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Section I Introduction

In his seminal paper of 1960 [3] Hurwicz introduced a formal model of
an adjustment process, The aim of the line of research he started with that
paper is to provide a theoretical foundation for evaluating and comparing
systems for coordinating economic activity. The model he introduced is
dynamic; an adjustment process was defined by a system of difference equations
which model the process of communication among economic agents, enabling then
eventually to arrive at an allocation of resources. One of the important
properties entering into the evaluation of such a system is the "amount” of
communication required in order that the system achieve or realize a specific
(gross) performance, for instance, that its outcome is guaranteed to be pareto
optimal. This is an important property because resources devoted to communi-
cation are not available for other economic uses and because the capacities
of economic agents to communicate, even aided by equipment, may be limited.

The communication requirements of resource allocation have been studied
extensively, but almost entirely in a static framework. The literature has
almost exclusively studied the size of the message space needed to support
the equilibria of resource allocation mechanisms capable of realizing a given
performance. This amounts to asking how much information (dimension or size
of message) is needed in order that each agent be able to check independently
whether a given message is an equilibrium message. It is natural to ask
whether that amount of information is also sufficient to allow the agents to
find equilibrium. Reiter [6] first studied this question in the setting of
an example, specifically an exchange economy with two commodities, two agents

with quadratic utility functions and a Walrasian performance function. He



considered the class of adjustment processes introduced by Hurwicz, repre-
sented by difference equations in the messages of the agents. He asked
whether there is such an adjustment process using a two dimensional message
space (known to be the minimum size for a static mechanism in this problem)
which is stable (in the sense of Lyapunov) at an equilibrium. In this example
it is seen that if the process is such that the characteristic equation is
defined, then the process must be unstable near equilibrium. Reiter also gave
an adjustment process, with, in effect, a four dimensional message space in
which the two dimensional set of equilibrium messages is embedded, which is
locally stable in this example.

Jordan [4] has considered the informational requirements imposed by local
stability over and above those of static realization, and has obtained more
general results. He introduced a more general kind of dynamical system (in
differential rather than difference equations) in which there are two kinds of

message variables, state messages, which are the messages of the Mount-Reiter

equilibrium formulation (see {5]), and control messages, which play the role

of dynamic adjusters of the state messages. Jordan motivates the introduction
of this type of process by the need to preserve the generality of the Mount-
Reiter equilibrium formulation. In that model it is not generally possible
to associate particular coordinates of the message space with an individual
agent. It is therefore not clear how to define an adjustment process.
(Section 2 of Jordan's paper contains an excellent discussion of the back-
ground of this problem.)

The class of dynamic processes introduced by Jordan is much larger than
the class of adjustment processes heretofore studied. Jordan has pointed out

that the equilibrium message correspondence defined by the stationary messages



of the system need not be a coordinate correspondence, that is, not a stati-
cally privacy-preserving correspondence. This, in light of a certain feature
of the dynamic system, raises the question whether Jordan processes are
privacy-preserving. To help answer this question, we give a definition of
privacy applicable to a general dynamic system and a sufficient condition that
a Jordan process be privacy-preserving. |[Definition 2 and Lemma 2]

The definition of privacy we give applies to dynamic systems in which at
each point of the state space (the message space) the direction of motion 1is,
as in the dynamical systems introduced by Smale, constrained only to lie in a
given set, rather than to be in a specified direction. This, roughly speak-
ing, defines a correspondence from the space of environments to the tangent
space of the message space. A dynamic system preserves privacy if that corre-
spondence is a coordinate correspondence. If the differential equations of
the system determine a vector field, as in a Jordan process, this definition
can be interpreted as saying that each agent privately "consents” to the
direction of motion specified by the vector field.

Jordan's main general theorem applies to the case in which the dimension
of the space of state messages is minimal for the static problem. He shows
that local stability requires the dimension of the space of control messages
to be at least as large as the dimension of the (minimal) static message
space; equality of these dimensions is a possibility. 1In this paper we focus
on the case of equality. An argument given at the end of Section II supports
the idea that this is an important case related to privacy. Our assumptions
and methods are somewhat different from those of Jordan, especially in the
case where the message space is two dimensional. The class of dynamic systems
we study is unrestricted as to dependence on parameters, but includes those

studied by Jordan.



One other difference may be noted here; Jordan uses a definition of
stability that requires a process to stabilize all its equilibria in order to
qualify as stable. We use a weaker definition. Since our result is negative,
in effect we say that an unstable process is one which can stabilize no equi-
librium, whereas Jordan says a process is unstable if it fails to stabilize
some equilibrium.

We study two cases. First, a case where the statically minimal message
space is two—-dimensional. In that case we show that there is no adjustment
process which (locally) stabilizes any of its equilibria. Our analysis is
qualitative and does not rely on examining roots of the characteristic equa-
tion. While the set of (regular) differential equations with linear part
(i.e., with linear terms of the Taylor expansion at the equilibrium point not
identically zero), 1is dense in the set of all (regular) differential equa-
tions, it might well be the case that a dynamical system whose linear parts
are all zero is stable and, even though in some sense rare and isolated in the
set of dynamic processes, is just the one we find of interest. We present the
argument for the two—dimensional case in graphical terms; although a formal
algebraic analysis is available, the graphical exposition is much easier to
follow than the algebraic version. Except for a special case, we have been
unable to generalize the argument to higher dimensions. Second, we present an
analysis in higher dimensions for processes with linear part. There we show,
by an algebraic argument related to the qualitative analysis used in the two
dimensional case, that there must be a positive characteristic root. This,
of course, does not exclude the possibility of a stable process with zero

linear part.



Section II Dynamic Systems and Privacy

Suppose there are p agents, l,...,p, and that the space of environments E
is given by E = EIX...XEP. We shall usually suppose that the E' and E are
euclidean spaces. Let

P

G: EIX...XE > R

be a performance function and suppose that there is a static mechanism with
message space M and equilibrium message correspondence p: E *+ M, which
realizes G, We are interested in the case in which M is an n-dimensional
euclidean space.

The kind of dynamic process introduced by Hurwicz is, in differential

equation form, as follows. It is assumed that M is a product
M o= Mlx,. . xuP

where each space MJ has as coordinates the variables controlled by agent j.

Then the response rules of the agents define the dynamic adjustment process

1) (1.1) @ = £3(m,ed) i=1,00.,p.
with initial conditions
(1.2) mw3(0) = o 3= 1,00e,pe

0
It is evident that the equilibrium correspondence
Y: E-M
given by
- I3y - C
Yf(e) = {m e H|f (m,e”) =0 j = l,...,p}

is a coordinate correspondence and hence privacy-preserving in the static

Sernse.



Jordan [4] has introduced a more general class of dynamic processes.
He does not assume that the message space is a product with different
coordinates to be adjusted independently by different agents. Jordan

introduced auxiliary variables, called control messages, which control the

adjustment of the static messages of M, called static messages. Let ct

denote the space of control messages of agent i with elements denoted

ci,i = 1,2...9. Then a Jordan process (f,a) has the form

(2) (2.1) <t = fim,el) i =1,..,p

ak(cl,...cp,m) k =1,2,00.,dim M

(2.2) mk

(2.3) mk(O) =mg, k=1,ee.,dim M,

In this type of process, each agent determines the value of his control

variables in a "privacy-preserving fashion” based on the current state message

m and his parameters. The state message is adjusted as a function of the

current control messages and the current state message. Note that the adjust-

ments ék do not depend directly on the parameters, but only indirectly through

the control messages.

Substituting from equations (2.1) into (2.2) gives us the dynamic process

(3) (3.1) m = F(m,e)
(3.2) m(0) = m

The equilibrium correspondence of this system is

Yp(e) = {meM | F(m,e) = 0}.



We consider next a still more general kind of system. A dynamic system
such as that given by (3), determines for each e € E a vector field on M,
determining at each point of M a tangent vector m. More generally the system

might determine at each m a set of vectors in which m is constrained to lie.

Definition 1

A dynamic system (%,X,M) is given by a correspondence

: X x M-+ MxMNM,

such that
®(x,m) = M x {m},

where M is the tangent space of M at the origin, and X is a space of
*

parameters.

If ¢ is single-valued we call the dynamic system single-valued. We may

identify a single-valued dynamic system whose correspondence is given by a

differential equation such as (3) with that equation.

Definition 2

e

A dynamic system (@,E,M),E = Elx...xE", with &: Elx...xE® x M » [ x M, is

=g

privacy-preserving if there are dynamic systems (¢i,Ei,M) ¢i: El x M » x M

1

n .
such that ¢(el,...,en,m) = N ¢l(el,m) for all (e,m) in E*x...xE" x M.

i=1

Definition 3

Let ®: X xM > M x M be a dynamic system. The zero correspondence

of ¢ is given by

Zy(x) = (x,M) ({0} x M) = {m e M|(0,m) ¢ & (x,m)}.

* .
In general M X M would be replaced by the tangent bundle to M and we would
require ®(el,...,e,m) to lie in the fiber over m. When M is euclidean we
may write the tangent bundle as a product M x M.



If ¢ is single-valued then ZQ(X) = {m e M|®(x,m) = (O,m)} ; that is, Zg is

the equilibrium correspondence of the system.

We show next that a privacy-preserving dynamic system has an equilibrium

correspondence which is privacy-preserving as a correspondence.

Lemma 1
Let ¢: Elx...XEn x M >M x M be a privacy-preserving dynamic system, and
let ¢ be single valued. Then the equilibrium correspondence 7Yy, = Y of the

$

system is privacy-preserving, i.e., a coordinate correspondence into M.

Proof:

Since ¢ is a privacy-preserving dynamic system, by Definition 2.

there exist correspondences ¢i: Ei x M +» M x M such that for all
1 n 1,1 n, n

e €E and m € M, ¥(e ,ieu,e ,m) = ¢ (e ,m)N s N (e ,m)

Now, m € Y(el,...,en) if and only if

{o,m} = et .uie™m) = ¢ el N o™ )

since, when ¢ is single valued Y(el,...,en) = Z@(el,...,en).
Therefore (0O,m) € ¢i(ei,m) for each i = 1,...,n.
1 n i —
Therefore, Y(e ,...,e ) € Z i(e ). for i = 1,...,n.
9
1 n, ~ E i
Hence Y(e " ,...,e ) & N Z (e ).
i
i=1 ¢
n i
Now suppose that (O,m) ¢ N Z i(e ).
i=l ¢

It follows that

(0,m) € ¢i(ei,m) n [{o} xM] for i =1,...,n.



n ..
Therefore (O,m) € ¢l(el,m) = @(el,...,en,m).
i=1

Since (0,m) & {O} x M, it follows that
1 n 1 n
(0,m) € ZQ(e yeasse ) = (e ,.e0,e ,m) N [{O}XM].
1 n, _ 1 n . . .
Therefore m € Y(e ,...e ) = ZQ(e seeese ), since ¢ is single-valued.
We have shown that

1 n n i
Y(e  yeee,e ) = 1 Z .(e7).
. i
i=1 ¢
Remark:
The Lemma 1 states that every single~valued privacy-preserving dynamic
system has a statically privacy-preserving equilibrium correspondence.
It is also the case that there are no other statically privacy-preserving
single—valued equilibrium correspondences than those arising from privacy-
preserving single-valued dynamic systems. To see this, notice that if
1 n . . . .
Y: E"x.,..XE > M is a privacy-preserving function then we may construct

a dynamic process by defining

3 .

¢l(el,m) = {meM | m=m-a for act Yl(el)} i=1,¢e.,n

where Yi: Ei + M are the coordinate correspondences of Y.

The Jordan process has a single-valued ¢, as seen from equations (3).
But, as Jordan points out, its equilibrium correspondence is not necessarily
privacy-preserving. It follows from Lemma 1 and the Remark that not all Jordan
processes are privacy-preserving as dynamic systems. Lemma 2 states a
sufficient condition that a Jordan process be a privacy-preserving dynamic

system.



10

Lemma 2
Let (f,a) be a Jordan process as given by (2). If for each m &€ M

a(s,m): Cx{m} + M x {m}

is one-to-one, then (f,a) is (corresponds to) a privacy-preserving dynamic

process.
Proof:
i Pi
Let f7: E- xM=+> I C be defined by
i=1
e . . . .
fl(el,m) = Clx...xcl 1,X{fl(m,el)} x ¢t 1x...XCp.
Define
p .
gt E'xM~+ I ctoxM
i=1
i, i AR
by g (e ,m) = (f(e ,m),m).

The following diagram shows these maps.

[Insert untitled Figurel]

If a x IdM is one~to-one, then this diagram commutes, that is, the map

$ given by N i followed by a X IdM is a coordinate correspondence.
i
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Section III: Stability in Two Dimensions

Jordan has investigated the implications of local stability for the
size of the space of control messages. As we have seen, Jordan's dynamic
process can be written in the form of (3). He studies the local stability
of (3) using a definition of local stability [2.4 Definitions in (4)] that
incorporates (i) a requirement of "Lyapunov stability"; a small displacement
of equilibrium will not cause the system to move far from equilibrium; (ii) a
requirement of “asymptotic stability”; the system will eventually converge to
equilibrium; (iii), a requirement that every equilibrium corresponding to a
particular environment be stabilized by the system in the senses of (i) and
(ii); and (iv) perturbations of the environment as well as of the state
messages are allowed.

Under the conditions that the f1 be continuous (jointly in m and ei),

and for each el

satisfy a Lipschitz condition in m, and that a is Lipschitzian
jointly in its arguments, and under the assumption that (i) E has a subset EO
which is homeomorphic to an open subset of R™ where n = dim M; and (ii) for
any e, e’ ¢ EO, u(e) N u(e’) = ¢ if e # e”, Jordan has shown [2.14 Theorem in [4]]
that if the adjustment process is locally stable then dim C > n = dim M, where
C is the space of control messages.

We focus on the case where dim C = dim M, especially where
dim C = dim M = 2. This case is of special interest for at least the following
reason. Jordan has shown that for any process in his class, dim C > dim M.
Since dim M = dim M, his theorem tells us that dim C » dim M. We know from
Assumption 1 that a(+,m): C x {m} > M x {m} is continuous and from Lemma 2

that injectiveness of o is a sufficient condition that the Jordan process

(f,a) be privacy-preserving. It can be shown that if a is continuous and
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injective, then dim C < dim M. This follows from the propositions (i) that a
continuous one-to-one function from a compact space to a Hausdorff space is a
homeomorphism, and (ii) that an open subset of a euclidean space has the same
dimension as the space.

Applying this result to the mapping a(+,m): C x{m} > M x{m} we see that
in the class of cases when the sufficient condition of Lemma 2 is satisfied,

the only case to examine is that in which dim C = dim M.

We consider a broader class of processes than those introduced by Jordan,
in particular, those that correspond to single valued dynamical systems in the
sense of Definition 1. In that case the equations of (3) are not required to
have the structure defined by (2), nor is the system required to preserve
privacy. We also use a weaker concept of local stability, which, since our
result is a negative one, gives a stronger theorem.

Let the differential equations ﬁi = hi(m,e) i=1,...,n, be given. We
may write this system in the form m = h(m,e). In order to guarantee existence
and uniqueness of solutions, we make the following Assumption. (See [1]

Theorem 7.1, p. 22)

Assumption 1

For each i = 1l,...,n hi is continuous on M x E, and for each e ¢ E, the

0

function hi(+,e) is locally Lipschitzian. That is, for any m° ¢ M there is a

1

b

neighborhood M! of m0 and a constant K > 0 such that for any m,m” e M
i i - -
h"(m,e ) — h"(m",e }I € Kim - m™1.

Next, we define local stability.
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Definition 4

For each (m0,e0) € M x E consider the differential equation (with initial

condition)
(4) m = h(m,e”)
m(0) = mO
Let D 0 = {mO e M | (4) has a solution on the entire time domain [O,w).}.
e
Define m*O : D 0 X [0,») » M, by setting m*O (m,t) equal to the solution of
e e e

(4) at time t.

Let m € u(eO). The process (4) is locally stable at an equilibrium m of
the environment e0 if for each neighborhood V of m there exists a neighborhood
U of m with UV and UC D 0 and a function u*: U > M satisfying for each
m® € U the conditions ©

a) m*0 (mO,t) g V, for all t (Lyapunov stability)
e
b) a) holds for every environment in E, C E, where E; is the class

of environments e € E such that m is an equilibrium of e.

The distinction between Jordan's definition of local stability and ours
is as follows. First, Jordan studies the variation of equilibria under pertur-
bation of the environment. We do not. We fix an equilibrium and require that
it be Lyapunov stable for all environments for which it is an equilibrium.
Second, Jordan requires the process to stabilize all equilibria, in the sense
of both Lyapunov and asymptotic stability; our definition applies to Lyapunov
stability of a particular equilibrium. Thus it is conceivable that an adjust-
ment process might stabilize some equilibria of a particular environment but
not others. The case of an environment with multiple competitive equilibria,

some of which are locally stable (with Walrasian price adjustment) and others



14

unstable illustrates the difference. Jordan's definition requires that this
process be called unstable while ours allows it to be called stable at the
right equilibrium.

We now turn to the case n = 2. In that case Jordan's theorem tells us
that dim C 2 2., We study the case of equality, that is, dim C = 2, In that

case the system (3) can be written

5) m hl(m,e)

1

m

2
5 h™ (m,e)

where the functioms hi, i = 1,2 may each have all components of e as arguments.

Define the correspondences:

(6) Y'(e) = {me M | h'(me ) = 0},
and Yz(e) = {m eM l hz(m,e ) = O}.
Then v(e) = v (e) n vi(e).

Since Yi(e) is the set of zeros of hi(-,e), we sometimes refer to it as the
zero—locus of hi(-,e).

If (u,M,g) is a static mechanism (realizing a performance function G), we
say that the dynamic process (5) realizes p (and G) if y = u, i.e. if the
stationary points of (5) are those given by u.

We assume that for each environment e € E, u(e) is not empty. Therefore
if the dynamic process given by (5) is to realize u, the equations (6) must
have at least one solution for each environment. Geometrically, for each
environment, the sets given by (6) intersect in M at least once.

We take such a point of intersection. Without loss of generality we may,

by a translation of coordinates, take that point to be the origin.
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Assumption 2

In a neighborhood of the origin the set of zeros of hi(-,e) is a
submanifold. (See [2] Def. 2.7, p. 9)

Note that the function hi(-,e) need not be one of the coordinate functions
which define the submanifold. In particular Assumption 2 does not imply
that hi(+,e) is differentiable.

The zero-locus of hi(-,e) might be empty, consist of a finite number of
points, be a curve in RZ, be 2-dimensional. The only interesting case is
that in which it is a l-dimensional curve in RZ2. We confine attention to that
case. Given an equilibrium point, m, there is a subset Ej of environments
which have that same point as an equilibrium. We may without loss of

generality take m = 0. Thus, let

E, = {e e B | h'(0,e) = 0} 1 =1,2

Since EO(: E, if there is no dynamic process stabilizing O for all environments
in EO, then there is certainly no such process for all environments in E. We
can confine attention to EO'
It follows from the assumption that Yi(e), i =1,2 is a submanifold,
that for each e ¢ EO’ the curve Yi(e) has a unique tangent at the origin.
In a neighborhood of the origin on which Yi(e) is a submanifold, the curve
Y(e) divides the space into two regions, which we orient as follows.
Let L(Yi(e); ml,mz] be a real-valued continuous function, taking the
value 0 at each point of Yi(e) and changing sign across yi(e). This func-

tion exists because Yl(e) is a submanifold. Thus L(Yl(e),ml,mz) is positive

for all (ml,mz) on one side of Yi(e) and negative on the other.
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Let
Hi(e) = {(ml,mz) €M | L(Yi(e),ml,mz) > 0}
Hi(e) = {ml,m2 €M | L(Yi(e),ml,mz) < o}

We call Hi(e) the upper (or positive) half-space and Hi(e) the lower

(or negative) half-space of Yl(e). Of course, these regions are literally
half-spaces only when Yi(e) is a line; generally they will be regions with a
curved boundary.

For e € EO, let oi(e) denote the unit vector normal to vi(e) at the origin
pointing into Hi(e). Thus ol: EO +sl i = 1,2, where sl is the unit circle
in RZ.

Let % denote the class of all functions h : M x EO + R which satisfy
Assumption I and write 9{e for the collection of all functions h € % with e
a fixed element of EO that is, h(-,e): M x {e} *+ R. The collection includes

the right hand side functions, which we shall refer to as adjustment functions,

of dynamic processes given by (5) and hence covers the Jordan and therefore
also the Hurwicz processes. We now introduce an assumption about the way the

zero-locus of the function hi depends on the environment.

Assumption 3

The mapping

satisfies the following condtions

(i) There exists a point w € sl and a neighborhood of (w,w),

V(w,w) € S1 x S1 such that O(EO) contains V(w,w),
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(ii) the correspondence o—l is locally threaded at the point
1 1
(w,w) € S x S, That is, there exists a neighborhood
Ww,w) o V(w,w) C Sl X S1 and a continuous function

£: W(w,w) = EO such that (x,y) € W(w,w) implies

E(x,y) € o L(x,y).

We shall now show there is no dynamic process satisfying our assumptions

that is locally stable at the origin for all environments in E

0

Theorem
Let m be a point of RZ. There does not exist a dynamic process, as given
by equations (5) with (hl,hz) € ¢ , satisfying Assumptions 1,2 and 3, for which

m is a locally stable equilibrium.

Proof:
1 .2 . 3 A .
Let (h”,h”) € % be the adjustment functions of an arbitrary system given
by (5). It follows from the continuity of nt that for 1 = 1,2, and each

e € EO’ hl(',e) can change sign only at points of Y'(e). That is hl(-,e) must

have one sign on each half space Hi(e) and Hi(e). Let w1 3 S1 be a point whose

existence is guaranteed by Assumption 3(i). We may without loss of generality

1

(by permuting coordinates and possibly changing signs) assume that w~ is in the

1 _ (-1 1
\

Vi

By Assumption 3(i) there exists eO € EO such that o(eo) = (wl,wl).

interior of the second quadrant, e.g., w

Since hi is continuous, taking a point m in the interior of Hi(eo) at

, hi(m,eo)
which hl(m,eo) is, say, positive, and letting € = —_— s there is

a neighborhood Ni(eo) such that e € Ni(eo) implies hi(m,e) has the
same sign as hi(m,eo) and therefore has the same sign as hi(-,eo) on

i i i i i .
H+(e) (resp. H_(e)} as h ( ,eo) has on H+(e0) (resp. H_(eo)), for i = 1,2,
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g2 1 1

Since £&: X 52 + E is continuous on W(wl,wl) c §° x 87, for

every neighborhood U(e0)<: E there is a neighborhood

O,
V(wl,wl) - W(wl,wl) c slx sl such that

(wl,wz) € V(wl,wl) implies E(w} w2) e U(eo).

1
For A > 0, and given w , let

1
2oy = L= 01,0 + xwl
(1 = A)(-1,0) + Aw I

Then for every neighborhood V(wl,wl) c Sl x Sl there exists § > 0 such that

|x - 1] < ¢ implies (wl,wz(k)] € V(wl,wl).
Let U(eo) = Nl(eo) n Nz(eo). Then for this neighborhood U(eO)’
there is V(wl,wl) - Sl X Sl and 6§ > 0 so that 1 - § < A < 1 implies

1. (wl,wz(k)) £ V(wl,wl);
2. e(n) = t(wl,w?(n)) € Uey) = Nl(eo) N N?-(eo); and
3. the slope of Yz(e(k)) at the origin is positive and greater than

the slope of Yl(e(k)] at the origin, which is also positive,

It follows from Assumption 2 that there is a neighborhood of the origin in
M such that Yl(e(k)] and Yz(e(k)] intersect in that neighborhood only at the
origin. We shall from now on confine attention to this neighborhood, and in
our diagrams picture this neighborhood as if it were the whole of R2. In this
way we can avoid inessential notational complexities.

Since hi(-,e(A)) must have one sign on each half-space Hi(e(k)] and
Hi(e(k)), we can partition Me(x) into equivalence classes based on the sign

pattern of the hi functions,
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Let Ai(e(k)) = {hi(-,e(k)) € ile(k)l hi(m,e(X)) >0
for m € Hi(e(k)) U Hi(e(k))}
Bi(e(n)) = {nl(e,e(0)) ¢ ol ' (me(M)) >0 for m e H(e(A))
W' (me(n) <0  for m e B (e(W))}
Ci(e(X)) = {hi(-,e(k)) € &E(x)l hi(m,e(X)) <0 forme Hi(e(%))}
n (m,et () >0  for m e Hf(e(x))}
pie(n)) = {n® ¢ % | b (m,e(V)) <0 for me H (e()) U H (e(V))}

It follows that the arbitrary adjustment process we began with must have
its response functions in one of 16 subsets of functions in i[e(X)’ namely
2
Al(e(k)) x A“(e(n))

Alle(n)) x B2 (e(n))

pl{e(n)) xp {e(N)),
generated by the four ways in which signs can be assigned independently to each
of the two adjustment functions.
The two half-spaces Hi(e(l)) and Hi(e(l)) for each agent determine four

regions of RZ which we may label

Ile)) = #le(]) n wi(e)
11{e)) = w (e()) N (e(n)
1r(e(n) = 1l (e) 0 w(e)

wiei)) = 1 (e(n)) N B2(e(n)).



20

(If the curves Yl(e(X)J and Yz(e(k)) intersected in some other way at the
origin, for instance, were tangent there, some of these regions might be
enpty.)

Now, each pair of function (hl(-,e(k)), hZ{-,e(A))) determines a pair

of signs (s ,sz), where s; € {+,-}, 1 = 1,2, on each of the sets I(e(x)),

1
II(e(X)J, III(e(X)J, IV(e(X)J. Since these are the signs of (ﬁl, 52), to
each pair of functions (hl(-,e(k)J, h2(°,e(X)JJ in an equivalence class of
%(e(X)J’ in each of the regions I(e(k)),...,IV(e(X)J there is a unique

quadrant of directions in which the vector (m iz) must lie at every point of

1’
the region. Since &i =0 if me Yi(e(k)), we also know the unique direction
of (ﬁl,ﬁz) along the boundaries of these regions.

Figure 0 shows the two curves Yl(e(X)J and Yz(e(X)J and the four regions

into which they partition the plane.
[Insert Figure O here]

The dynamic process with adjustment functions (hl,hz) falls into one of
. 1 2 L 2¢
the 16 equivalence classes A (e(k)) X A (e(k)),...,D le(X)) x D7 {e(N)). We
study the solution path determined by the differential equation (5) from each
initial point of the message space. There are, of course, 16 cases, which we

examine in turn.

Case 1

Suppose (h!,h2) ¢ B (e(n)) x c?(e())); that is, hl(+,e(A)) > O on

\

Hi(e(k)) and hl(-,e(X)J <0 Hi(e(k)) and h2(°,e(X)J < 0 on Hi(e(k)) and

h2(°,e(X)J > 0 on HE(e(X)J. We can represent the sign of m, by an

1

arrow "*" or "<«" showing direction but not magnitude, and similarly ﬁz

by "4" or "+". Thus, in figure 1, the arrows in region I(e(k)) for example,
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indicate that (i) at any point interior to that region the motion must be up
and to the right, and (ii) at any point on the boundary given by Yl(e(x))
except the origin, the motion must be up (ﬁl = 0 on Yl(e(X))) and (iii) at any
point on Yz(e(k)) except the origin the motion is to the right. Therefore if
the initial point my # O belongs to region I(e(x)), the solution path moves
away from the origin and does not leave region I(e(k)). Therefore, if (hl,h2)
is in B1(e(1)) x c?(e(r)), the equilibrium corresponding to the origin must be
unstable at the environment e(A). Figure 1 shows that the region III(e(A)) is
also a region of instability for (hl,hz) in this case.

Table 1 summarizes the results for each of the 16 possibilities for
(hl,hz). In Table 1, column 1 lists the case number, columns 2 and 3 iden-
tify the sign patterns of the two response functions and column 4 lists all of
the regions of instability; a solution path emanating from a point of such a
region must go off to infinity (leave the neighborhood) thus violating condi-
tion (a) (Lyapunov stability) of Definition 4. Table 1 also uses the notation
Qi’ i =1,2,3,4 for the four quadrants, i.e., Q = {(ml,mz)]ml > 0, my > O},
QZ{(ml,mz)]ml <0, m, > 0}, etec.

Figures 1 through 16 show the arrow diagrams for each of these

16 cases. For example, Figure 2 shows that at a point m_ which belongs

0

to region II{e())) and is to the right of the m -axis, the motion is down

2
and to the right. A solution path through such a point must either go off
to infinity or hit Yz(e(k)). If a path hits Yz(e(k)), it crosses into

region I{e(A)), which is a region of instability.

[Insert Figures 1 to 16 here]
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Table 1 reveals that in 14 of the 16 cases there is at least one region of

instability. In the remaining two cases, Cases 4 and 13, spiral convergence

to the origin (or to a limit cycle) cannot be excluded.

That is, if (hl,h?2)

is a member of the equivalence class corresponding to Case 4 (or 13), then the

equilibrium 0 might be stable at the environment e(A).

We show next that in

each such case there must be another environment in Eqy for which the origin

is unstable, thus violating (b) of Definition 4 of local stability.

We consider first Case 4.
1
h™(m,e(A)) > 0 for
1
h (m,e(1)) < 0 for
2
h“(m,e(A)) > 0 for

h?(m,e(r)) < 0  for

Let 1 <X < 1+ 8, then £(ul,u?M) = e e n'(ey) n N(e

In that case
, 1

all m in H+[e(A)J,

all m in Hf(e(x)J, while
X 2

all m in H+(e(A)J and

all m in H2(e())).

O)’

It follows that

4) The slope of Yz(e(X)j at the origin is positive and less than that of

Yl(e(X)J, and

5) the sign pattern of hl(-,e(T)) [resp. hz(-,e(X)J] is the same as that of

hl[-,e(X)J [resp. hz(-,e(X)J]. Thus, we have the situation shown in

Figure 4a, where it can be

*
Lyapunov instability.

1

seen that Q N H (e(?)) is a region of

<+

[Insert Figures 4a and 13a here]

The argument in Case 13 is completely analogous to Case 4, figure 13a

shows this case.

*

Here we take the neighborhood of the origin in M sufficiently small to

ensure that Y2(e())) intersects yl(e(X)) only at the origin.
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The following examples show that Assumptions 1, 2 and 3 can be satisfied,
and a modification of the example makes it clear that some condition like
Assumption 3 is indispensible.

We consider a case with two agents (p = 2) where the environment

1

2 = (xl,zl), where x,z,xl,z are

l,ez) is given by el = (x,2), e

e = (e
the message space M = R x R, is two dimensional. It is known that there

are performance functions for which this message space is statically minimal.

Consider the dynamic process defined by

7 m z - xm, - m

1 2 1
m, = zl - xlm -m
2 1 2°
The zero-loci are,
(8) Yl(el)={(m m) eM| z-xm -m =0}
1772 2 1
2,1 1 1
Y (e) = {(ml,mz) eM | z0 - x m - m, = 0}.
which determine the equalibria
(9) T = z—zlx 5 = zl—le
1 I’ 2 I °

l - xx l - x

provided xxl # 1.

Since 1 - xx! # 0, the solutionE1 =0 ='EZ holds for the class of
environments with z = 0 = zl. In addition, when xxl =1, and z = zl = 0, the

two equations in (8) coincide. Because equations (8) are satisfied at the

origin even when they coincide, the class EO is given by

By = {(x,2),&h2h) e R x 8% 2 = 2 = o),
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which, since x and x1 are unconstrained, we may identify with
R x R. The mapping

g: R x R =+ S1 X 31

is given by

ol (x,x1) 8,(1,x)

oz(x,xl) !

9. (x

y) )1))

where 61 and 62 are scalars chosen to make the norms equal to 1, and to orient
the vectors according to the prescribed convention. It is straightforward to
verify that Assumptions 1,2 and 3 are satisfied.

Now, to see that the dynamic process given by (7) might locally stabilize

the origin if Assumption 3 is not satisfied, let

1 1 1
EO={(x,x)eRxR]o<x-x <1} € Eq.

A point on S1 may be represented in terms of the central angle 0, so that it
has coordinates (cos 9, sin 8). Suppose 8 # %. 1f O(X,Xl) = (8,6) it follows

1 1 L 1 .
that x = tan 9 and x = ctn 9. Hence xx =1, If 6 = 7> then xex = 0, since
in that case cos 9 = 0 so X1 = 0.

Thus Assumption 3 cannot be satisfied.

Furthermore, the characteristic roots of (7) are

>
1]

1
which for (x,xl) € EO are always negative. Hence the process given by (7)

1
locally stabilizes the origin on EO'
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It may be noted that if we restrict attention to the environments EO, and

consider, for example, the performance function

G EO > R
given by
G(x,xl) =X xl,
the process
(10) m = -(m1 - x)
m, = -(m, — m,* xl)
2 2 1

is well-defined and is locally stable on Ej, but it does not satisfy
Assumption 3, since for any equilibrium m = (E&,Bé) of the process, the

set Eda of environments in EO which have m as an equilibrium is

m
1 — 1 2
B = {(x,x) e R xR | x= LN },
™
so that
1
o (Egm) = {(1,00} or {(-1,00},
depending on the orientation of the line m, — x = O.

1

Section IV Stability in Higher Dimensions

In the proof of the Theorem, Assumption 3 was used in Cases 4 and 13
to produce an unstable configuration. This instability was produced by inter—
changing the normals of the curves Yl(e) without changing the signs of the

ht. Instability might also result from changing the sign of one of the ht.
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In the case in which the nl are linear, or in which the Jacobian of (hl,hz)
is nonsingular, either of these alternatives changes the sign of the determi-
nant of the svstem.

The "folklore™ of the subject includes the result that in the n dimension
nonsingular case, if n is even then the system is unstable if the determinant is
negative, and if n is odd and the determinant is positive the system is unstable;
because the argument is short we have included it below.

Denote by M the matrix of the system

(11)

3
I
™3

a(ijm,.
1 j

b
The characteristic function of the system (11), det(M - tId), is a
polynomial of degree n with real coefficients which we may write as
DT e+ s+ d = EDEN Lo+ DT A
The constant term is of course det(M).
The Fundamental Theorem of Algebra says that we may write
=D A = () ) (e Jo (£ 40 (1)
where each r(i) is real and each Qi(t) is a quadratic with two complex
conjugate roots. Thus
D™ dx, . x™ = CDY R e (W) g (D) e -2 q(v)q(v)
where q(s) and a(s) are the complex conjugate roots of Qs(t). Thus
D" dalx’,ea,x™) = DT r(D)er(u)eg
where q is positive. It follows that
(-1)" detM = (-1 r(1)...r(u)q.
Now suppose that n is even. The number of non real roots is even

(since they arise as conjugate pairs). Thus u is even and

detM = r(1)...r(u)q.
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If detM is negative, then one of the real numbers r(i) must be positive.
Suppose that n is odd. Then u is also odd and we have
- detM = - r(1)...r{u)q.
1f detM is positive then not all the real roots r(l)...r(u) can be negative.
We know that if the matrix of the system (11) has a positive real

eigenvalue, then the system is unstable.
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