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Summary

Asymptotic bias is derived, as a relatively simple matrix function of the

true parameters, for the ordinary least squares estimator in multivariate

autoregressive models. The result is obtained through a convenient asymp-

totic expansion of the estimator.

Some key words: Asymptotic bias; Asymptotic expansion; Autoregressive model;

Ordinary least squares estimator.



1. Introduction and Model

Kendall (1954) obtained the bias of the ordinary least squares
estimator to order n_l for the first order autoregressive model with
a constant term, while White (1961) to orders higher than n—l for the
one without a constant term. In the present note, we derive the asymp-
totic bias to order n—l for the ordinary least squares estimator of a
nmultivariate autoregressive model with a constant term. It can be
reduced to a model without a constant term as a special case, which
corrects an error in Groenewald and de Waal (1979). While the asymp-~
totic bias, whose precise definition is given in Section 2, is conceptually
different from the approximation of the finite bias by Kendall and White,
they are shown to be identical to order n_l for both types of the first

order multivariate autoregressive models.

Let us consider the p-variate first order autoregressive process

y

Ve = BYe g T BTV (1)
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Where zit = [ytl’ ytz’ LR | ytp]’ Yt = [vtl’ vtz’ ""v ]’

B = [Bij] is the pxp coefficient matrix and bo = [Bio] is the p x 1

coefficient vector. We assume that Vv, is independently identically distri-

t

buted as N(O,Q&) and all characteristic roots of B are less than unity
in absolute value. Following Anderson (1959), the process is alternatively

expressed as

2 = égt—1 + Jeo (2)

= [Yt,O] with 9u = E(gtgt), and A

h - .
where z, [Yt’l] > Tt

v

is the (p+1)x(p+l) matrix
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We can express Z, and E(gtgg) as
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o

where A~ = }p+l’Ik is the identity matrix of rank k, and d is the
(p+1)th column of A™, i.e., d = A"z = [, -B)~ b RIeE
2, Asymptotic Bias of Ordinary Least Squares Estimator

For given observations Xo,yl,....,zn, the ordinary least squares
estimator of A is given by

A= (1z ) (2 )7 (5)
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Here we assume that the initial observation Yo obeys the same multi-

variate normal distribution as Ye for t > 1. As a generalization of

~

Akahira (1979), we can expand 8 - A as
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Let us define the asymptotic bias of A, denoted by ABIAS(A),

as follows:



ABIAS(R) = AE(A-A)

E{Wf_l(nd%I —n_ly)} + O(n—l), (7)
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where AE is the expectation of the asymptotic expansion of the distribu-

A

tion function of A.

Theorem: The asymptotic bias of the ordinary least squares estimator

(5) for the first order multivariate autoregressive model with a constant

term (1) is given by

1l
=}
o)

~—
Lae)
>
\
e
=3
-
="
N
=3
.
+
=
=¥
N
|

ABTIAS (A)

+er @ F Algahr by +oa™h,  ®

Proof: See Appendix.
As easily seen, the above result includes a univariate p-th order
autoregressive model as a special case. Specifically, for the univariate

first order autoregressive model, we have
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and d = [c,1], c =8 /(1-8)), I. . AT At =w"(1-8)"M, u =E(),
o] i=0 ~ ~u~ 1 ~ t

M =¢e” and e = [1,0]°. Then, the first row of the first term in (8)
reduces to (1+8;)[1,-c], while that of the second term vanishes.

The first rows of the third and fourth terms are simplified to the same
vector 81[1,-c]”. Thus, for the univariate first order autoregressive

model with a constant term, we get



ABIAS(By,B) = n 1(1+38)) [-1,8 /(18] + o).

The result of ABIAS(él) conforms with Kendall (1954), while, as far as
we know, ABIAS(@O) has not previously been obtained.

The result (8) is also simplified for the case of no constant
term,

Corrollary: Let B be the ordinary least squares estimator for the first

order multivariate autoregressive model in (1) with a priori knowledge

A

of b = 0. Then, the asymptotic bias of B is given by

~0
NS S NS B SN S R 5 |
ABTAS(B) = - o™ g, { E B I+ 5, BT er (8 ))
+ o@Dy,
here B = (£ e -yl ey = § osfgst
whete = t21 Lefe-17 Y2y Ye-1Y -1’ 0 ¢ Iede! 7 550 2 W

Proof: Since ¢ = 0 in this case, the first two terms of (8) are dropped.
Further, replacing A and @' by B and Qv in (8), and noting that
u 2

r = .fo glgvg’i in this case, the proof is completed.
l=

We note that, while the second term of (9) is the same as the
second term of equation (3.13) in Groenewald and de Waal (1979), the
first term is different from their first term.

For the case of the univariate first order autoregressive model
without a constant term, we have B = §’ = B; apd T = 72/(1—8%). Thus

the above result is reduced to
ABIAS(B1) = -(281)/n )

which conforms with White (1961) to order n-'l

Finally, it is easily seen from the proof in Appendix that all



the results remain to hold, even if we replace the assumption on Yo

~
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Appendix: Proof of Theorem

By the structure of ¥, we can rewrite (6) as

. 1 1 n-1
IO WS T W .- -1 -1
A-A=n {2Wr 7} = n l@F {n (t=0 Etzg)y } + op(n )f

Since E(w) = 0, ABIAS(R) is reduced to
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Using the expression of z, in (4), we can express Zt—lutzt—l and

Zn—l 7z z° as
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Noting that E{(uSzS l)(zt?E)} = 0 for s > t, the expectation for

-

given s is given by
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s=1,2,...,n. (A.3)



We first evaluate the first term of the above. Since the expectation
exists only when the time indices of u,'s are equal or pairwise equal,
it can be expressed by (A.2) as

- —l o
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The first term of the above can be reduced to
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Similarly, the second term of (A.4) is reduced to
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Since g’f_l Z:=O gkgs is a scalor, first transposing it and then taking
the expectation, we get
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The third term of (A.4) can be written as
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Since gs—iA I' Ay is a scalor, first transposing it and then
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taking the expectation, we get

. (A.7)
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Yo is a scalor, moving it to the end and then taking

Since g; A

the expectation, we get
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Thus, the first term of (A.3) is
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It is easily seen that the second term of (A.3) is 0(§n—s) for s=1,2,...,n0,

i i PP - _
because A u = [(B ¥t):0]. Since 0(I§n S) = 0(pn S) where 0 < p < 1 by the

assumption on the characteristic roots, we have 22=10(B n—s) = 0(1). Thus,
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From (A.1l) and (A.9), the proof is completed.
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