d,$))N R2).

Thus R is a bargaining pair whose threat point is O and whose feasible points
are the individually rational net gains remaining after agreeing upon f(d,S)
in the first stage.

We say that a solution decomposes into stages if whenever (d,S), (d,T)

are as described above and R ¢ B0 then

£(4,T) = £(4,S) + £(R).

Theorem 6. A solution satisfies Pareto optimality, strong individual

rationality, translation invariance, homogeneity, and decomposes into stages

if and only if it is egalitarian.

II1.3 The Uses of Scale-Dependent Solutions.

Scale dependent solutions may not be as useful as scale independent
solutions. If we consider them as solutions to the arbitrator's problem then
they do not resolve his problem in the sense that he still has to choose the
appropriate Ai's. As predictive solutions the same problem arises. How can
we predict the outcome of the bargaining if we do not know the appropriate
Ai's. However they still provide us with a tremendous simplification of these
two problems,

The arbitrator, in order to choose the appropriate Xi's, can consider a

simple hypothetical bargaining problem and think of the "right"” outcome for
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it. For example he may try to think of two monetary prizes A = ($a,$0) and

B = ($0,8b)) for which an equal probability lottery would be "right.” He can
then set A; = 1/u;(A) and A, = 1/uy(B) as the appropriate weights for the
scale~dependent solution and proceed to solve the original problem.

A similar simplification is possible when we try to use a scale—dependent
solution for prediction. If these two players have bargained before we can
compute their Xi's from their past games and use them to predict the outcome
of the new game. 1If past games are not available we can again try to predict
the outcome of a simpler hypothetical bargaining game and use the Ai's

obtained from it to predict the outcome of the game under consideration.

II1.4 An Ordinal Egalitarian Solution

In this section we depart from one of the underlying assumptions of this
chapter., That is, we do not assume that the utilities of the players giving
rise to bargaining pairs are cardinal. We make the weaker assumption that the
players' utility functions are ordinal. This means that if A is a set of

possible outcomes and u A > IR then u; is a utility function for player i

it
provided that ui(a) > u;(b) if and only if player i prefers a to b. No
assumption about preferences over lotteries on A, or any other assumptions
giving rise to cardinal measurements, are made.

In such a situation, any other utility function w;: A > R is as
meaningful as u; provided that for every two outcomes a, b e A

1

u,(a) > u,(b) if and only if w, (a) > w, (b).
i i i i

It can easily be shown that two utility functions of player i, u.

i» and W, are

equivalent in this sense if and only if there exists an order-preserving
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transformation gt IR » IR such that W, = g5 0 uy (for every outcome a € A
wy(a) = gi(ui(a)). What we mean by an order-preserving transformation is a

strictly increasing function. Order-preserving transformations in ordinal
utility theories play the same role as affine transformations (changes of
scale) in the case of cardinal utilities. The idea being that if we start
with a given utility function and apply an order-preserving transformation to
it, we obtain a new utility function which expresses the exact same
preferences as did the old one.

To ensure that we stay within the family of bargaining sets we restrict
our attention to order—-preserving transformations of utilities which are

continuous. Thus we define an order—preserving transformation of player i's

utility to be a strictly increasing continuous function g;t B> R
With the above interpretations in mind, Myerson [1977] defines a notion

of ordinal egalitarian solution which operates on an appropriately defined set

of bargaining pairs 0B. A function f: OB -+ H@ is an ordinal egalitarian

solution if there are two order—preserving transformations gt R > R (i=1,2)

such that for every bargaining pair (d,S) ¢ 0B £(d,S) is Pareto optimal and

gl(fl(d,s)) - gl(dl) = gz(fz(d,s)) - gz(d2)°

Thus the ordinal egalitarian solutions capture in an ordinal setup the
same 1dea as the egalitarian solutions do in a cardinal setup. It states that
there is some appropriate individual normalization of the players' utilities
under which for every bargaining pair the equal division would arise. This
normalization is inter— and intrapersonal. Myerson then presents an ordinal
version of Theorem 6. That is, if an ordinal solution decomposes into stages

in the presence of a few other natural conditions, it must be an ordinal
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egalitarian solution.

IV. Risk Sensitivity of Solutions

In this part we study the behavior of some of the solutions discussed
earlier as one of the bargainers becomes more risk averse. Ve ask ourselves
what happens to a player, say player one, as his opponent, player two, becomes
nore risk averse. One plausible expectation is that his final outcome would
improve.

We break our analysis into two cases. In one case we restrict our
attention to bargaining problems in which the individually rational Pareto
optimal payoffs all result from lotteries among individually rational pure
outcomes. In this case it turns out that indeed player one should prefer a
more risk-averse opponent. This is true if we assume the Nash solution, the
Kalai-Smorodinsky solution, or the Maschler-Perles solution.

The second case is where some Pareto optimal individually rational
outcomes can only arise as a result of a lottery between pure outcomes which
themselves are not individually rational (even though the lottery is). In
this case, there is no definitive answer. Our analysis follows results of
Kannai [1977], Kihlstrom-Roth-Schmeidler {1981], and Roth-Rothblum [1982].

We first motivate our notion of risk aversion comparisons based on the
works of Arrow [1965], Pratt [1964], Kihlstrom and Mirman [1974] and Yaari
{1969]. We consider a convex subset C of I’ and a von Neumann-Morgenstern
utility function u defined on it (and on all the lotteries over it). For

every pure outcome ¢ € C we let

Au(c) = {m: m is a lottery with u(m) > u(c)}.
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Thus Au(c) is the set of lotteries which are weakly preferred to the sure
outcome c.

Now consider two utility functions u and w defined on € and which
coincide on C (i.e., for every ¢, d € C u(c) > u(d) if and only if
w(c) > w(d)). We say that w 1is more risk averse than u 1if for every
ce C Aw(c) EiAu(c). In other words, a player with a utility function u 1is
willing to take more lotteries instead of ¢ than a player with a utility
function w. It was shown in Khilstrom and Mirman [1974] that w 1is more
risk averse than u 1if and only if there is an increasing concave function
k such that w = k o u.

We consider first the set B, of bargaining problems defined in section
II.3. Motivated by the discussion above we define the following. For two

A A

bargaining problems (d,S) and (d,S) in Bl we say that player two is more risk

averse in (d,S) than in (d,S) if for some increasing concave function

~ ~

k: R> R (dl’dZ) = (dl’k(dz)) and
s = {Cu k) (up,uy) e st

Our interpretation is that the utility function of player two that gave rise
to (d,S) is one which was obtained from his utility function in (d,S) but
after he became more risk averse,

Given a solution to the bargaining problem £, defined on BO, we say that

under f, player one prefers more risk averse opponents if

A A

£,(d,8) > £,(d,8)

A A

whenever player two is more risk averse in (d,S) than in (d,S).
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From Kihlstrom-Roth—~Schmeidler [1981] we obtain

Theorem 7. Under the Nash, Kalai-Smorodinsky, and Maschler-Perles solutions
player one (and two) prefers more risk-averse opponents.

From de Koster et al. [1983], it follows that preference to bargain
against risk-averse opponents follows from a property of a solution called
twisting (see Thomson-Myerson [1980]).

For two bargaining problems (d,S) and (d,T) in BO and for a solution f

defined on B, we say that T is a twist of S 1in favor of player one if

1. for every (uj,u,) € TS up 2 fl(d,S), and

2. for every (ul,uz) e S-T wu; < fl(d,S).

An intuitive way of viewing twists is the following. Starting with the
problem (d,S) and its solution £f(d,S) we compare it with (d,T). Every new
allocation which is feasible in T but was not feasible in S 1is better
for 1 than the solution to S, and every allocation that was lost in the
transition from S to T was worse for 1 than the solution to S.

We say that f is monotonic in favorable twists for player one if

whenever (d,T) is a player one favorable twist of (d,S) then fl(d,T) >

£1(d,8).

Lemma: If f is monotonic in favorable twists for player 1 then under f
player 1 prefers risk-averse opponents.

It is easy to see that both the Nash solution and the Kalai-Smorodinsky
solution are monotonic in favorable twists (see Thomson-Myerson [1980]), and
hence one can prove the first two thirds of Theorem 7 from the above lemma.

Once we leave the class B, of bargaining problems then there are no
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longer definitive answers (as in Theorem 7) to the question of how a solution
performs with regard to risk aversion. An intuitive explanation for this is
that now the risk involves also the disagreement point. More specifically a
certain disagreement outcome may appear more favorable to a risk-averse
opponent than a lottery that involves outcomes which are worse for him than
the disagreement one. Thus in a relative sense his disagreement payoff is
pushed up when he becomes more risk-averse. As a result, in some instances he
would have to be compensated in the final outcome for having a higher utility
for disagreement. This issue is discussed in Roth-Rothblum [1982] and we
illustrate it by one example.

Consider two bargaining pairs over a set of three outcomes: D, A,
and B, D is the disagreement outcome. Suppose ul(D) = ul(B) = 0 and
u;(A) = 2. Now consider two possible utility functions, uy and ;2 for player
two. uZ(B) = ;2(B) = 1. uZ(D) = ;2(D) = 0, uZ(A) = -1 and ;2(A) = -4, It is
clear that under ;2 player two is more risk averse than under u,. For
example, under Uy player two is indifferent between D and the lottery L
which chooses between A and B with equal probability. On the other hand,
under ;2 we have GZ(D) = (0 and ;Z(L) = -1.5. If we let (d,S) and (é,%) be
the bargaining pairs induced by the utility functions (ul,uz) and (ul,az)
respectively, we observe the following. 1In (d,S) both the Nash solution and
the Kalai-Smorodinsky solution assign player one an outcome with utility

1/2. 1In (d,S8) both solutions assign him a utility of 1/5. Thus, bargaining

against the more risk averse u, ended up in a loss of .3 in his final outcome.

' Generalizations to More than Two Players

Generalizations of solution concepts and various conditions discussed
earlier to the cases of more than two players have been studied

extensively. The Nash solution, the utilitarian solution and the egalitarian
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solution generalize uniquely in a natural way. The Kalai-Smorodinsky solution
can be generalized in several ways over different sets of bargaining
problems. The axiomatization of the Maschler—Perles solution using the
superadditivity condition cannot be generalized to n-person bargaining
problems even when we make some restrictions on the class of problems6 (see
Perles [19831]).

There are two types of generalizations that have been suggested. The
first type are generalizations to a fixed number n of bargainers where
n > 2. The second type are ones that construct solutions that solve the
bargaining problems simultaneously for any finite group of players. The
second approach allows for the possibility of making comparisons and imposing
consistency conditions as we vary the set of players. We will refer to the
first approach as n-person generalizations and to the second one as

multiperson generalizations.

V.l. n-Person Generalizations

We fix n to be a positive integer greater than 1, and we define the set
of n-person bargaining pairs, Bn, in the same way as we did earlier but with
E@ being replaced by R”. The definitions of individual rationality, Pareto
optimality, solution, invariance under affine transformations of utility
scale, symmetry, ITA, and monotonicity are all modified in the natural way by
replacing R? with R?. We also let BT be the subset of B™ consisting of pairs
(d,S) in which every element of S 1is individually rational and (d,S) allows
for free disposal of utility (see sec.I1I.3.). We let Bg be the subset of BT
in which small transfers of utilities are possible (again, see sec.II.3).

The characterization of the Nash solution given by Theorem 1 carries over
easily to the n-person case.

In general Theorem !l and its (n-person generalization) can be
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strengthened by omitting the symmetry condition. An n-person nonsymmetric

Nash solution is the function f: B® + R such that for some a € R! with a > 0

we have: for every (d,5) ¢ B® £(d,S) is the unique point in the
individually rational part of S which maximizes the nonsymmetric Nash
product .E (ui - di)ai among all the individually rational utility
allocati;;; in S. Clearly the (symmetric) Nash solution is the special case

of the nonsymmetric ones witha = (1,1,...,1).

Theorem 8. An n—-person solution is Pareto optimal, strongly individually
rational, independent of irrelevant alternative, and independent of affine
transformations of utility scale if and only if it is a nonsymmetric Nash
solution.

An explanation of why nonsymmetric Nash solutions may arise was given in
Kalai [1977a]. Consider a 2-person bargaining problem (d,S) € B2. Now we
would replicate player two to create a 3-person bargaining problem (5,5) in
which player three has identical interest to player two. We define

d = (dl’dZ’dZ) and S = {(ul,uz,uz) : (ul,uz) € S}

When the (symmetric) Nash solution is applied to (3,5) the solution is the
argmax (ul - dl)(u2 - dz)(u3 - d3). But (u3 - d3) = (u2 - dy) in such a
replicate game. Thus, in effect (u; - dl)(u2 - d2)2 is being maximized. Now
consider the following scenario. Since player two and player three have
identical interest in (8,5), player three gives player two a power of attorney
to negotiate on his behalf. Now players one and two are playing the two-
person game (d,S). If they use the symmetric 2~person Nash solution then

(uy - dl)(u2 - d2) would be maximized and they would be worse off (argmax

(ul - dl)(u2 - d2)2 must give them a higher payoff) than if they played the 3-
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person game.

The conclusion that we can draw from this example is that under the Nash
philosophy, when a negotiator is representing m players with identical
interest then his weight in the Nash product must be raised to the mth
power, Thus all the nonsymmetric Nash solutions with a's that have integer
and even rational coordinates may be explained by situations where the
bargainers represent unequal size constituencies to some underlying
problems. In particular, it follows that if we have one player bargaining
against another one, who represents the interest of m players, the first
player will have to concede more and more as m gets larger. It is not clear
whether this is a reasonable phenomenon. For example, in union negotiations
it would suggest that as the number of workers gets larger they may
individually get better conditions for themselves. What should we predict
would happen if the number of stock holders gets larger? The reader can
verify that the n-person Kalai-Smorodinsky solution, defined later, is
invariant to replications of this type.

The utilitarian and the egalitarian solutions also generalize to the
n~person case is one natural way. The rationales justifying these solutions
as demonstrated by Harsanyi [1955] and by Kalai [1977] (the analogues of
Theorems 5 and 6) carry over easily to the n-person case.

Generalizations of the Kalai-Smordoinsky solution have been suggested by
several authors with a variety of results, The reason for it is that the
notion of individual monotonicity can be generalized in several ways. When
applying one particular generalization over the bargaining problems in B™ Roth
[1979a] obtains an impossibility result. However, his notion of individual
monotonicity is very strong and the impossibility result relies strongly on

the use of the full domain of problems in B™. If one does not use as strong a
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notion of individual monotonicity and one is willing to be satisfied by
solving the problems in Bg (accepting the availability of small utility
transfers) then this difficulty disappears. Examples of such generalizations
can be found in Imai [1983], Heckathorn and Carlson [1980], Segal [1980],
Peters and Tijs [1982], as well as others.

Given an n-person bargaining pair (d,S) € B? we define the ideal point

Ie R by

I; = max {ui: 1 is an individually rational element of S}.

The n—person Kalai-Smorodinsky solution is then defined to be the unique
weakly Pareto optimal point in S, u, with the property that for every two
bargainers, i and j, (u, - d,)/(I, - d,) = (u, -4d,)/(I, —d,). We observe

1 1 1 1 J J 3 J
that on BT, u always exists (because of the free disposal property) and that u
may be weakly and not strongly Pareto optimal for some pairs in B?. Clearly

this second difficulty would disappear if we restrict our attention to Bg.

V.2 Multiperson Generalizations

We now take a more powerful approach to the rultiperson problem suggested
by Thomson [1981]. We assume an infinite countable population of potential
bargainers that we denote by N = {1,2,3,...}. We let F be the set of groups
of players which are finite nonempty subsets of N. The idea is that the
solutions we will consider should assign an outcome for every potential group
which may be involved in bargaining. This approach enables us to impose
consistency and rationality conditions on a solution as we vary the group of
participants. We will denote groups of players from F by a capital letter
with the corresponding lower case letter denoting the number of members of the

group.
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For every group P e F we let R’ denote the p—dimensional Euclidean
space indexed by the members of P. For every P e F we define BP, B? and Bg
as in the previous section to denote the set of bargaining problems in R,

We let B, B, and Bo denote the collections of the BE over the P's. A solution
to the multiperson problem is a collection £ = {fP: P e F}, where each fF

is a solution to the p-person problem. We say that f 1is a solution on B, Bj
and B, correspondingly to denote that each £P is a solution on the
corresponding BE. We say that a solution f satisfies a given property if
each of its fl's satisfy the given property. We also define the Nash and
the Kalai-Smorodinsky solution of the multiperson problem in the obvius way to
be the collections of these solutions over the P's in F.

We first describe a multiperson characterization of the Nash solution
suggested by Lensberg [1981]. The key condition used here is one which
requires that the solution is stable with respect to negotiations by subgroups
of the bargainers. More specifically let f be a multiperson solution and
suppose that P and Q are groups of potential bargainers with Q g P.

Given a bargaining pair (d4,S) € BP we define the set

(s: qQ,f) = {u £ Ep : for some we S w coincides with £(d,S) on

P -0 and with u on 0.

In other words, (S: 0,f) are all the feasible allocations to the members of
Q after meeting the demands of the members of P - Q according to f. For
d e B? we let a? be the restriction of d to EQ. We say that f 1is

stable for partial groups if for every two groups P and 0O in F with

Q ¢ P and for every (d,8) e Bﬁ if (d9,(s: 0,£)) € B? then

£9(d9,(s: 0,f)) coincides with the restriction of f'(d,S) to the members
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of Q. The motivation for this condition is that in every subgroup of P
that may be formed to renegotiate their part of the final agreement, no member

has an incentive to deviate from the original agreement.

Theorem 9. A solution defined on B; satisfies Pareto optimality, invariance
with respect to affine transformations of scales of utility, symmetry,
continuity, and stability for partial groups if and only if it is the
multiperson Nash solution.

A characterization of the multiperson Kalai-Smorodinsky solution was
established by Thomson [1981]. Thomson motivates his bargaining problems by
considering problems of fair divisions of bundles of goods among n agents.
Based on the results of Billera-Bixby [1973] we know that every bargaining
pair (d,S) € B® may be viewed as a bargaining over how to divide a fixed and
finite bundle of goods among n agents. The point d 1is the Von Neumann-
Morgenstern utility image that the players have for the zero allocation which
we view as the disagreement, or status quo outcome. The feasible set S
represents the utilities induced by all the possible divisions of the given
bundle among the n agents. Assuming monotonicity in every good, free
disposal of goods, and concave utility functions, we generate bargaining
problems in the class BT. If we assume strict monotonicity in every good
then we generate bargaining problems in Bg.

With this interpretation of the pairs (4,S) € Bg in mind we may wish to
impose the following condition on a solution f. Starting with a fixed
bundle, a fixed set P of agents and their utility allocation fP(d,S),
assume that another agent is added to the group to share the same original
bundle. Now there is one more "mouth to feed” and we should expect that none
of the o0ld agents in P should become better off because of this extra

partner to the division problem.
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Given two bargaining pairs (a,S) € Bg and (b,T) € Bg with 0 i P we

say that (b,T) 1is derived from (d,S) by introducing new agents if

1. a; = bs for every i€ 0, and
2. ue S if and only if there is a we T with uy = Wy for every
ie Q.

We say that a solution f 1is monotonic in agents if for every (a,S) € Bg
and every (b,T) € Bg which is derived from (a,S) by introducing new agents

we have fg(d,S) < f?(b,T) for every i e Q.

Theorem 10. A solution defined on B, is Pareto optimal, symmetric,
invariant with respect to affine transformations of scales of utility and
monotonic in agents if and only if it is the Kalai-Smorodinsky solution.

A nultiperson solution f 1is egalitarian if for some sequence of
positive numbers {ai}ieN’ for every group of players P e F £2 is the
p-person egalitarian solution with weights {ai}ieP' If all the ai's are 1

then f is called the symmetric egalitarian solution. We can now present

another characterization of the symmetric egalitarian solution due to Thomson

[1982].

Theorem 1l. A multiperson solution defined on B; 1s weakly pareto optimal,
independent of irrelevant alternatives, monotonic in agents, continuous, and

symmetric if and only if it is the symmetric egalitarian solution.
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NOTES
lSome authors refer to this condition as anonomity. They use the term

symmetry for solutions which choose a symmetric outcome on symmetric problems.

2There have been several generalizations of the Nash solution to general
n-person characteristic function games in which this characterization plays a
crucial role. An axiomatic generalization of this type was just developed by

Aumann [1983].

3There has been some confusion in the literature between this solution
and a procedure suggested by Raiffa as an "ad hoc method” to do interpersonal
conparisons of utilities for a given game (d,S). One of Raiffa's suggestions
in Luce and Raiffa [1957] is to let b = (bl’bZ) be the highest levels of
utilities in S that may be attained individually by the players, and
w = (wl’WZ) be the lowest individual utilities that may occur in S. The
players then choose the Pareto optimal outcome u such that the line segment

(d,;) parallels the line segment (w,b).
4These solutions were originally introduced by Kalai [1977] under the

name proportional solutions.

SAllowing for @ > 1 will follow because if a > 1 let W = aS then

S = (1/a)W and the same conclusion follows.

6It is quite possible however that an n-person generalization of the second

procedure in the description of the Maschler—Perles solution is possible.
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